Skip to main content
. 2024 Oct 30;25:340. doi: 10.1186/s12859-024-05968-3

Table 3.

Regression and classification performance of simple MLP with varying similarity cutoffs

Similarity cutoff Number of train sets PCC MSE CI Prec Recall BACC
1 313,414 0.867 0.691 0.854 0.858 0.908 0.862
0.6 289,107 0.848 0.780 0.843 0.886 0.843 0.855
0.59 259,290 0.824 0.872 0.829 0.872 0.841 0.845
0.58 226,521 0.777 1.097 0.806 0.847 0.832 0.824
0.57 183,555 0.719 1.380 0.780 0.839 0.778 0.797
0.56 148,252 0.653 1.722 0.750 0.828 0.704 0.762
0.55 113,519 0.578 2.027 0.715 0.786 0.655 0.718
0.54 81,362 0.534 2.163 0.704 0.789 0.622 0.709
0.53 61,755 0.495 2.572 0.687 0.795 0.497 0.670
0.52 46,652 0.425 2.971 0.660 0.788 0.372 0.624
0.51 36,447 0.376 3.096 0.639 0.760 0.366 0.612
0.5 29,831 0.328 3.462 0.624 0.750 0.291 0.586

The number of test data points is fixed at 80,578. As the similarity to the test set diminishes, indicated by lower cutoff values, the performance metrics (PCC: Pearson correlation coefficient, MSE: mean squared error, CI: concordance Index, Prec: precision, Recall, and BACC: balanced Accuracy) generally decline.