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Abstract

Purpose—This review explores the current landscape of AI applications in imaging for TAVR, 

emphasizing the potential and limitations of these tools for (1) automating the image analysis 

and reporting process, (2) improving procedural planning, and (3) offering additional insight into 

post-TAVR outcomes. Finally, the direction of future research necessary to bridge these tools 

towards clinical integration is discussed.

Recent Findings—Transcatheter aortic valve replacement (TAVR) has become a pivotal 

treatment option for select patients with severe aortic stenosis, and its indication for use continues 

to broaden. Noninvasive imaging techniques such as CTA and MRA have become routine for 

patient selection, preprocedural planning, and predicting the risk of complications. As the current 

methods for pre-TAVR image analysis are labor-intensive and have significant inter-operator 

variability, experts are looking towards artificial intelligence (AI) as a potential solution.

Summary—AI has the potential to significantly enhance the planning, execution, and post-

procedural follow up of TAVR. While AI tools are promising, the irreplaceable value of nuanced 

clinical judgment by skilled physician teams must not be overlooked. With continued research, 

collaboration, and careful implementation, AI can become an integral part in imaging for TAVR, 

ultimately improving patient care and outcomes.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) 
and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.
✉Arash Bedayat abedayat@mednet.ucla.edu.
Shawn Sun and Leslie Yeh have equally contributed to this work.
Author Contributions SS, LY and AB Wrote the main manuscript text AI; SK; AK provided scientific material All authors reviewed 
the manuscript.

Conflict of interest The authors declare no competing interests.

Research Involving Human and Animal Rights This article does not contain any studies with human or animal subjects performed 
by any of the authors.

HHS Public Access
Author manuscript
Curr Radiol Rep. Author manuscript; available in PMC 2024 October 31.

Published in final edited form as:
Curr Radiol Rep. 2024 ; 12(11-12): 113–120. doi:10.1007/s40134-024-00431-w.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


Keywords

Transcatheter aortic valve replacement (TAVR); Artificial intelligence (AI); Computed 
tomography (CT)

Introduction

The introduction of transcatheter aortic valve replacement (TAVR) in the 2000s 

revolutionized the management of severe aortic stenosis (sAS). Multiple randomized 

controlled trials (RCT) have demonstrated improved perioperative mortality rates and 

favorable long-term outcomes for patients receiving TAVR [1, 2]. Society guidelines have 

now established TAVR as a standard of care for a selected group of patients with sAS [3]. 

The number of TAVR procedures performed in the United States has grown substantially 

each year, with approximately 98,500 TAVR procedures performed in the US in 2022 [4].

Noninvasive imaging techniques play a crucial role for patient selection and preprocedural 

planning for TAVR. Multidetector CT and, less commonly, MRA are used for access 

planning, annular sizing, product selection, and other assessments. Precise anatomical 

measurements are required for optimal valve selection and predicting the risk of post-TAVR 

complications such as paravalvular leak, valve migration, and coronary obstruction. In 2019, 

a consensus was published on the correct technique for performing and analyzing these 

pre-operative scans for TAVR [5]. However, this complex process remains time-consuming 

and labor-intensive for radiologists, even with the use of semi-automatic software.

The indication for TAVR has expanded from patients being ineligible or at high-risk for 

surgical intervention to include patients at intermediate and low risk for surgical aortic valve 

replacement (SAVR) [3]. Several ongoing clinical trials aim to broaden FDA approval of 

TAVR for asymptomatic sAS and potentially even moderate AS [6, 7]. The growing demand 

for TAVR procedures and the necessary pre-operative planning will exacerbate the burden on 

radiologists who are already grappling with a global shortage [8].

The rise of artificial intelligence (AI) over the past decade has propelled this innovation into 

society’s mainstream and holds the potential to revolutionize radiology and medicine [9]. 

Several recent studies have demonstrated AI’s potential to enhance pre-operative planning 

efficiency in TAVR, promising to further improve patient care. Additionally, fully automated 

AI tools are currently under development to streamline this process [10].

This review emphasizes the current state-of-the-art research in AI techniques for TAVR-

related imaging, addressing their limitations and exploring future directions.

Patient Selection and Diagnosis

The diagnosis of AS via echocardiography relies on certain operator-dependent 

measurements, which can affect specific subgroups based on who performs the scan. For 

example, inter-operator variability for the left ventricular outflow tract (LVOT) diameter 

reaches up to 8%, which is then magnified in the calculation of aortic valve area (AVA) [11]. 
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Traditionally, a mean pressure gradient of 40 mmHg or greater and an AVA of less than 1 

cm2 are considered the criteria for diagnosing sAS [3]; however, recent findings suggest that 

up to one-third of patients present with discordant AS grading [12]. Measurement error and 

discordant grading severely impact the diagnosis of sAS, and accurate grading is crucial for 

timely intervention and proper management of these patients.

AI holds promise in reducing misclassification by assisting in the diagnosis and 

identification of aortic stenosis from echocardiograms. Holste et al. [13] developed a deep 

learning model that detects sAS from 2D cine echocardiography data, eliminating the need 

for Doppler imaging. This model was trained and validated on large datasets from multiple 

institutions, achieving high diagnostic accuracy for aortic stenosis, with AUC of 0.978 in 

the primary test set. A model using only 2D single views has the potential for point-of-care 

screening for sAS across various clinical settings and patient subtypes. Playford et al. [14] 

explored the use of an AI algorithm to identify sAS from routine echocardiograms without 

the need for error-prone LVOT information. Key results show that the algorithm could 

correctly identify 95.3% of patients with traditional high-gradient AS and 100% of patients 

with traditional high-gradient AS and AVA < 1.0 cm2. It also effectively identified low-flow, 

low-gradient severe AS, with only a 4.7% misclassification rate.

While echocardiography remains the gold standard for diagnosing and grading AS, its use as 

a routine screening method may be impractical due to the significant costs, required operator 

skill, and time involved. As a result, there is a growing interest in more cost-effective 

and widely accessible solutions, such as the use of ECGs and chest radiographs [15, 16] 

for early detection of AS. Elias et al. developed a deep learning model, ValveNet, to 

detect left-sided valvular heart diseases using ECG data [15]. This model achieved high 

diagnostic accuracy, with an AUC of 0.84 for detecting AS, aortic regurgitation (AR), or 

mitral regurgitation (MR), and demonstrated a sensitivity of 0.78 and a specificity of 0.73. 

When optimized for screening, the model achieved a positive predictive value (PPV) of 

0.20 and negative predictive value (NPV) of 0.98 at a prevalence of 7.8%. These findings 

highlight the potential of ValveNet in detecting valvular heart conditions and for use as a 

screening tool. Ueda et al. developed and evaluated three deep learning models to detect 

AS from chest radiographs using a dataset of 10,433 images from 5638 patients [16]. These 

radiographs were classified based on echocardiography assessments as either AS-positive or 

AS-negative. The top-performing model combined weighted averages of probability scores 

from all three individual models, achieving an AUC of 0.83, sensitivity of 0.78, specificity 

of 0.71, accuracy of 0.71, PPV of 0.18, and NPV of 0.97 on the validation dataset. The 

integration of AI with chest radiographs and ECGs holds great promise for enhancing AS 

detection as a highly efficient screening tool.

Language models were also studied for identifying patients at risk of AS through 

electronic medical record (EMR) documentation. Solomon et al. developed and validated 

natural language processing (NLP) algorithms to accurately detect patients with AS from 

echocardiogram reports [17]. Using 1003 physician-adjudicated reports, NLP algorithms 

achieved a PPV and NPV over 0.95 for AS detection. Applying these algorithms to 

nearly one million echocardiograms revealed that NLP identified AS in 11.2% of cases, 
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demonstrating superior accuracy compared to diagnosis codes. This underscores the 

potential of NLP to improve AS identification and management within healthcare systems.

Pre-procedural Planning for TAVR

Pre-procedural CTA or MR for TAVR focuses on several specific tasks: (1) assessment 

of the aortic annulus and root for selection of the prosthesis, (2) assessment of the 

supravalvular aorta and vascular access to map the device delivery path, (3) risk stratification 

for annular injury or coronary occlusion, and 4) prediction of the fluoroscopic angle for 

valve deployment [5, 18]. More specifically, pre-procedural planning typically includes 

an evaluation of the options for endovascular access, identification of the annular plane 

with precise measurements of the annulus, bicuspid versus trileaflet valvular morphology, 

presence of aortic root calcifications, relationship of the coronary ostia to the native valve 

leaflets, angulation between the ascending aorta and the LVOT, and possible incidental 

findings [19]. Further details regarding the technique can be found in the published 

consensus statement [5].

In addition to being time-consuming and labor-intensive, manual analysis of pre-TAVR 

imaging entails significant inter-operator variability [20], which can potentially impact 

the procedural planning and increase the risk of procedure-related complications [21]. AI 

algorithms developed to automate this process show promise in improving standardization, 

reducing provider workload, and lowering overall healthcare costs [10], [22] (First available 

AI based method to evaluate TAVR measurements), [23, 24], [25] (First to obtained FDA 

clearance and CMS billing code), [26-29].

TAVI-PREP

In 2023, Santaló-Corcoy et al. introduced TAVI-PREP, one of the first fully automated 

deep learning-based tools for extracting the full ensemble of critical measurements from 

pre-TAVR planning CT scans [22] (First available AI based method to evaluate TAVR 

measurements). Their tool incorporates a deep learning-based segmentation algorithm and 

landmark detection algorithm that creates a 3D mesh representing the patient’s cardiac and 

aortic anatomy, from which measurements are then derived. It requires approximately 2 

min to extract 22 measurements, including measurements of the annulus, LVOT, sinotubular 

junction (STJ), sinus of Valsalva (SOV) commissures, and the coronary artery heights. The 

authors then compared the results of their automated tool with two expert cardiologists 

on a dataset of 200 patients. High correlation coefficients (CC) were obtained for most 

measurements between the algorithm and the expert measurements, ranging from 0.9 to 

0.97.

Nevertheless, the algorithm struggled with predicting coronary ostia heights, with CCs of 

0.72 to 0.80 in addition to several other limitations. Lower CCs were found between the 

algorithm and the expert readers for prediction of coronary artery heights. Edge cases, 

including patients with severe calcification or artifacts present on the CT images, posed 

challenges to the algorithm, and led to less accurate predictions. Valve selection, aortic 

angle, and femoral access diameters were also not included in the algorithm at the time 

of publication. Moreover, one of the expert readers used in the comparison provided 
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the annotations for training the software, and subsequently had a higher correlation with 

the software compared to the other expert, which is speculative of bias. Incorporation of 

additional measurements, improvement of coronary artery height prediction, and performing 

additional external validation studies may strengthen the argument for clinical integration 

readiness.

MIMICS PLANNER™

The Mimics Planner™ software tool (Materialise, Leuven, Belgium) automates 

preprocedural planning for structural heart disease. This tool utilizes machine learning for 

heart segmentation to obtain accurate measurements and visualizations of anatomy in 3D. 

Mimics Planner™ has been used for aortic, mitral, and tricuspid valve implantation and left 

atrial appendage occlusion planning [23].

Due to this product’s proprietary nature and lack of published data, details of the Mimics 

Planner™ tool’s technology are limited. A validation study was performed by Corbin et 

al. to compare the Mimics Planner™ tool with the TAVI-PREP algorithm on the same 

200 patients in the original TAVI-PREP study [24]. Overall, TAVI-PREP achieved greater 

performance on perimeter-associated measurements and Mimics Planner™ achieved more 

accurate predictions of sinus measurements. Both algorithms struggled with coronary height 

measurements.

Although further details about the Mimics Planner™ are lacking, advantages include 

additional functions beyond anatomical measurements including device selection, 3D 

visualization, valvular calcification scoring, and report preparation.

Precision TAVI

Precision TAVI™ (Dasi Simulations, Dublin, Ohio) obtained FDA approval in 2023 and even 

a CMS outpatient billing code in 2024 for preprocedural TAVR planning. Their software 

utilizes patient specific CTA imaging to perform simulation testing; however, there is no 

published data on the efficacy of the overall product. There are several published studies 

demonstrating individual techniques, including using preprocedural data points to predict 

post-TAVR aortic valve pressure gradient and aortic valve area size [25] (First to obtained 

FDA clearance and CMS billing code), predicting post-TAVR valve thrombosis [26], and 

predicting the risk of coronary obstruction post-TAVR through measurement of coronary 

artery heights [27, 28].

4TAVR

Toggweiler et al. introduced 4TAVR in 2024, a fully automated software tool, which 

analyzes patient CTAs, performs anatomical segmentation and 3D reconstruction, calculates 

planning measurements, and ultimately generates reports in approximately ten minutes [29]. 

This tool is now available for use through the Hi-D Imaging Cardiovascular Imaging Suite 

(Hi-D Imaging, Winterthur, Switzerland). 4TAVR utilizes 2D and 3D U-net models for 

segmentation and a separate U-net model for landmark detection. Automated multiplanar 

reconstructed slices are then created based on the extracted aortic centerline for anatomical 

measurements. The results of the automated measurements were compared with three expert 
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operators in 100 TAVR patients at a single center. The tool achieved a CC of up to 0.97 

for the annular perimeter and area and 0.83–0.95 for measurements of the LVOT, SOV, 

STJ, and ascending aorta. Advantages of the study were the inclusion of cases with heavy 

calcification burden and bicuspid valves. In addition, AI-generated measurements resulted in 

> 85% agreement with manual measurements in valve sizing for multiple types of valves. 

The major limitation of this study is the small patient cohort from a single center.

Philips HeartNavigator

HeartNavigator by Philips (Philips, Amsterdam, Netherlands) is a fully automated software 

analysis of pre-procedural CTA that offers segmentation and measurement of the heart 

anatomy, e.g., the annulus, SOV, and coronary artery heights. Koĉka et al. prospectively 

evaluated the tool’s capabilities in 128 patients at a single center in Prague versus manual 

analysis using FluoroCT software performed by lab technicians supervised by a cardiologist 

[30]. Overall, they found a statistically significant difference between the manual and 

automatic measurements though the numerical difference was small; more specifically, less 

than 2 mm on average for most measurements. Furthermore, the manual and automatic 

measurements yielded the same valve size selection for the Evolut PRO valves in 80% of 

cases. Another advantage is that the CT analysis can be utilized for fusion imaging with 

fluoroscopy during the procedure.

Additional studies involving a larger patient cohort, multi-center participation, comparison 

with radiologist measurements, and evaluation with different types of valves would be 

necessary for further validation.

FORSSMAN

Wang et al. developed FORSSMAN, a fully automated deep learning-based tool for aortic 

valvular complex segmentation and measurement [31]. This tool employs a U-Net-based 

two-stage deep learning network for segmentation and landmark detection. It performs 

centerline extraction and generates key planes, from which measurements are derived. 

In addition to measurements of the annulus and SOV, the coronary heights, aortic angle 

and volume of calcification are extracted. The FORSSMAN tool was evaluated on an 

external validation dataset of 100 patients from over 19 hospitals in China and the automatic 

measurements were compared to manual measurements by 2 senior observers. On average, 

the automated tool required 0.9 min for measurement extraction compared to 19.5 min for 

manual measurements. Comparison with senior observers resulted in CCs of greater than 

0.97 for most measurements, with only the aortic angle having a CC of 0.87.

Advantages of this model include testing on edge cases, such as severe valvular calcification 

and bicuspid valves, and automatic detection of anatomical risk factors, including horizontal 

aorta, ascending aorta dilation, severe calcification, large SOV size, and low coronary ostia 

height. Limitations of this study mostly include the small patient cohort, lack of information 

on the impact of automatic versus manual measurements on overall valve selection, and lack 

of evaluation of the access route.
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Vascular Module of AI-RAD Companion Chest CT

Boninsegna et al. evaluated a Vascular Module Platform developed by Siemens Healthineers 

(Erlangen, Germany) on 50 patients prior to TAVR [32]. This tool utilizes an adversarial 

deep image-to-image network in a symmetric convolutional encoder-decoder architecture to 

perform segmentation of the cardiac anatomy. A centerline model is then combined with 

landmark detection to identify measurement planes. The Vascular Module automatically 

extracts the diameters of the aorta at 9 positions, including the SOV, STJ, and points along 

the ascending, arch, and descending portions of aorta. On average, the AI measurements 

required 1 min and 47 s whereas manual measurements took 5 min and 41 s. Overall, the 

AI- and manual-obtained values were not significantly different, and for 91% of values the 

difference was ≤ 1 mm.

Limitations of this tool include the lack of aortic annulus measurement, assessment of 

the access route, consideration of additional factors such as bicuspid valves or valvular 

calcifications, and the small sample size at a single institution (see Fig. 1).

Coronary Artery Screening

Patients with sAS commonly have multiple cardiovascular comorbidities, such as coronary 

artery disease (CAD), which can lead to ischemia following hemodynamic instability during 

TAVR procedures [33]. Although invasive coronary angiogram has previously been the gold 

standard for CAD evaluation, concomitant evaluation of the coronary arteries during the 

pre-procedural CTA has been shown to be safe and effective and is now routinely used 

for CAD screening prior to TAVR in select populations [3, 34]. Currently, coronary CTA 

(CCTA) has moved beyond assessment of luminal stenosis to also involve characterization 

and quantification of atherosclerosis. Several semi-automated software tools can provide 

measurements of plaque volume and composition; however, the analysis is time-consuming 

and demands significant manual input from expert readers.

In a multicenter study, Lin et al. evaluated a novel deep learning system for accurate 

quantification of plaque volume and stenosis severity from CCTA [35]. Automated 

measurements achieved intraclass CCs of 0.96 for plaque volume and 0.88 for stenosis 

severity when compared to expert readers. AI analysis required an average of 5.7 s, 

compared to the 25.7 min typically required by expert readers for manual measurements. 

This model was constrained by semi-automated coronary centerline extraction performed by 

technologists and validation in a small sample size of patients.

In another multicenter study, Choi et al. evaluated the FDA-cleared software Cleerly 

LABS (Cleerly, New York, New York) for automated analysis of CCTA for comprehensive 

CAD assessment [36]. Key measurements including percent stenosis, plaque volume and 

composition, presence of high-risk plaque, and CAD-RADS category were compared 

between the AI algorithm and expert readers. Correlation was best with detecting percent 

stenosis, with intraclass CCs of 0.91 for per-vessel and 0.93 for per-patient evaluation 

between AI and expert analyses. Greater than 98% agreement was found for determination 

of CADS-RADS categories on a per-patient evaluation. AI analysis alone required an 
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average of 9.7 min, and when including quality assurance and report generation, it totaled an 

average of 23.7 min. The time required for expert readers per case was not assessed.

Coronary artery calcium scoring, typically assessed by the Agatston score, has demonstrated 

prognostic value in predicting mortality among patients undergoing TAVR [37]. Several 

machine learning algorithms have shown high performance in fully automating coronary 

artery calcium scoring [38].

CT angiography-derived fractional flow reserve (CT-FFR) assessment has been shown to 

enhance the prediction of high-risk patients compared to CTA alone, but accessibility 

and computational time have been limiting factors thus far [39]. Recent advancements in 

CT-FFR have introduced machine learning algorithm-based acquisition methods, replacing 

the previous standard of computational fluid dynamics. Current data suggests that machine 

learning-derived CT-FFR improves diagnostic performance compared to CCTA alone [40].

Outcome Prediction Post-TAVR

Post-TAVR Mortality

Mortality post-TAVR has been shown to be comparable to that of post-SAVR, with the 

1-year mortality or disabling stroke rate estimated at 1.0% for low-risk patients [41]. 

Initial efforts to estimate the risk of TAVR led to in-hospital mortality and stroke risk 

calculators developed from the STS/ACC TVT Registry data [42, 43]. These calculators 

utilized covariates selected from a combination of expert opinion and logistic regression 

analysis, and primarily utilized clinical and operative technique-related factors. Recent 

studies have sought to improve these risk calculators with machine learning models [44] 

and have demonstrated additional performance in predicting in-hospital mortality for TAVR.

Additionally, preprocedural imaging findings have shown predictive capabilities for post-

TAVR mortality, independent of the clinical risk factors utilized in the STS/ACC TVT 

calculators [45]. Hossain et al. found that pericardial effusions and increased size of the 

main pulmonary artery, both signs of right heart failure, were predictors of mortality at 1-

year post-TAVR. This was also corroborated by the association of decreased right ventricular 

ejection fraction on echocardiography with mortality at 1-year post-TAVR. Another study by 

Aquino et al. also showed that left atrial emptying fraction on preprocedural cardiac CTA 

predicted mortality in patients with severe AS undergoing TAVR [46].

As the radiological assessment of preprocedural imaging is a time-consuming process, 

Brüggemann et al. developed a 3D deep neural network-based model to automatically 

predict post-TAVR mortality using unprocessed, preprocedural CT and additional clinical 

characteristics [47] (First AI application for patient selection). This model outper-formed the 

models using solely clinical factors and were similar in performance to models using both 

clinical factors and manually extracted image measurements. Furthermore, while manual 

extraction required 10 to 15 min for their expert radiologists, the AI model only required 5 

to 20 s on a consumer CPU.
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Computational Modeling of Fluid Dynamics

Computational modeling for simulating hemodynamics and tissue behavior is another 

technique with potential to predict postoperative complications. This approach has been used 

to “virtually” implant valves for testing of multiple device sizes and implantation depths 

[48] to determine the optimal selection. However, these models require lengthy computation 

times and are not routinely used due to practicality and availability constraints. Techniques 

using machine learning or deep learning have been shown to cut down computation times by 

an order of magnitude with similar results to conventional methods [49].

The FEops HEARTguide™ (FEops, Gent, Belgium) is one such software that employs 

patient’s CT scans for 3D visualization and semi-automatic identification and measurement 

of anatomical landmarks to perform patient-specific simulations of valve implantation. The 

PRECISE-TAVI study, a prospective multicenter observational study, used this software to 

predict the risk of conduction abnormalities and the risk of paravalvular leakage post-TAVR 

[50]. This led to changes in procedural planning in 35% of patients, including changes in 

valve size selection and implantation depth.

Conclusion

The integration of AI into imaging for TAVR represents a promising advancement in the 

fields of cardiology and radiology, offering the potential to streamline pre- and post-TAVR 

care. The ability of AI tools to fully automate and standardize patient identification and 

selection, pre-procedural imaging analysis, and prediction of post-TAVR mortality would 

have a significant impact on patient care. Preliminary studies of these AI tools show 

promise, but these tools are often constrained by small patient cohorts, limited scope, and 

significant variability in function and performance. Collaboration among AI developers, 

radiologists, and cardiologists is crucial to ensure these technologies are effectively 

integrated into clinical practice. Before widespread clinical adoption, rigorous validation 

will be necessary to ensure the performance of these tools and their overall impact on patient 

outcomes. Further studies, head-to-head comparisons, and cost–benefit analyses proving 

reduction in labor or reading time will be necessary to justify the added cost for these 

programs prior to clinical integration. With continued research, collaboration, and careful 

implementation, AI can become an integral part in imaging for TAVR, ultimately improving 

patient care and outcomes.
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Fig. 1. 
A representative sample of common preprocedural CTA TAVR measurements commonly 

performed for operative planning and valve selection. A Multiplanar double oblique images 

of the aortic root along the long axis (A1) with levels (solid lines) corresponding to the 

true short axis views of the aortic annulus (A2), sinotubular junction (A3), and Sinuses of 

Valsalva (A4). B Measurement of the coronary ostia height of the left main coronary artery 

at the takeoff from the left coronary cusp (arrow) as seen on the longitudinal (B1) and the 

short axis (B2) views. C Measurement of the coronary ostia height of the right coronary 

artery at the takeoff from the right coronary cusp (arrow) as seen on the longitudinal (C1) 

and the short axis (C2) views
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