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Abstract 

Functional Positron Emission Tomography (fPET) with (bolus plus) constant infusion of 
[18F]-fluorodeoxyglucose FDG), known as fPET-FDG, is a recently introduced technique 
in human neuroimaging, enabling the detection of dynamic glucose metabolism changes 
within a single scan. However, the statistical analysis of fPET-FDG data remains 
challenging because its signal and noise characteristics differ from both classic bolus-
administration FDG PET and from functional Magnetic Resonance Imaging (fMRI), which 
together compose the primary sources of inspiration for analytical methods used by fPET-
FDG researchers. In this study, we present an investigate of how inaccuracies in modeling 
baseline FDG uptake can introduce artifactual patterns to detrended TAC residuals, 
potentially introducing spurious (de)activations to general linear model (GLM) analyses. 
By combining simulations and empirical data from both constant infusion and bolus-plus-
constant infusion protocols, we evaluate the effects of various baseline modeling 
methods, including polynomial detrending, regression against the global mean time-
activity curve, and two analytical methods based on tissue compartment model kinetics. 
Our findings indicate that improper baseline removal can introduce statistically significant 
artifactual effects, although these effects characterized in this study (~2-8%) are generally 
smaller than those reported by previous literature employing robust sensory stimulation 
(~10-30%). We discuss potential strategies to mitigate this issue, including informed 
baseline modeling, optimized tracer administration protocols, and careful experimental 
design. These insights aim to enhance the reliability of fPET-FDG in capturing true 
metabolic dynamics in neuroimaging research. 
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1 Introduction 

Functional Positron Emission Tomography (fPET) using (bolus plus) continuous infusion 
of [18F]-fluorodeoxyglucose (FDG) is a recent advancement in human neuroimaging that 
allows for the tracking of minute-scale dynamic changes in glucose metabolism within a 
single scan (Villien et al., 2014). Previously, continuous infusion of PET radiotracers has 
been practiced since the 1990s to enable more accurate receptor-binding measures and 
the tracking of dynamic changes in neurotransmitter concentrations (Carson et al., 1993; 
Sander et al., 2020) and continuous-infusion FDG scanning has been shown, in small 
animal studies, to be effective at identifying transient changes in glucose metabolism 
(Bérard et al., 2006; Cauchon et al., 2012). However, it was not until 2014 that this 
approach was applied to functional metabolic imaging in humans (Villien et al., 2014). 
Villien et al. infused the FDG tracer at a constant rate, allowing its plasma concentration 
of FDG to slowly equilibrate to a steady level. This introduced a quasi-linear regime in the 
time-activity curve (TAC), where the slope is proportional to the cerebral metabolic rate of 
glucose consumption (CMRglu). Their simulations indicated that transient changes in 
glucose uptake introduce nonlinear deviations from this slope, while sustained changes 
can alter the equilibrium slope. 

Since its inception in 2014, human fPET-FDG imaging has rapidly garnered attention, as 
it enables the measurement of dynamic changes in brain metabolism subserving brain 
computing across broad task and consciousness conditions (Hahn et al., 2020; Jamadar 
et al., 2019; Rischka et al., 2018; Stiernman et al., 2021). Emerging evidence suggests 
that fPET-FDG can improve temporal resolution by an order of magnitude compared to 
traditional bolus-injection FDG-PET (Hahn et al., 2024; Rischka et al., 2018). Moreover, 
its intra-scan dynamic nature also complements the hemodynamic information tracked by 
functional Magnetic Resonance Imaging (fMRI) (Godbersen et al., 2023; Jamadar et al., 
2021; Stiernman et al., 2021; Verger and Guedj, 2018; Zürcher et al., 2024). 

While the efficacy of fPET-FDG has been demonstrated by several studies that 
successfully captured metabolic (de)activations across various sensory and cognitive 
paradigms, the statistical analysis of fPET-FDG data remains an evolving field. Because, 
like fMRI, fPET-FDG also tracks intra-scan contrasts, existing fPET-FDG studies have 
often adopted statistical inference methods from the field of fMRI analysis, including the 
general linear model (GLM) framework for mapping task (de)activations (Hahn et al., 
2016; Jamadar et al., 2019; Stiernman et al., 2021; Villien et al., 2014). However, 
differences in signal and noise characteristics between fPET-FDG and fMRI present new 
challenges when adapting these established statistical frameworks. 

In a continuous-infusion paradigm, FDG accumulates in cells as they attempt to 
metabolize it over the course of a scan resulting in a monotonically increasing trend at 
baseline metabolism after decay correction (Villien et al., 2014). Unlike baseline drifts 
occurring in fMRI data, which exhibit much slower frequencies than the seconds-scale 
hemodynamic fluctuations of interest (Caballero-Gaudes and Reynolds, 2017; Chen and 
Glover, 2015), the fPET-FDG baseline comprises frequencies similar to the minutes-scale 
metabolic dynamics of interest, making it challenging to separate from task-induced 
effects. 
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Moreover, identifying appropriate reference regions for baseline correction is problematic 
because glucose metabolism occurs throughout the whole brain due to widespread 
neuronal and glial activity. Existing studies have employed various methods to isolate 
stimulus-driven metabolic changes from the baseline trend, including low-order 
polynomial detrending fit voxel-wise (Villien et al., 2014) or fit to the mean TAC and then 
scaled voxel-wise (Hahn et al., 2016; Khattar et al., 2024; Rischka et al., 2018; Stiernman 
et al., 2021), regressing against a task-independent TAC obtained by averaging task-free 
gray matter (Rischka et al., 2018), or simple global signal regression in the context of 
independent component analysis (Li et al., 2020). 

However, if the shape of the baseline TACs is inaccurately characterized, this may 
introduce artifactual patterns into the detrended data's time courses. In a GLM analysis, 
the task regressor can fit to the un-modeled portion of the baseline, biasing fitted 
coefficients and introducing artifactual shifts in the t-scores of the task effect. These 
artifacts may manifest as global shifts, from consistent mischaracterization, and/or 
anatomically coherent spatial patterns, due to structured information embedded in 
regionally varying tracer kinetics (Heiss et al., 1984; Volpi et al., 2023). 

In this study, we combine simulations and empirical fPET-FDG data to investigate how 
various baseline modeling methods affect the TAC and whether mischaracterization can 
result in artifactual (de)activations. Specifically, we evaluate polynomial detrending, 
regression against the global mean TAC, and two analytical methods based on the tissue 
compartment model (Phelps et al., 1979). We first characterize the shapes of residual 
TACs left by various detrending methods and evaluate the extent to which these 
detrending approaches mischaracterize the actual baseline signal in both constant-
infusion (CI) and bolus-plus-constant-infusion (B+CI) fPET-FDG. We then demonstrate 
that baseline mischaracterization can result in spatially structured artifactual 
(de)activations when the mischaracterized portion of baseline TAC exhibits certain 
degrees of correlation with the task, using an illustrative constant-infusion resting-state 
dataset expected to follow the null hypothesis of no task activation. Finally, we discuss 
potential strategies to mitigate the effects of baseline mischaracterization, including 
informed baseline modeling, optimized tracer administration protocols, and careful 
experimental design. These results emphasize the importance of accurate baseline 
modeling to statistical inference in fPET-FDG studies. 

 

2 Methods 

2.1 Empirical data 

Two imaging datasets were employed to evaluate the influence of baseline 
mischaracterization on the statistical inference of fPET-FDG: 

(1) Constant infusion (CI) dataset: A publicly available resting-state fPET-fMRI dataset 
collected from healthy young adults (N = 27, 18-23 yrs, 21 female) by research groups at 
Monash University (Jamadar et al., 2020). The experiments were performed on a 
Siemens (Siemens Healthineers, Erlangen, Germany) 3 Tesla Biograph mMR scanner. 
Subjects were instructed to rest with their eyes open during the scan, which lasted 
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approximately 95 minutes. [18F]FDG (average dose ~6.3 mCi) was infused at a constant 
rate throughout the scan. The PET data were reconstructed with a nominal voxel size of 
2.09 × 2.09 × 2.03 mm³, and the temporal frame length was 16 seconds. Of the 27 
subjects, we removed three for data quality concerns (two for motion artifacts and one for 
an infusion pump error), resulting in N = 24 for our analyses. 

(2) Bolus-plus-constant infusion (B+CI) dataset: Simultaneous fPET-fMRI datasets 
collected at the Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts 
General Hospital (MGH) from healthy young adults participating in two different 
experiments: a working-memory task (N = 11, total scan duration = 105 ± 0.3 minutes, 
mean and standard deviation across subjects) and an endogenous arousal study (N = 
18, total scan duration = 91 ± 8 minutes, mean and standard deviation across subjects) 
(Figure S1A). All experimental procedures performed at MGH were approved by the 
Institutional Review Board, and all participants provided written informed consent. In the 
working-memory experiment, subjects performed letter-based two-back tasks (Chen et 
al., 2015) with jittered stimulus timings (Figure S1B). In the endogenous arousal 
experiment, subjects rested with eyes closed, and their within-scan arousal states were 
inferred from concurrent EEG or behavioral measures (Figure S1C). All experiments were 
conducted on a Siemens 3 Tesla Tim MAGNETOM Trio MR scanner (Siemens) with a 
BrainPET insert (Siemens). [18F]FDG was administered using a B+CI protocol (total dose 
~10 mCi, and the bolus dose was 20% of the constant infusion dose) (Rischka et al., 
2018). 

The PET data were first sorted into line-of-response space and subsequently compressed 
into sinogram space for reconstruction. A standard 3D ordinary Poisson ordered-subset 
expectation maximization algorithm was applied, incorporating both prompt and variance-
reduced random coincidence events. The process also included normalization, scatter, 
and attenuation sinograms (Villien et al., 2014). Attenuation correction was performed 
using a pseudo-CT map derived from high-resolution anatomical MRI data (Izquierdo-
Garcia et al., 2014). The PET data were reconstructed with a nominal voxel size of 2.5 × 
2.5 × 2.5 mm³, and the temporal frame length was 30 seconds.  

The jittered working-memory and the endogenous-arousal datasets were combined to 
characterize the artifactually patterned residuals left by various detrending methods on 
bolus-plus-constant infusion datasets. We anticipate that the jittering of the working-
memory dataset and the natural variation in arousal timing of the endogenous arousal 
dataset cancel out systemic task and arousal-based effects at the group level (see 
Section 2.4). 

2.2 Simulations 

Simulations were performed to assess the residual fPET TAC patterns after detrending, 
which complement our empirical data analyses by allowing detrending methods to be 
tested on noise-free time-series data with known, well-defined signal characteristics. We 
used the irreversible two-compartment model to generate task-free, resting-state FDG 
TACs (Phelps et al., 1979). We actualized the model as a simulation using an Implicit 
Euler implementation. Briefly, the irreversible two-compartment model describes the 
transport of FDG from arterial blood into tissue (first compartment) and its phosphorylation 
within cells, where it becomes trapped as FDG-6-phosphate (second compartment). The 
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model assumes reversible exchange between the blood and tissue compartments but 
irreversible phosphorylation. Using the model to simulate FDG TACs requires an input 
function of the arterial tracer concentration at each timepoint and kinetic constants 
describing the rate that the tracer is transported from the blood to the tissue (K1), back 
from the tissue to the blood (k2), and that the tracer is phosphorylated in tissue (k3). We 
referred to previous literature (Villien et al., 2014) for these rate constants (K1 = 0.1 
mL/min/g, k2 = 0.15 min⁻¹, k3 = 0.08 min⁻¹). 

Arterial input functions (AIFs) were extracted from the empirical data using an image-
derived approach described previously (Sari et al., 2017) plus a model-fitting step to 
reduce noise. For the CI case, AIFs were extracted from the resting-state dataset; for the 
B+CI case, from the working-memory dataset. Carotid arteries were manually segmented 
for each subject from their high-resolution T1-weighted anatomical images and image-
derived input functions (IDIFs) were extracted from the scans, and then smoothed AIFs 
were generated by fitting the convolution of a decaying biexponential response function 
with the infusion paradigm (Villien et al., 2014) to the IDIFs. The AIFs were then averaged 
to create group-level AIFs. 

2.3 Preprocessing and cerebral cortical parcellation 

For the CI dataset, motion correction was performed as described in a previous 
publication (Jamadar et al., 2020). For the B+CI data collected at MGH, all fPET images 
were motion-corrected by coregistering to the middle temporal frame using the 3dvolreg 
function in AFNI (Cox, 1996). 

For voxel-wise analysis, individual fPET data were smoothed within a cerebral cortical 
gray-matter mask using an 8-mm full-width at half-maximum (FWHM) Gaussian kernel. 
For parcel-wise analysis, cortical gray-matter regions were delineated using the "7-
network" parcellation from an existing multi-resolution functional atlas (Schaefer et al., 
2018), examining the 100-, 300-, and 500-parcel resolutions. After delineating all brain 
parcels using the high-resolution anatomical data, the parcels were registered to the 
native image space of each individual’s fPET-FDG data to characterize region-specific 
metabolic patterns, using FreeSurfer (Fischl, 2012). No spatial smoothing was performed 
prior to extracting the mean signal of each parcel. 

2.4 Characterizing residuals after baseline modeling 

To characterize the shapes of residual TACs after detrending, we evaluated five baseline 
modeling methods: 

• Third-order polynomial (P3): Regressing a third-order polynomial fitted to the time 
series of each voxel or parcel. 

• Third-order polynomial pre-fitted to mean TAC (P3MT): Fitting a third-order 
polynomial to the mean gray-matter TAC and then regressing it from each voxel or 
parcel. 

• Mean TAC (MT): Regressing the mean cerebral cortex gray-matter TAC from each 
voxel or parcel time series. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618550doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 7 of 25 
 

• Spectral analysis (SA): Modeling the baseline using components identified via 
spectral analysis, requiring prior knowledge of the AIF (Cunningham and Jones, 
1993). 

• Linear plus bi-exponential model (EXP2): Fitting a linear plus biexponential 
function based on the tissue compartmental model (see Appendix). 

Note that in addition to the low-order polynomial and mean TAC methods used in existing 
fPET-FDG studies (Hahn et al., 2016; Li et al., 2020; Stiernman et al., 2021; Villien et al., 
2014), we also tested two novel analytical solutions of baseline models (“SA” and 
“EXP2”). The AIFs for spectral analysis were created as described in Section 2.2 from the 
resting-state dataset for the constant-infusion analyses and the working memory dataset 
for the bolus-plus-constant-infusion analyses. All methods were applied both including 
and excluding the initial 10 minutes of the TAC to examine the impact of the initial dynamic 
phase before tracer equilibration (Villien et al., 2014). 

These detrending methods were applied to both the empirical resting-state CI data and 
the composite B+CI datasets. To rule out true effects as the primary driver of residual 
patterning, we applied the same detrending methods to simulated resting-state CI and 
B+CI TACs (see Section 2.2) and compared the results to those derived from the empirical 
data. Assuming the dataset follow the null hypothesis of no true effect, which we expect 
them to, perfect detrending would result in a flat residual time-series with the only 
deviations from zero being noise, any consistent deviations from zero must therefore be 
attributed to imperfect detrending.  

2.5 Assessing spurious metabolic (de)activations in GLM-based statistical 
inference 

To assess whether baseline mischaracterization could introduce structured artifactual 
(de)activations, we applied a series of sham task regressors to the empirical fPET-FDG 
data and evaluated the GLM-based statistical results at the group level, using the resting-
state CI dataset as an illustrative example. Although we also analyzed the group-level 
artifactual effects in the composite B+CI data (see Figures S2 and S3), we chose the CI 
data for demonstration because its inter-subject variability reflects that of a typical study 
(i.e., all subjects underwent identical experiment procedures). In contrast, the B+CI 
dataset, being a composite of working memory and endogenous arousal data, may exhibit 
higher-than-normal inter-subject variability due to the additional between-experiment 
differences, complicating interpretation. Additionally, while the task and arousal effects 
may be negligible in the group-mean TAC due to jitter and randomness, allowing us to 
evaluate the residual patterns from different detrending methods (Section 2.4), the true 
task and arousal effects remain present at the single-subject level.  

The sham task paradigms consisted of alternating 10-minute "on" and "off" blocks with 
varying initial rest periods, resulting in regressors with different extents of correlation with 
the residual time-series patterns left after baseline removal. Three regressors were 
selected to represent high positive correlation, negligible correlation, and moderate 
negative correlation with the mean residual pattern of P3MT, using this detrending method 
as an exemplar. The 10-minute block durations are comparable to those used in previous 
fPET studies (Hahn et al., 2016; Kraus et al., 2020; Li et al., 2020; Villien et al., 2014). 
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Each sham regressor was applied in a GLM analysis along with the baseline TAC model, 
using each of the five baseline modeling methods, both including and excluding the initial 
10 minutes of data. For the P3MT and SA analyses, the task regressor was included as 
a nuisance when creating baseline regressors from the mean gray-matter TAC. 

To evaluate the impact of spatial smoothing on artifactual effects, GLM analyses were 
performed at various levels of applied smoothing: voxel-wise with 8-mm FWHM 
smoothing, and at the 500-, 300-, and 100-parcel levels.  

To evaluate spurious metabolic (de)activations introduced by each analysis for both 
significance and effect size, we computed both the random-effects t-scores and the 
average percent signal change (PSC) across subjects. The PSC, a proxy for the percent 
change in CMRglu associated with a task, is calculated by comparing the slope of the 
"on" portion of the fitted task regressor to the slope of the latter portion of the fitted 
baseline (Godbersen et al., 2024). 

 

3 Results 

3.1 Residual patterns after baseline modeling 

Figure 1 summarizes the residual patterns after applying different baseline removal 
methods to both empirical and simulated data. Polynomial detrending (“P3” and “P3MT”) 
introduced a distinct pattern in the mean residual TACs for both resting-state CI and 
composite B+CI data. Regression against the global mean TAC, by construction, did not 
produce a mean residual pattern at the whole-brain level, but it did introduce regional 
residual patterns evidenced by the different patterns emerging from different ROIs (e.g. 
“MT ROI 1” and “MT ROI 2”, showing the most pronounced cases). While P3MT produced 
a nearly identical mean residual time-series pattern to P3 at the whole-brain level, the 
spatial distribution of the magnitude of the pattern by region bore some resemblance to 
that of MT, which can be seen in Figure 2. 

The SA method, which requires prior knowledge of the AIF, left smaller mean residual 
patterns compared to P3 and P3MT for both infusion protocols (Figs. 1 and 2, “SA”). The 
analytical EXP2 method performed comparably to SA for the CI data but left the largest 
residual patterns in the B+CI data (“EXP2” vs. “SA”). This is possibly because the 
simplification of the AIF as comprising a single exponential failed to sufficiently model the 
initial dynamic phase of the true input function when appending a bolus injection. 

Excluding the initial 10-minute transient phase from the analysis reduced the extent of 
residual patterning, particularly for polynomial detrending and in the B+CI data (“P3” and 
“P3MT”). 

When not excluding the initial pre-equilibrium portion of each scan, a strong similarity was 
observed between the residuals of the simulated TACs and of the empirical data (Fig. 1, 
blue vs. red) for all detrending approaches except SA. This similarity suggests that the 
observed misfits in these cases may indeed emerge from inherent mischaracterizations 
of the baseline TAC shape rather than noise or unmodeled true metabolic dynamics. The 
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simulated and empirical residuals were less similar for the approaches which excluded 
the first 10 minutes of the TACs, although common features can still be identified. 

3.2 Artifactual metabolic (de)activations introduced by baseline detrending 

3.2.1 Artifactual effects introduced by various detrending methods 

Having characterized the residual patterning resulting from various detrending 
approaches, we next examined whether the choice of detrending methods could 
introduce structured artifactual (de)activation patterns in GLM analysis in the resting-state 
CI dataset. Figures 3 and 4 present group-level random-effects t-scores from applying 
the sham regressors to the CI data, including and excluding (respectively) the initial 10 
minutes. The illustrative sham regressors (Figs. 3 & 4, A) were selected based on their 
degrees of correlation to the mean residual pattern left by P3MT detrending (see Section 
2.5). As anticipated, when detrending with a third-order polynomial, higher correlation 
between the task regressor and the residual pattern resulted in higher t-scores—with 
Regressor 1 exhibiting widespread significant (p < 0.05, FDR corrected) artifactual 
activation (Figs. 3 & 4, B, i and ii, column 1) and Regressor 3 producing some significant 
artifactual deactivation (Figs. 3 & 4, B, ii, column 3) for both P3 and P3MT detrending. In 
line with the reduced extent of residual patterning associated with excluding the initial 10 
minutes observed in Section 3.1, excluding the initial period also reduced the statistical 
significance of the artifactual effect particularly for P3 (Fig. 3 vs. 4, B). The remaining 
artifactual effect after exclusion of the initial period for P3MT and MT indicates a lack of 
flexibility to fit various local TAC shapes as the primary driver of baseline 
mischaracterization for these methods, as opposed to a failure to capture early TAC 
dynamics. 

MT detrending resulted in regional artifactual effects (Figs. 3 and 4, iii), despite the mean 
effect across the brain averaging zero. The spatial pattern of these artifacts, as well as 
those from the other detrending methods, indicate that anatomical information is encoded 
in the spatial distributions of the artifactual effects, possibly due to regional differences in 
tracer kinetics (Heiss et al., 1984; Volpi et al., 2023). 

Consistent with residual patterning results characterized in Figure 1, both SA and EXP2 
produced fewer artifactual (de)activations (Figs. 3 and 4, iv and v), indicating they may 
improve over polynomial and mean TAC detrending. While only three shifts for the sham 
regressor are shown, further investigation indicates that these methods generally lead to 
smaller artifactual effects across all temporal shifts for the CI data (see Figure S4). 
3.2.2 Effect size of artifactual metabolic (de)activations 

We quantified the mean absolute PSC for statistically significant (p < 0.05, FDR corrected) 
artifactual (de)activations for the 100-parcel data. The PSCs ranged from approximately 
8%, the worst case observed with P3MT, down to about 2.8%, the best case observed 
with MT. Most regressor/detrending combinations which yielded significant artifactual 
effects produced mean absolute significant PSCs around 4%. While these effect sizes 
are smaller than those reported in previous fPET studies with robust stimuli (e.g., ~10-
30% in Godbersen et al., 2024; Hahn et al., 2016; Villien et al., 2014), the bias in 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2024. ; https://doi.org/10.1101/2024.10.17.618550doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.17.618550
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 25 
 

estimating the task effect is consistent enough across subjects to reach statistical 
significance at the current sample size. 
3.2.3 Dependence of artifactual effects on spatial smoothing 

As expected, increased levels of applied spatial smoothing were associated with higher 
t-scores, indicating that artifactual effects become more pronounced with greater spatial 
averaging; although no clear relation to spatial smoothing was observed for PSC. As an 
illustration, Fig. 5 displays the t-scores and PSCs for regressor 3 with P3MT detrending 
applied at various spatial resolutions. In Figure 5A, the average t-scores across the 
cerebral cortical gray matter increases from -1.2 at the voxel level to -2.3 for the 100-
parcel level. Figure S5 plots t-score histograms of other sham regressor and baseline 
regressor combinations, showing similarly increasing trends with spatial smoothing. Still, 
artifactual (de)activations are observed in the voxel-wise analyses. In contrast with the 
trend observed in t-score magnitudes, no clear relationship was observed between PSC 
magnitude and spatial smoothing. In Figure 5B, the mean PSC increases in magnitude 
from -1.6% in the voxel-wise analysis to -2.4% at the 500-parcel level but decreases 
slightly to -2.2% at the 100-parcel level (see Figure S6 for PSC histograms of other sham 
regressor and baseline regressor combinations). The relationship between PSC and 
spatial smoothing may be more complex than that of t-scores for several reasons: t-
scores are more influenced by noise and inter-subject variability, and smoothing may 
begin to decrease PSC if the smoothing area exceeds the intrinsic resolution of 
anatomical variations in tracer kinetics. 

 

4. Discussion 

4.1 General findings 

In this work, we demonstrate that mischaracterization of the baseline term of fPET-FDG 
TACs in GLM analysis can introduce artifactual task effects, and that the occurrence and 
extent of artifactual task effects depends on interactions of detrending method, infusion 
protocol, task paradigm, and spatial smoothing, among other factors. By combining 
simulations and empirical data analysis, these investigations establish that in some 
conditions within the realm of currently practiced methods, bias from baseline 
mischaracterization can result in statistically significant, anatomically coherent patterns 
of artifactual metabolic (de)activation. 

Our findings indicate that common detrending methods like P3, P3MT, and MT can fail to 
accurately model the baseline [18F]FDG TAC shape at regional (P3MT, MT) and/or global 
(P3, P3MT) levels in both constant-infusion and bolus-plus-constant-infusion data (see 
Figures 1 and 2). A third-order polynomial was not sufficient to capture the shape of the 
baseline TAC in the data we analyzed, resulting in a globally consistent pattern being 
introduced to the residuals post-detrending. Meanwhile, based on our observation of 
regionally consistent patterns in the residuals of mean TAC detrending, the average TAC 
across the gray matter did not have the flexibility to simultaneously represent all regional 
TAC baselines, which vary due to anatomically informed tracer kinetics. Fitting a third-
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order polynomial to the mean TAC and then scaling it voxel-wise exhibits aspects of both 
these types of baseline mischaracterization. 

Excluding the first 10 minutes of the scan substantially decreased the artifactual effects, 
particularly for P3 detrending, suggesting that the polynomial fails primarily to 
characterize the pre-equilibrium dynamics of the TAC. However, excluding the first 10 
minutes did not substantially improve the performance of P3MT detrending, supporting 
the idea that regionally varying tracer kinetics, rather than pre-equilibrium TAC dynamics, 
drive mischaracterization for these methods. 

The effect of these residual patterns on GLM analysis depends on their correlation with 
the task regressor, with the worst-cases in our dataset producing artifactual effects as 
large as 8 PSC, and a typical case about 4 PSC. Although this effect is smaller than those 
reported in task studies (10-30%), the consistency across subjects can nonetheless result 
in significant group-level effects with a large enough sample size (e.g., N = 24 in Figs. 3 
and 4). 

Furthermore, while we focus on GLM-based task (de)activations in this manuscript, the 
effect is in theory not limited to GLM analysis. For instance, there has been emerging 
interest in characterizing metabolic connectivity—the temporal synchrony between 
regional fPET-FDG dynamics over time (Jamadar et al., 2021). The baseline fPET-FDG 
TAC trend, if not properly removed, would also introduce bias into metabolic connectivity 
estimation—the patterned residuals left by detrending could create inflated correlations 
that obscure the global and local metabolic connectivity, the impact of which may be even 
stronger than task conditions due to the smaller effect size of resting-state metabolic 
dynamics. 

4.2 Mitigating the impact of baseline mischaracterization 

While it is appealing for reasons of ease and flexibility to minimize assumptions about the 
shape of the baseline TAC, our initial findings suggest that informed models can better 
characterize the baseline—which could possibly provide improved power and reduced 
bias. Spectral analysis performed well for both infusion protocols but requires accurate 
AIFs derived from blood sampling or image-derived approaches, which may represent a 
practical limitation (Veronese et al., 2016). Other informed methods, such as the analytical 
linear plus bi-exponential baseline (see Appendix), refer to the tissue compartment model 
and only require a model of the AIF. Such a model can be easily built for CI data, but not 
for B+CI protocols. Individual variations in the AIFs pose further challenges. Accordingly, 
the linear plus bi-exponential model examined in this study performed well for the CI case, 
but it did not perform well for the B+CI case—likely because it did not sufficiently 
characterize the true bolus-plus-constant-infusion AIF shape. More sophisticated 
analytical models (e.g., including more exponential terms) can be explored in future 
studies to identify a solution that generalizes more broadly to FDG administration 
paradigms. 

As an alternative to improving baseline modeling, it is possible to modify the baseline TAC 
itself by excluding a portion of it or modifying the infusion protocol. Our initial results 
indicate that excluding the first few minutes of the scan improves the accuracy of a third-
order polynomial for modeling the baseline shape, especially in the bolus-plus-constant-
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infusion case where the TAC quickly becomes linear. Thus, we may expect to observe 
mitigated impact of baseline mischaracterization in bolus-plus-constant-infusion studies 
which exclude the initial portion of the scan. Future research could identify the optimal 
bolus fraction to achieve and maintain linearity faster, possibly allowing simple polynomial 
baselines to effectively detrend the measured signal after the non-linear portion is 
removed. 

In addition to more effective detrending methods or tracer administration schemes, it may 
also be possible to avoid bias from a study-design standpoint. Since the residual patterns 
exhibit certain degrees of consistency across subjects, jittering the task timing across 
imaging sessions would, in theory, cancel the bias at the group level. It may also be 
possible to de-correlate the task from the residual patterning at a subject level by using 
resting-state data or simulations to characterize the residual patterning, then designing a 
task paradigm with frequency and timing as orthogonal as feasible to that pattern. 

4.3 Limitations 

As previously noted, our study is illustrative in nature. Therefore, we only focused on the 
most common detrending methods and tested on a limited range of data and task 
protocols. Results from these analyses aimed to highlight several factors which influence 
the occurrence, extent, and spatial pattern of the artifactual effect that can emerge from 
baseline mischaracterization. How, and whether, these artifactual effects manifest in 
practice depends on the specific tracer administration, experimental design, and analysis 
methods used in each study. As such, this does not imply that artificially introduced effects 
are necessarily introduced in all previous studies. We also acknowledge limitations in the 
empirical data analyzed in this study. First, due to the extended scan duration and 
intermittent MR scans during the experimental sessions, the resting-state CI dataset may 
include endogenous or exogenous arousal and attentive effects. Second, the jittered task 
and random arousal effects may not entirely cancel out in the composite B+CI dataset. 
Therefore, the two empirical datasets used in this study may not represent perfectly task-
free conditions, despite our observation that the resulting global patterns largely align with 
our simulations in both cases. 

 

5. Conclusion 

Recent studies have established fPET-FDG as a reliable technique for functional 
metabolic imaging. Yet, accurate baseline modeling is crucial for robust statistical analysis 
of fPET-FDG data. Mischaracterization of the baseline TAC can potentially introduce 
artifactual (de)activations to GLM analyses. Informed baseline modeling methods that 
incorporate prior knowledge of tracer kinetics, optimized tracer administration protocols, 
and careful experimental design can all help mitigate this issue. By addressing baseline 
mischaracterization, we can enhance the reliability of fPET-FDG in capturing true 
metabolic dynamics in neuroimaging research. 
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Figures 

 
Figure 1: Residuals from CI (A) and B+CI (B) data and simulations after applying various 
detrending methods. Whole-brain TACs are plotted with a red line indicating the cross-
subject mean; TACs from a single parcel are plotted with a pink line indicating the cross-
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subject mean. Gray blocks indicate excluded time-points. Blue indicates simulated 
resting-state TACs. Third-order polynomial detrending, whether applied parcel-wise (P3) 
or pre-fitted to the mean TAC (P3MT), leaves a consistent residual pattern across the 
brain for both CI and B+CI data. Excluding the first 10 minutes decreases this pattern, 
especially for data with a bolus. Regression of the global mean TAC (MT) leaves residual 
patterns in individual parcels (e.g. ROIs 1–4, being parcels 29, 77, 97, and 52 in Fig. 2, 
respectively, chosen for their large residual patterns, i.e., representing a potential worst-
case scenario), but, by construction, leaves no average pattern across the brain. Spectral 
analysis (SA) leaves a smaller residual pattern than polynomial detrending for both 
infusion paradigms, while a linear plus bi-exponential model (EXP2) performs comparably 
to SA for the CI data but performs poorly for the B+CI data. 
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Figure 2: The root-mean-square error (RMSE) of the residuals in each of the 100 cortical 
parcels (vertical axis) from each detrending method (horizontal axis). Two-minute FWHM 
Gaussian temporal smoothing was applied to the residuals before the RMSE estimation 
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to reduce the contribution from noise and thereby accentuate the contribution from 
residual patterning. Spatially-varying RMSEs are observed for both CI (A) and B+CI (B) 
paradigms. 
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Figure 3: Artifactual metabolic (de)activations introduced by correlation between sham 
task paradigms and the residual pattern after detrending, including the entire scan time 
for GLM analysis for the CI data.  (A) Sham task paradigms (orange) and their correlations 
(blue) with the mean residual pattern of P3MT-detrended resting-state CI TACs (black).  
(B) Group-level random-effect t-scores of the regressors applied to resting-state CI data 
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using various baseline detrending methods (“Third-order polynomial (P3)”, “Third-order 
pre-fitted to the mean TAC (P3MT)”, “Mean TAC (MT)”, “Spectral analysis (SA)”, and 
“Linear plus bi-exponential model (EXP2)”). For the polynomial detrending methods, the 
significance of the artifactual effect increases with the correlation of the regressor to the 
residual pattern. Note that to facilitate the visualization of artifactual metabolic 
(de)activations, the color bar uses a step-change in saturation at the significance 
threshold (p < 0.05, FDR), if such a threshold exists (Taylor et al., 2023). Regions below 
the significance threshold are shown in desaturated colors, indicating insignificance, while 
regions above the threshold are shown in saturated colors, indicating significance. The 
point where the color bar transitions from desaturated to saturated varies by sub-panel, 
as the FDR-corrected significance threshold depends on the t-score distribution for each 
sub-panel. 
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Figure 4: Artifactual metabolic (de)activations introduced by correlation between sham 
task paradigms and the residual pattern after detrending, excluding the first 10 minutes 
for GLM analysis of the CI data. See captions of Fig. 3 for descriptions of task regressors, 
detrending methods, and color scale schemes. 
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Figure 5: Influence of spatial smoothing (“100 parcels”, “300 parcels”, “500 parcels”, and 
“Voxel-wise (8mm smoothing)”) on the statistical significance (“T-scores”) and percent 
signal change of fPET TACs (“PSC”) of CI data associated with the artifactual effect from 
baseline mischaracterization. For the voxel-wise results, only cortical gray matter voxels 
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are shown for comparison. More smoothing increases t-scores but has no discernible 
effects on percent signal change. Note that for the t-score plots, the color bar has a step-
change in saturation at the significance threshold (p < 0.05, FDR), if one exists; thus the 
color scale varies across sub panels. The color scale representing PSC is consistent 
across plots. 
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Appendix: fPET baseline TAC fitted by a linear plus bi-exponential model

Assume fPET-FDG kinetics follow an irreversible two-tissue compartment model, we have:

Ċt = Ċm +Ċf ,

Ċm = k3Cf ,

Ċf = K1Ċp � (k2 + k3)Cf ,

where Cp indicates the plasma FDG concentration, Cm indicates the metabolized FDG concentration,
Cf indicates the free unmetabolized FDG concentration, and Ct is the sum of Cm and Cf .

Next, we assume a simple form of the plasma FDG concentration: Cp = a0 + a1e�at (a0 and
a1 are constants; note that Cp is a saturating exponential function in the condition of constant-rate
infusion), and let k23 = k2 + k3, then:

Ċf = K1a0 +K1a1e�at � k23Cf ,

Cf =
K1a0

k23
� K1a1

a � k23
e�at +a2e�k23t .

And we further have:

Ċm = k3Cf ,

Cm = a3 +
K1k3a0

k23
t +

K1a1k3

a(a � k23)
e�at � a2k3

k23
e�k23t .

Taken together, this gives:

Ct =Cm +Cf ,

= A0 +A1t +A2e�at +A3e�k23t , (1)

where

A0 =
K1a0

k23
+a3,

A1 =
K1k3a0

k23
,

A2 =
K1a1k3

a(a � k23)
� K1a1

a � k23
,

A3 = a2 �
a2k3

k23
,

and given Cf (0) = 0, Cm(0) = 0, we have:

a2 =
K1a1

a � k23
� K1a0

k23
,

a3 =
a2k3

k23
� K1a1k3

a(a � k23)
.

In the application of equation 1 as a baseline TAC model, we derived the exponential constants
�a and �k23 from the mean gray-matter TAC before implementing each term in the equation as
columns in the GLM design matrix. The exponential constants were estimated by first removing
a linear trend from the mean TAC, fitted to the latter part of the scan (after 45 minutes), then
fitting the resulting saturating biexponential directly using a method described in "Régressions et
Équations Intégrales" (Jacquelin, J., Régressions et Équations Inteǵrales, 71-72. 2014. Scribd,

).

1
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