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Abstract 

The structural connections of the brain’s white matter are critical for brain function. Diffusion MRI 

tractography enables the in-vivo reconstruction of white matter fiber bundles and the study of their 

relationship to covariates of interest, such as neurobehavioral or clinical factors. In this work, we 

introduce Fiber Microstructure Quantile (FMQ) Regression, a new statistical approach for 

studying the association between white matter fiber bundles and scalar factors (e.g., cognitive 

scores). Our approach analyzes tissue microstructure measures based on quantile-specific bundle 

regions. These regions are defined according to the quantiles of fractional anisotropy (FA) from 

the periphery to the core of a population fiber bundle, which pools all individuals’ bundles. To 

investigate how fiber bundle tissue microstructure relates to covariates of interest, we employ the 

statistical technique of quantile regression. Unlike ordinary regression, which only models a 

conditional mean, quantile regression models the conditional quantiles of a response variable. This 

enables the proposed analysis, where a quantile regression is fitted for each quantile-specific 

bundle region. To demonstrate FMQ Regression, we perform an illustrative study in a large healthy 
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young adult tractography dataset derived from the Human Connectome Project-Young Adult 

(HCP-YA), focusing on particular bundles expected to relate to particular aspects of cognition and 

motor function. Importantly, our analysis considers sex-specific effects in brain-behavior 

associations. In comparison with a traditional method, Automated Fiber Quantification (AFQ), 

which enables FA analysis in regions defined along the trajectory of a bundle, our results suggest 

that FMQ Regression is much more powerful for detecting brain-behavior associations. 

Importantly, FMQ Regression finds significant brain-behavior associations in multiple bundles, 

including findings unique to males or to females. In both males and females, language performance 

is significantly associated with FA in the left arcuate fasciculus, with stronger associations in the 

bundle’s periphery. In males only, memory performance is significantly associated with FA in the 

left uncinate fasciculus, particularly in intermediate regions of the bundle. In females only, motor 

performance is significantly associated with FA in the left and right corticospinal tracts, with a 

slightly lower relationship at the bundle periphery and a slightly higher relationship toward the 

bundle core. No significant relationships are found between executive function and cingulum 

bundle FA. Our study demonstrates that FMQ Regression is a powerful statistical approach that 

can provide insight into associations from bundle periphery to bundle core. Our results also 

identify several brain-behavior relationships unique to males or to females, highlighting the 

importance of considering sex differences in future research. 

Keywords: Quantile Regression; White Matter; Diffusion MRI; Tractography; Human 

Connectome Project Young Adult; Scalar Factor; Brain-Behavior Association 

1. Introduction 

The white matter plays a critical role in brain function, serving as the brain’s communication 

infrastructure that is essential for the proper functioning of various cognitive domains (Fields 

2008). Diffusion magnetic resonance imaging (dMRI) is an advanced imaging technique that can 

measure the diffusion process of water molecules and facilitate the investigation of the white 

matter. dMRI tractography is a three-dimensional reconstruction technique to reconstruct white 

matter fiber bundles using data collected by dMRI (P. J. Basser et al. 2000). Many large white 

matter fiber bundles have a long history of anatomical study and are classically defined (e.g. the 

arcuate fasciculus and the corticospinal tract). Recent machine learning methods can use dMRI 

tractography to efficiently identify white matter fiber bundles of individuals (Wasserthal, Neher, 

and Maier-Hein 2018; Garyfallidis et al. 2012; F. Zhang et al. 2018). The fiber bundles obtained 

from tractography enable the quantitative study of the brain's white matter anatomy (F. Zhang et 

al. 2022) and its associations with scalar factors, such as those describing individual cognition or 

behavior (e.g., language, memory, executive function, or motor) (Zekelman et al. 2022), or those 

describing diseases or disorders (Kruper et al. 2023; Damatac et al. 2022).   

Analyzing the association between fiber bundles and scalar factors requires summary data derived 

from fiber bundles. One popular quantity for fiber bundle analysis is fractional anisotropy (FA), a 

scalar value between zero and one that describes the degree of anisotropy of a diffusion process 

and relates to the geometry and health of the tissue (Peter J. Basser and Pierpaoli 2011). The FA 

mean within the fiber bundle has been widely used due to its parsimony (Zekelman et al. 2022; F. 

Zhang et al. 2022; Ciccarelli et al. 2003; Bozzali et al. 2002; Schilling et al. 2023). More 

sophisticated summary data can provide profiles that describe the values of FA along fiber bundles 

(Yeatman et al. 2012; L. J. O’Donnell, Westin, and Golby 2009; Chandio et al. 2020; Colby et al. 
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2012; Corouge et al. 2006). For example, the Automated Fiber Quantification (AFQ) method 

produces an FA profile along a fiber bundle (Yeatman et al. 2012). This popular method has 

enabled clinical research applications (Sarica et al. 2017; Johnson et al. 2022; Schilling, Archer, 

et al. 2022; Kruper et al. 2024, 2023). 

The above summary data has limitations in analyzing the associations between fiber bundles and 

scalar factors. The FA mean overlooks the known microstructural variations of FA within a fiber 

bundle due to factors such as crossing or fanning white matter geometry and axons entering and 

leaving the bundle (L. J. O’Donnell, Westin, and Golby 2009; Colby et al. 2012; D. K. Jones et al. 

2013; Schilling, Tax, et al. 2022; Jeurissen et al. 2013; Derek K. Jones 2010). Methods such as 

AFQ analyze FA at each cross-sectional location along the bundle profile (Chandio et al. 2020; 

Yeatman et al. 2012), which causes challenges in capturing the microstructural variations in the 

cross-section of the bundle, such as those due to axons crossing, entering, or leaving the bundle. It 

is also challenging to align bundle profiles across subjects in the presence of anatomical variability 

in bundle size and shape. 

In our paper, we are motivated to address the aforementioned limitations. Our methodology is built 

on a population fiber bundle (L. O’Donnell and Westin 2005; Chenot et al. 2019; F. Zhang et al. 

2018; Elias et al. 2024) that pools all individuals’ fiber bundles. We use the quantiles of FA within 

the population fiber bundle to define regions that we call quantile-specific bundle regions. As can 

be observed in Figure 1, the quantile-specific bundle regions finely subdivide the bundle and 

generally range from the central portion of a fiber bundle with higher FA (i.e., the bundle core) to 

more peripherally located regions of a fiber bundle with lower FA (i.e., the bundle periphery). 
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Figure 1: The population fiber bundles studied in this paper are the Arcuate Fasciculus (AF), 

Uncinate Fasciculus (UF), Corticospinal Tract (CST), and Cingulum Bundle (CB), shown here in 

both the left and right hemispheres. In each row, the two left images show fiber tracts (right and 

left hemispheres) colored by FA values, and the two right images show the corresponding quantiles 

on the fiber tracts. In this way, the FA values define quantile-specific bundle regions. At the bottom 

of the figure, we provide the color bars for FA values and quantiles. 

Quantile regression, a popular statistical technique, enables the investigation of FA in quantile-

specific bundle regions, providing insights into the association of microstructure with scalar 

factors. Unlike ordinary regression that uses least squares to model the association between the 

conditional mean of the response variable and the independent variables, quantile regression 

models the association using the conditional quantiles of the response variable (Koenker et al. 

2020). In our proposed approach, the conditional quantiles of the response variable are the 

quantiles of FA within the population fiber bundle, and the independent variables are the scalar 

factors. We call our proposed approach Fiber Microstructure Quantile (FMQ) Regression. While 

quantile regression has been successfully applied in many fields, including genetics and 

environmental science (Koenker et al. 2020), the proposed FMQ Regression is the first paper to 
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use quantile regression to perform microstructural white matter analysis. To demonstrate its 

performance, we provide an illustrative study investigating sex-specific effects in brain-behavior 

associations using a large dataset.  

In the rest of the paper, we first introduce the dataset for our illustrative study. We further present 

our proposed method in Section 2. Section 3 provides the results of our illustrative study using our 

methodology and other methods. Section 4 discusses the results of our illustrative study and the 

differences between methods and provides conclusions. 

 

2. Methods 

In this section, we first describe the tractography dataset used to illustrate the proposed method 

(Section 2.1). Then, in Section 2.2, we describe the FMQ Regression method that employs fiber 

tract data and quantile regression for population-based inference. Next, in Section 2.3, we describe 

two popular current methods that are used for comparison. Finally, in Section 2.4, we describe the 

statistical estimates resulting from the three compared methods and the approach for results 

visualization. 

2.1 HCP-YA Dataset for Illustrative Study 

To demonstrate our proposed approach, we perform an illustrative study based on a large 

tractography dataset, focusing on specific tracts expected to relate to particular aspects of motor 

function and cognition as described in a recent review (Forkel et al. 2022). We use dMRI and 

scalar factors (i.e., neurobehavioral assessments of language, memory, executive function, and 

motor performance) from the Human Connectome Project-Young Adult (HCP-YA), a 

comprehensive multimodal dataset acquired from healthy young adults (Van Essen et al. 2013) 

that provides minimally processed dMRI (Glasser et al. 2013). We use tractography data 

previously computed for a cohort of 809 HCP-YA participants published in (Zekelman et al. 2022). 

The study dataset comprises 809 participants, with 382 males and 427 females. Their ages range 

from 22 to 36 years, with an average age of 28.6. Brief details about data acquisition and processing 

follow. The HCP-YA dataset (Glasser et al. 2013) was acquired using three shells (b = 1000, 2000, 

and 3000 s/mm²), with TE/TR = 89.5/5520 ms and an isotropic voxel size of 1.25 mm³. The b = 

3000 shell consisting of 90 gradient directions and all b = 0 scans was extracted to reduce 

computation time while providing high angular resolution for tractography (F. Zhang et al. 2018). 

Whole brain tractography was computed by applying a two-tensor Unscented Kalman Filter (UKF) 

method (Reddy and Rathi 2016), which is effective at reconstructing white matter tracts across 

various dMRI acquisitions and the lifespan (F. Zhang et al. 2018) with advantages for 

reconstructing anatomical somatotopy (He et al. 2023). UKF tractography used a two-tensor model 

to account for crossing fibers (Vos, Viergever, and Leemans 2013; Farquharson et al. 2013) and 

provided fiber-bundle-specific microstructural measures from the first tensor, which modeled the 

tract being traced (Reddy and Rathi 2016). White matter tracts were identified for each subject 

using the white matter analysis machine learning approach that can robustly identify white matter 

tracts across the human lifespan, health conditions including brain tumors, and different image 

acquisitions (F. Zhang et al. 2018; Cetin-Karayumak et al. 2024) with high test-retest 

reproducibility (F. Zhang et al. 2019).  
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In our illustrative study, we investigate the arcuate fasciculus (AF), uncinate fasciculus (UF), 

cingulum (CB), and corticospinal tract (CST). These four white matter tracts of interest are 

investigated in each subject's left and right hemispheres. Each fiber tract contains a collection of 

streamlines representing the pathway of a particular white matter connection. Each streamline is 

composed of a sequence of points (streamline points) and their associated FA values. In this paper, 

we use FA as a primary measure for tract analysis, though the methods we propose are equally 

applicable to other microstructure or imaging data measured within fiber tracts, e.g.,  mean 

diffusivity (MD) (P. J. Basser 1995), or neurite orientation dispersion and density imaging 

(NODDI) (H. Zhang et al. 2012; Daducci et al. 2015).  

We assess the relationship between the FA of each fiber tract and selected scalar factors, as 

summarized in Table 1. We study the associations of the AF, UF, CB, and CST with scalar factors 

of language, memory, executive function, and motor, respectively. Our choices of fiber tracts and 

corresponding scalar factors follow a recent review of fiber tracts and potentially associated neuro-

behavioral functions in health and disease based on the existing literature (Forkel et al. 2022). In 

our work, the scalar factors are assessments from the NIH Toolbox, the state-of-the-art for 

neurobehavioral measurement (Hodes et al. 2013). These include the NIH Toolbox Oral Reading 

Recognition Test (Gershon et al. 2014), Picture Vocabulary Test (Gershon et al. 2014), Picture 

Sequence Memory Test (Loring et al. 2019), List Sorting Working Memory Test (Tulsky et al. 

2014), Dimensional Change Card Sort Test (Zelazo et al. 2014), Flanker Inhibitory Control and 

Attention Test (Zelazo et al. 2014), 2-minute Walk Endurance Test (Reuben et al. 2013), and 4-

Meter Walk Gait Speed Test (Reuben et al. 2013). 
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Table 1: Input data for the illustrative study includes fiber tracts, corresponding neurobehavioral 

functions following a recent review, and scalar factors from the NIH Toolbox. We include an 

abbreviated name for each scalar factor. 

Fiber Tract 

Neuro- 

behavioral 

Function 

Scalar Factor 

 

Arcuate Fasciculus  

(AF) 

 

Language 

Picture Vocabulary Test (PicVocab) 

Oral Reading Recognition Test (ReadEng) 

Uncinate Fasciculus 

(UF) 

 

Memory 

Picture Sequence Memory Test (PicSort) 

List Sorting Working Memory Test (ListSort) 

Corticospinal Tract 

(CST) 

 

Motor 

Walk Endurance Test (Endurance) 

4-Meter Walk Gait Speed Test (GaitSpeed) 

Cingulum Bundle 

(CB) 

Executive 

function 

Dimensional Change Card Sort Test (CardSort) 

Flanker Inhibitory Control and Attention Test (Flanker) 

 

2.2. Key Steps in FMQ Regression 

2.2.1 Step 1:  Population Fiber Bundle Construction. 

To construct a population fiber bundle, first the bundle and its FA values must be identified in all 

subjects in the population. This can be achieved using methods such as virtual dissection (Catani 

et al. 2002) or automatic segmentation (F. Zhang et al. 2018; Vázquez et al. 2020; Garyfallidis et 

al. 2018). The resulting individual fiber bundles have different numbers of streamlines, and their 

shapes and lengths are not the same due to factors such as anatomical variability and neural 

plasticity. Constructing a population fiber bundle, which contains the amalgamated streamlines 

among all individuals within a cohort (L. O’Donnell and Westin 2005; L. J. O’Donnell et al. 2012; 

Chenot et al. 2019; Elias et al. 2024), is the first step in microstructural inference using FMQ. 

Population fiber tracts studied in this paper are given in Figure 1. The statistical inference and the 

following anatomical interpretations rely on the constructed population fiber bundle. 

We use the notation 𝑖 ∈ {1,2, … , 𝐼} to denote an individual, where 𝐼 is the total number of 

individuals. For a certain fiber tract, we randomly select 𝐾 streamlines from each individual’s fiber 

tract (i.e., sampled fiber tract) to ensure each individual’s fiber tract has equal “weight” in 

constructing the population fiber bundle. We use 𝒀𝑖 = [𝑌𝑖1,  … , 𝑌𝑖𝑝𝑖
] to denote the microstructure 

measures (FA values) of each individual, where 𝑝𝑖 is the number of streamline points of the 𝑖-th 
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individual’s sampled fiber tract. We construct the population fiber tract by assembling individuals’ 

fiber tracts together. The assembled data thus is a population fiber bundle with FA values 

([𝒀1 , … , 𝒀𝐼 ]).  

In our HCP-YA illustrative study, the total number of individuals is 𝐼 = 809. For each individual, 

we randomly select 𝐾 = 2000 streamlines (Wasserthal et al. 2019) for each individual’s fiber 

bundle. Therefore, 𝑝𝑖 is determined by the individual’s sampled fiber tract. 

2.2.2 Step 2: Quantile-Specific Bundle Region Creation 

In this step, we provide a data-driven approach to create quantile-specific bundle regions defined 

by the FA values in the population fiber bundle. Let 𝐺𝑌(𝜏) be the 𝜏-th quantile of the population 

fiber bundle’s FA values ([𝒀1 , … , 𝒀𝐼 ]). By using the values of 𝐺𝑌(𝑐/𝐶)  for 𝑐 ∈ {1, … , 𝐶 − 1}, as 

cut-off values (the dashed lines in Figure 2), we can create 𝐶 quantile-specific bundle regions 

ranging from bundle periphery to bundle core ( Figure 2), and each quantile-specific bundle region 

has the same number of streamline points. We define 𝜏𝑐 = (
𝑐−1

𝐶
+

𝑐

𝐶
)/2 for 𝑐 ∈ {1, … , 𝐶 − 1}. For 

each quantile-specific bundle region 𝑐 ∈ {1, … , 𝐶},  the value 𝐺𝑌(𝜏𝑐) is defined as the typical FA 

value since it is the middle value between the boundary cut-offs (see blue arrows in  Figure 2). 

The typical FA value indicates the representative FA value in the quantile-specific bundle region 

and is used as the dependent variable in the regression model introduced in Section 2.2.3.  

 

Figure 2: Graphical illustration of the population FA distribution sorted along the orange arrow 

from low to high FA (e.g., bundle periphery, to intermediate bundle regions, to bundle core).  𝐶 

quantile-specific bundle regions are defined based on the values of 𝐺𝑌(𝑐/𝐶) for 𝑐 ∈ {1, … , 𝐶 − 1}, 
as boundary cut-off values (the dashed lines). The upper and lower cut-off values give the range 

of FA within each quantile-specific bundle region. The value of 𝐺𝑌(𝜏𝑐) is defined as the typical 

FA value in each region since it is the middle value between the boundary cut-offs. AF left is used 

as an illustrative example, where quantile-specific bundle regions are shown in blue. 
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In our HCP-YA illustrative study, we choose 𝐶 = 100, and thus the studied quantiles range 
from 0.5% to 99.5%. This choice of 100 corresponds to the default number of subdivisions in the 

AFQ method and is chosen for fair comparison (Yeatman et al. 2012)   

2.2.3 Step 3: Statistical Inference using Quantile Regression 

In this section, we describe how to quantify the association between a typical FA value in a 

quantile-specific bundle region and a scalar factor. The relationship between the typical FA value 

and scalar factors is given as  𝐺𝑌(𝜏𝑐) = 𝑿𝑖𝜷(𝜏𝑐) where 𝑋𝑖 is a covariate vector of an individual 𝑖 
containing the scalar factor. In the illustrative study of the HCP-YA data, we give the covariate 

vector of the regression model as 𝑿𝑖 = [𝐼𝐹𝑒𝑚𝑎𝑙𝑒𝑖
+ 𝐼𝑀𝑎𝑙𝑒𝑖

+ 𝐴𝑔𝑒𝑖 × 𝐼𝐹𝑒𝑚𝑎𝑙𝑒𝑖
+ 𝐴𝑔𝑒𝑖 × 𝐼𝑀𝑎𝑙𝑒𝑖

+ 𝑆𝑐𝑎𝑙𝑎𝑟𝑖 ×

𝐼𝐹𝑒𝑚𝑎𝑙𝑒𝑖
+ 𝑆𝑐𝑎𝑙𝑎𝑟𝑖 × 𝐼𝑀𝑎𝑙𝑒𝑖

]. In the covariate vector, 𝐼𝐹𝑒𝑚𝑎𝑙𝑒𝑖
 and 𝐼𝑀𝑎𝑙𝑒𝑖

 are indicator variables that 

equal 1 if the individual 𝑖 is a female or a male, respectively. 𝐴𝑔𝑒𝑖  and 𝑆𝑐𝑎𝑙𝑎𝑟𝑖 are the values of 

the individual’s age and scalar factor, respectively. Without loss of generality, the scalar factor is 

scaled into the range between 0 and 1. This scaling step allows direct comparison of the magnitudes 

of the regression coefficients of different scalar factors. In this regression model, the intercepts 

and regression coefficients are computed for both males and females.  The regression coefficient 

associated with the assessment, 𝛽(𝜏𝑐), is used to quantify the effect of the scalar factor on the 

typical FA value of each quantile-specific bundle region.  

The most conventional and fastest approach to estimating the coefficient vector is defined as 

follows,  

𝜷̂(𝜏𝑐) = 𝑎𝑟𝑔𝑚𝑖𝑛𝜷(𝜏𝑐) ∑ ∑ 𝜌𝜏𝑐
(𝑌𝑖𝑝 − 𝑿𝑖𝜷(𝜏𝑐))

𝑝𝑖
𝑝=1

𝐼
𝑖=1 , 

where 𝜌𝜏𝑐
(𝑎) = 𝑎(𝜏𝑐 − 𝐼[𝑎 < 0]) is the check function and 𝐼[𝑒] is the indicator function for event 

of 𝑒. By giving asymmetric weights to positive and negative values, the check function is a loss 

function to estimate 𝜷(𝜏𝑐), making 𝑿𝑖𝜷(𝜏𝑐) as close to the 𝜏𝑐-th quantile of  [𝒀1 , … , 𝒀𝐼 ], as 

possible. This estimator pools all FA values from all the individuals but does not consider the 

possible effect of between-individual variations. This estimator has been proven to be 

asymptotically consistent under certain conditions (Parente and Santos Silva 2016):  

√𝑁(𝜷̂(𝜏𝑐) − 𝜷0(𝜏𝑐)) → 𝑁(𝟎, 𝜴(𝜏𝑐)) as 𝑁 → ∞ 

In other words, a large sample size of individuals (𝑁) produces an estimator that better converges 

to the true regression coefficient values, i.e., 𝜷0(𝜏𝑐). The asymptotic covariance matrix 𝜴(𝜏𝑐) =
𝑩(𝜏𝑐)−1𝑨(𝜏𝑐)𝑩(𝜏𝑐)−1 allows us to make valid statistical inferences to account for between-

individual variations, providing valid uncertainties of regression coefficient estimates. 

Furthermore, 𝜴(𝜏𝑐) = 𝑩(𝜏𝑐)−1𝑨(𝜏𝑐)𝑩(𝜏𝑐)−1 is feasible to be estimated using the data, denoted 

as 𝜴̂(𝜏𝑐); thus, we can avoid the computationally expensive bootstrap for obtaining the covariance 

of the estimate. The estimators for 𝑨(𝜏𝑐) and 𝑩(𝜏𝑐) that were derived (see Section 2.2 Parente and 

Santos Silva 2016). The Z-scores and adjusted p-values for the regression coefficient associated 

with a scalar factor are reported as the principal results. False Discovery Rate (FDR) correction is 

applied to adjust p-values over the quantile-specific bundle regions for each scalar factor. We reject 

the null hypothesis if the corresponding p-value is smaller than 0.05. The Z-scores pool regression 
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coefficient estimates’ magnitudes and uncertainties; thus, they are used as the primary quantities 

to describe the effects of scalar factors.  

2.3. Alternative Methods to be Compared 

In this section, we provide alternative methods to be compared to our proposed method. We use 

the FA mean and AFQ tract profile as quantities or profiles measured from the fiber tract, and we 

build regression models based on these. The names of the two compared regression methods are 

FA Mean Regression (Section 2.3.1) and AFQ Regression (Section 2.3.2).  

2.3.1 FA Mean Regression 

In FA Mean Regression, the fiber tract FA mean is the response of the regression models. The 

fiber tract FA mean is a value averaging all the FA values over streamline points within a fiber 

tract (L. J. O’Donnell and Westin 2007; Zekelman et al. 2022). FA Mean Regression is the simplest 

method that uses the FA mean as an imaging biomarker. Simplicity makes it easy to use, but the 

detailed information on the microstructure within the tract is aggregated. The regression model is 

defined as 𝑴𝒊 = 𝑿𝒊𝜷 + 𝝐𝒊;  𝝐𝒊 ∼ 𝑵(𝟎, 𝝈𝟐 ), where the tract FA mean is expressed as 𝑴𝒊. In the 

regression, the covariate vector 𝑿𝒊 is the same as in Section 2.2.3. The regression coefficient 

associated with each scalar factor quantifies the magnitude of effects on the FA mean 𝑴𝒊. The T-

scores and p-values for the regression coefficient associated with a scalar factor are reported as the 

principal results. The p-values here are not corrected since there is no multiple comparison. We 

reject the null hypothesis if the corresponding p-value is smaller than 0.05. The T-scores that pool 

regression coefficient estimates’ magnitudes and uncertainties are used as the primary quantities 

to describe the effects of scalar factors. 

2.3.2 AFQ Regression 

In AFQ Regression, FA values within the AFQ tract profile are the responses of regression models. 

The AFQ method  (Yeatman et al. 2012) implemented in the dipy software (Garyfallidis et al. 

2014) automatically computes the profile, which consists of mean FA values at sequential 

locations along a fiber tract. The AFQ tract profile of FA is individual-specific. While the fiber 

tracts are different between individuals, the 𝐿 locations along a fiber tract can be matched across 

individuals, given their relative positions. We use 𝑇𝑖𝑙 to denote the mean FA value of an individual 

𝑖 at a location 𝑙. We set up a linear regression as 𝑇𝑖𝑙 = 𝑿𝑖𝜷𝑙 + 𝜖𝑖𝑙; 𝜖𝑖𝑙 ∼ 𝑁(0, 𝜎𝑙
2). In the regression, 

the covariate vector 𝑋𝑖 is the same as in Section 2.2.3. The regression coefficients associated with 

scalar factors quantify their effects on the FA at the location 𝑙. We set 𝐿 = 100, which is the default 

convention for AFQ (Yeatman et al. 2012), following the tutorial instructions on the website1. This 

setting also makes it comparable to our FMQ Regression. The T-scores and adjusted p-values for 

the regression coefficient associated with a scalar factor are reported as the principal results. False 

Discovery Rate (FDR) correction is applied to adjust p-values over the locations along a bundle 

for each scalar factor. We reject the null hypothesis if the corresponding p-value is smaller than 

 
1 https://workshop.dipy.org/documentation/0.16.0./examples_built/afq_tract_profiles/ 
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0.05. Similarly, the T-scores that pool regression coefficient estimates’  magnitudes and 

uncertainties are used as the primary quantities to describe the effects of scalar factors.  

3. Results 

In this section, we first summarize the overall results of the illustrative study based on all three 

methods. Because the selected fiber tracts are potentially associated with the corresponding 

neurobehavioral functions (Forkel et al. 2022), we expect that many of the associations that we 

study in this paper should be of statistical significance. Therefore, we first assess the overall 

sensitivity of the compared regression approaches. Table 2 provides the statistical significance of 

regression coefficients for all the associations that we investigate. In the table, an association where 

there is at least one significant regression coefficient is labeled with an asterisk. For most of the 

experiments, the results show that the FA Mean Regression and FMQ Regression are equally 

powerful methods for identifying significance, while the AFQ Regression is not a powerful method 

comparatively.  

Table 2. The statistical significance of regression coefficients related to the scalar factors for all 

the associations that we investigate. An association where there is at least one significant 

regression coefficient will be labeled with an asterisk. Significant negative associations are noted 

as (Neg). 

 

Next, we provide more detailed insight into the overall results in Table 2 by providing 

visualizations of the bundle experiments in Figures 3-10. The visualizations include the values of 

T-scores and Z-scores and how they relate to the anatomy of the studied bundles. In these figures, 

differences can be observed in the results of the two most statistically powerful methods, FA Mean 

Figure 
Fiber 

Tract 

Neuro- 

behavior

al 

Function 

Scalar  

Factor 
Gender 

FA Mean 

Regression 

AFQ  

Regression 

FMQ  

Regression 

LHem RHem LHem RHem LHem RHem 

Figures 

3-4  

Arcuate 

Fasciculus 

(AF) 

Language 

PicVocab  
Female *   *   * * 

Male *    *  

ReadEng 
Female *      

Male *       *   

Figures 

5-6 

Uncinate 

Fasciculus 

(UF) 

Memory 

PicSort 
Female    * (Neg)   

Male *    *  

ListSort 
Female       

Male *       *   

Figures 

7-8 

Cortico- 

spinal 

Tract 

(CST) 

Motor 

Endurance 
Female  *     

Male       

GaitSpeed 
Female * *  * * * 

Male             

Figures 

9-10 

Cingulum 

Bundle 

(CB) 

Executive 

function 

CardSort 
Female       

Male       

Flanker 
Female       

Male             
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Regression and FMQ Regression. While these two methods are similarly powerful in identifying 

associations (Table 2), the proposed FMQ Regression additionally provides the Z-scores from the 

periphery to the core of each bundle in both males and females (Figures 3-10). FMQ Regression 

therefore provides additional insight into potential anatomical underpinnings of brain-behavior 

associations and their differences related to sex. It can also be observed that the AFQ Regression 

is less powerful in identifying associations.  

Here we give more detail about the specific quantiles that are significant when using FMQ 

Regression. First, we summarize the left AF (Figure 3). Significant associations are identified for 

PicVocab within the left AF. In females, the quantiles from 0.5% to 90.5% are significant, covering 

the peripheral, intermediate, and near-core bundle regions. In males, the significant quantiles range 

from 0.5% to 49.5%, including peripheral and intermediate bundle regions. Additionally, FMQ 

Regression identifies significant associations within the left AF for ReadEng (Figure 3) for males, 

with significant quantiles from 0.5% to 95.5%, encompassing almost all bundle regions. Next, we 

summarize the right AF (Figure 4). Significant associations are identified for PicVocab within the 

right AF in females between quantiles 4.5% and 40.5%, covering peripheral and intermediate 

bundle regions. Next, we summarize the left UF (Figure 5). FMQ Regression also identifies 

significant associations within the left UF for PicSeq (Figure 5) for males, where quantiles 16.5% 

to 91.5% are significant, including near-peripheral, intermediate, and near-core bundle regions. 

Another significant association is observed within the left UF for ListSort (Figure 5) in males 

between quantiles 54.5% and 80.5%, covering the intermediate and near-core bundle regions. 

Finally, we summarize the left and right CST (Figures 7 and 8). FMQ Regression identifies 

significant associations within the left CST for GaitSpeed (Figure 7) in females, with quantiles 

ranging from 2.5% to 99.5%, covering almost all bundle regions from periphery to core. Similarly, 

FMQ Regression identifies significant associations within the right CST for GaitSpeed in females 

across quantiles 0.5% to 99.5%, again covering almost all bundle regions. 
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Figure 3: Regression results for three methods studying the association between AF left and 

language performance. FA Mean Regression identifies a significant association in PicVocab and 

ReadEng for males and females; AFQ Regression identifies a significant association in PicVocab 

in females; FMQ Regression identifies a significant association in PicVocab for males and females 

and ReadEng for males. Studied bundle regions are shown at left. For each experiment, plots of Z- 

or T-scores (solid line) and FA (dashed line) are provided, with red asterisks indicating FDR-

corrected statistical significance. Visualizations of Z- and T-scores are provided.  
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Figure 4: The association between AF right and language performance. FMQ Regression 

identifies a significant association in PicVocab for females. FA Mean Regression and AFQ 

Regression do not identify any statistically significant association. Studied bundle regions are 

shown at left. For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are 

provided, with red asterisks indicating FDR-corrected statistical significance. Visualizations of Z- 

and T-scores are provided.  
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Figure 5: The association between UF left and memory performance. Both FA Mean Regression 

and FMQ Regression identify significant associations in PicSeq and ListSort for males. AFQ 

Regression does not identify any statistically significant association. Studied bundle regions are 

shown at left. For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are 

provided, with red asterisks indicating FDR-corrected statistical significance. Visualizations of Z- 

and T-scores are provided.   
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Figure 6: The association between UF right and memory performance. AFQ Regression identifies 

a negative significant association in PicSeq for males. Other methods do not identify any 

statistically significant association. Studied bundle regions are shown at left. Studied bundle 

regions are shown at left. For each experiment, plots of Z- or T-scores (solid line) and FA (dashed 

line) are provided, with red asterisks indicating FDR-corrected statistical significance. 

Visualizations of Z- and T-scores are provided.  
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Figure 7: The association between CST left and motor performance. Both FA Mean Regression 

and FMQ Regression identify significant associations in GaitSpeed for females. AFQ Regression 

does not identify any statistically significant association. Studied bundle regions are shown at left. 

For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are provided, with 

red asterisks indicating FDR-corrected statistical significance. Visualizations of Z- and T-scores 

are provided.   
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Figure 8: The association between CST right and motor performance. FA Mean Regression, AFQ 

Regression, and FMQ Regression identify significant associations in GaitSpeed for females. FA 

Mean Regression identifies a significant association in Endurance in females. Studied bundle 

regions are shown at left. Studied bundle regions are shown at left. For each experiment, plots of 

Z- or T-scores (solid line) and FA (dashed line) are provided, with red asterisks indicating FDR-

corrected statistical significance. Visualizations of Z- and T-scores are provided.   
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Figure 9: The association between CB left and executive function performance. None of the 

methods identify a statistically significant association. Studied bundle regions are shown at left. 

For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are provided, with 

red asterisks indicating FDR-corrected statistical significance. Studied bundle regions are shown 

at left. For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are provided, 

with red asterisks indicating FDR-corrected statistical significance. Visualizations of Z- and T-

scores are provided.   
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Figure 10: The association between CB right and executive function performance. None of the 

methods identify a statistically significant association. Studied bundle regions are shown at left. 

For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are provided, with 

red asterisks indicating FDR-corrected statistical significance. Studied bundle regions are shown 

at left. For each experiment, plots of Z- or T-scores (solid line) and FA (dashed line) are provided, 

with red asterisks indicating FDR-corrected statistical significance. Visualizations of Z- and T-

scores are provided.  

4. Discussion 

4.1 Methodological Contribution 

In this paper, we propose a new statistical approach, FMQ Regression, for the analysis of brain 

fiber tract data, and we compare results to two other popular methods from the literature. We apply 

these methods to an illustrative study motivated by a recent review paper that describes 

neurobehavioral functions associated with fiber tracts in health and disease (Forkel et al. 2022). 

Thus, we had expected that the associations that we study in this paper would be of statistical 

significance. Therefore, we suggest that a method that can better identify the significance should 

be considered a better method. From this perspective, we make several observations. The proposed 

FMQ Regression generally outperforms the compared methods and produces several significant 

results. Our FMQ Regression results include significant findings in bundle cores (e.g., male UF 

bundle core FA associates with two memory performance assessments) as well as bundle 

peripheries (e.g., female AF periphery FA associates with PicVocab). These results motivate the 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.19.619237doi: bioRxiv preprint 

https://paperpile.com/c/VMgqKD/5DKt
https://doi.org/10.1101/2024.10.19.619237
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

potential importance of analyzing FA based on quantile-specific bundle regions, which tend to 

occupy regions from bundle periphery to bundle core.  

In comparison with the traditional AFQ Regression strategy, a popular alternative microstructural 

analysis tool, our results suggest that FMQ Regression is much more powerful. For example, FMQ 

identifies significant associations in AF, CST, and UF, while the other two methods fail to achieve 

equivalent power. While FMQ Regression and AFQ Regression are both methods that provide 

microstructural inference, the two methods have essential differences. One difference is that they 

provide different approaches for region-specific analysis: bundle periphery to bundle core versus 

along the bundle. Another difference between the methods is that the quantile-specific bundle 

regions are defined in a population-based fashion, while the AFQ profile is defined in an 

individual-specific fashion, followed by matching across subjects. The quantile-specific bundle 

regions thus have the potential to reduce the effect of subject-specific sources of variability that 

affect the AFQ profile, such as bundle anatomical variability in shape or length, as well as FA 

variability in each bundle region within and across subjects. Other works have mentioned limited 

statistical power when using the AFQ method, which was attributed to the challenge of multiple 

comparisons (Richie-Halford et al. 2021). Approaches such as data reduction via feature selection 

(Richie-Halford et al. 2021) and suprathreshold cluster analyses (L. J. O’Donnell, Westin, and 

Golby 2009) have been proposed to reduce challenges resulting from multiple comparisons along 

a fiber bundle. In contrast, we note that our proposed FMQ approach has relatively high statistical 

power, even when using a large number of quantile-specific regions and multiple comparison 

adjustments. This advantage of FMQ may relate to the population-based aspect of our approach 

that effectively captures variations of the data. As detecting brain-behavior associations is widely 

understood to be a challenging problem in neuroimaging (Marek et al. 2022; Gratton, Nelson, and 

Gordon 2022), new methods that can enable more powerful analysis can be a welcome addition to 

our toolbox.  

In comparison with the traditional FA Mean Regression, the proposed FMQ Regression is 

similarly powerful while providing additional potential insight into associated anatomical regions 

(i.e., bundle core versus periphery). In Table 2, it can be seen that one significant association found 

by FMQ Regression was not identified by FA Mean Regression, while two significant associations 

identified by FA Mean Regression were not found by FMQ Regression. This suggests that the 

techniques are complementary, where some localized effects may be missed by the FA Mean 

Regression (as is well known in the literature (L. J. O’Donnell, Westin, and Golby 2009; Colby et 

al. 2012)), while some global or whole-bundle effects may be more sensitively detected by the FA 

Mean Regression. Overall, the fact that the significant findings were generally consistent across 

the FMQ and Mean FA Regression methods, across multiple NIH toolbox measures (e.g., of 

language function), and across hemispheres (e.g., bilateral female CST effects), suggests the 

robustness of the proposed FMQ Regression. 

Our FMQ Regression is different from other fiber tract data analyses using the quantile regression 

technique (Lv et al. 2021; Ryan et al. 2022). In contrast to our approach, the previous works (Lv 

et al. 2021; Ryan et al. 2022) rely on the FA mean of the entire fiber tract and investigate the 

association between the conditional quantile of the FA mean and covariates of interest.  
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4.2 Neuroscience Findings 

In the following paragraphs, we briefly discuss our current findings in each fiber tract in relation 

to the literature.  

Consistent with many reports of associations between the left, but not right, AF and language 

performance in healthy individuals (Zekelman et al. 2022; Yeatman et al. 2011), the proposed 

FMQ Regression identified a statistically significant association in the left AF in both males and 

females. However, in females only, the FMQ Regression (and not the FA mean or AFQ methods) 

identified a statistically significant association with PicVocab in the bundle periphery and 

intermediate bundle regions of the right AF. This is of interest for further investigation and could 

potentially relate to known sex differences in AF, such as its greater symmetry in females 

(Thiebaut de Schotten et al. 2011). Interestingly, our significant findings relating the left AF FA 

to language performance spanned many quantiles of FA but never included the maximum FA 

bundle “core” regions (i.e. the highest quantiles near 100% were never significant, as shown in 

Figure 3). In fact, the relationships between AF microstructure (FA) and two assessments of 

language are stronger in the periphery and decrease toward the core of the bundle in both males 

and females. This observation may potentially represent a challenge for uncovering brain-behavior 

language associations using TBSS (tract-based spatial statistics), a method that focuses only on 

maximum-FA voxels thought to represent bundle cores (Smith et al. 2006). For example, a recent 

investigation studied 6 different language assessments using TBSS and found only one association 

of FA in the left superior longitudinal fasciculus, which includes the AF (Houston et al. 2019). 

Converging evidence from our recent geometric machine learning work also identified peripheral 

regions of AF, including regions of the gray-white matter interface, to be most predictive of 

individual performance on language assessments (Chen et al. 2024). This is in line with recent 

work investigating the shape of the white matter association tracts (including AF), which shows 

that the peripheral regions where bundles originate and terminate in the cortex have a large degree 

of inter-individual variability and are therefore a good descriptor of inter-individual differences in 

white matter structure (Yeh 2020).  

Consistent with a handful of other studies of UF in healthy individuals (Mabbott et al. 2009; 

Schaeffer et al. 2014), the proposed FMQ Regression identified a statistically significant 

association between left UF FA and memory performance (Figure 5). However, in the present 

study, this effect was observed only in males (in intermediate and near-core bundle regions). This 

finding motivates the importance of studying sex effects in the relationship between brain 

microstructure and individual functional performance.  

While it is well understood that the CST subserves motor function (Welniarz, Dusart, and Roze 

2017) and is left-lateralized (Thiebaut de Schotten et al. 2011), most existing studies of FA and 

motor function have been performed in patients with diminished function. However, a recent study 

in healthy young adults showed that CST FA was bilaterally associated with corticospinal 

excitability, a transcranial magnetic stimulation measure of individual function (Betti et al. 2022). 

Our finding that CST FA is associated with motor functional performance (GaitSpeed) bilaterally, 

and only in females, further motivates the need to study tract microstructure and its relationship to 

human brain functional performance in both males and females, as well as in healthy individuals 

(Fig. 7-8).  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.10.19.619237doi: bioRxiv preprint 

https://paperpile.com/c/VMgqKD/4qnd+tIx0
https://paperpile.com/c/VMgqKD/ZlMp
https://paperpile.com/c/VMgqKD/2hPw
https://paperpile.com/c/VMgqKD/Ho6w
https://paperpile.com/c/VMgqKD/DnZn
https://paperpile.com/c/VMgqKD/YcyXM
https://paperpile.com/c/VMgqKD/Qxi5+DU4b
https://paperpile.com/c/VMgqKD/Qxi5+DU4b
https://paperpile.com/c/VMgqKD/wQwG
https://paperpile.com/c/VMgqKD/wQwG
https://paperpile.com/c/VMgqKD/ZlMp
https://paperpile.com/c/VMgqKD/ug2t
https://doi.org/10.1101/2024.10.19.619237
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

We report negative results (no significance) for the relationship between CB FA and measures of 

executive function (CardSort and Flanker) in healthy young adults using all compared regression 

methods (Fig. 9-10). A recent review on white matter tracts and executive function suggests a role 

for CB, especially in inhibition; however, the supporting neuroimaging studies include aging and 

neuropsychiatric populations, not healthy individuals (Ribeiro et al. 2024). Our results do not 

contradict the potential role of CB in executive function in healthy young adults; our findings 

merely indicate that CB FA microstructure does not relate to executive function performance in 

the study population. In this study we focused on the superior part of the CB, excluding the 

temporal portion of the bundle, because individual streamlines generally do not trace the entire 

trajectory of the CB. This is in part because axons enter and leave the CB along its entire length 

(D. K. Jones et al. 2013; Heilbronner and Haber 2014). In addition, the superior part of the 

cingulum more closely correlates with attention and executive function, whereas the temporal  

cingulum is associated with episodic memory (Metzler-Baddeley et al. 2012; Kantarci et al. 2011). 

4.3 Neuroanatomical Discussion 

In this paper, we have proposed analyzing white matter bundles in dMRI using regions that are 

defined using quantiles of FA, with the result that the quantile-specific regions are approximately 

defined from the bundle periphery to the bundle core. Neuroanatomical research demonstrates that 

for many bundles, axons enter and leave the bundle along its course (Yakovlev and Locke 1961; 

Morris, Pandya, and Petrides 1999; Mufson and Pandya 1984; Schmahmann and Pandya 2009; 

Petrides and Pandya 2007; Heilbronner and Haber 2014). As these axons leave the bundle, they 

curve and necessarily intersect and cross axons from other bundles closer to their cortical or 

subcortical targets. This intersection will lead to a lower FA (Derek K. Jones 2010). In the current 

study, these regions of lower FA are located toward the ends of the tract as the streamlines fan out 

as a spray of fibers and traverse the periphery of other fiber bundles (Makris et al. 1997). In 

addition, these regions of lower FA in peripheral locations are also observed along the length of 

the fiber, which corresponds to anatomical studies of the cingulum bundle that show that axons 

enter or leave the tract along its course (Yakovlev and Locke 1961; Mufson and Pandya 1984). 

4.3 Limitations 

Potential limitations of the present study, including suggested future work to address limitations, 

are as follows. In this work, we demonstrated the estimation of 𝐶 = 100 sets of coefficients for all 

the quantile-specific bundle regions. Future work may investigate other numbers of quantile-

specific bundle regions by varying 𝐶. From the computational perspective, our method requires a 

large streamline dataset sampled from all subject fiber bundles under study in the population. 

Future work may investigate optimizing the amount of input data needed to obtain results in very 

large datasets. In this study we have described quantile locations as bundle core, intermediate 

bundle regions, or bundle periphery regions, with accompanying visualizations to provide more 

detail. However, it can be observed that not all fiber bundles are completely included in the field 

of view (FOV) of a dMRI scan, which can make the periphery-core interpretation more nuanced. 

For instance, the high-FA “core” region of the CST can be observed to continue inferiorly in the 

brainstem, which extends outside of the FOV. Another consideration is the potential presence of 

somatotopic or functional subdivisions of a fiber bundle. For instance, future work could separately 

study associations of individual bundles within the CST, e.g., those originating in trunk, leg, hand, 

and face motor cortical regions (He et al. 2023), or bundles representing subdivisions within the 
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AF (Fernández-Miranda et al. 2015). In this initial paper describing the proposed FMQ Regression 

method, we have performed a testbed study of selected white matter fiber bundles, where we 

studied one selected microstructure measure (FA) and multiple selected neurobehavioral measures. 

In future work, it will be interesting to extend and apply the proposed FMQ approach to perform 

studies of additional datasets, fiber bundles, microstructure measures, and scalar factors of interest, 

potentially leading to deeper insights into the brain’s structural-functional relationships. 

5. Conclusion 

We have proposed FMQ Regression, a novel quantile regression methodology for studying white 

matter bundles in the brain. We find that analyzing FA using quantile-specific bundle regions, 

which tend to define regions from bundle periphery to bundle core, is much more powerful than a 

traditional AFQ method that spatially subdivides bundles along their lengths. Our results suggest 

that FMQ Regression is a powerful tool for studying brain-behavior associations using white 

matter tractography data. 

Data and Code Availability 

This study utilized publicly available data from HCP-YA 

(https://www.humanconnectome.org/study/hcp-young-adult/overview). Data can be accessed via 

data use agreements. Upon acceptance, code for the FMQ Regression will be provided at 

https://github.com/SlicerDMRI/FMQRegression. 
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