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Abstract

Accurately genotyping structural variant (SV) alleles is crucial to genomics research. We
present a novel method (kanpig) for genotyping SVs that leverages variant graphs and k-mer
vectors to rapidly generate accurate SV genotypes. We benchmark kanpig against the latest SV
benchmarks and show single-sample genotyping concordance of 82.1%, which is higher than
existing genotypers averaging 66.3%. We explore kanpig’s applicability to multi-sample projects
by benchmarking project-level VCFs containing 47 genetically diverse samples and find kanpig
accurately genotypes complex loci (e.g. SVs neighboring other SVs), achieving much higher
genotyping concordance than other tools. Kanpig requires only 43 seconds to process a single
sample’s 20x long-reads and can be run on PacBio or ONT long-reads.

Introduction

The ever increasing availability of long-read sequencing has begun to enable
applications in population scale genomic studies’?. This is possible due to crucial improvements
on sample requirements, error rates, and costs for running long-read sequencing instruments.
Bioinformatics applications which leverage long-reads are also maturing. These innovations
lead to the ability to produce a fully genotyped variant file (VCF) that holds information on each
variant’s presence within each sample. This VCF then provides a foundation for subsequent
analyses such as genome wide association® and population genomics*. While the process of
creating fully genotyped VCFs is streamlined for smaller mutations (SNV and indels)® it is not for
structural variants (SVs; i.e. genomic alterations larger than 50 base pairs). The current state of
the art workflows involve per-sample discovery of SVs which are then merged with methods
such as truvari® before subsequently reassessing each SV’s presence or absence (i.e.
genotyping) across all samples’.

As discovery of SVs using long-reads has improved?, genotypers have been introduced
which can leverage these SVs. Genotyping is the process of determining the presence of an
allele in a sample based on sequencing evidence’. This is separate from variant discovery
which primarily aims to resolve the structure of alternate alleles. This separation is best
illustrated in the case of a heterozygous SV in a diploid organism: After discovery of the
alternate allele, a genotyper’s task is to report that both the reference and alternate allele are
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present in the sample. Therefore, genotypers rely heavily on discovery tools and must be robust
to deviations between the reported allele structure and sequencing evidence supporting said
allele (e.g. shifted breakpoints)’.

State-of-the-art genotypers employ various algorithmic approaches including simple
assessments of SVs directly from mapped reads®, analysis of variant and read k-mers®, and
graph-based realignment approaches'®'. One thing these approaches have in common is that
they have mainly been benchmarked on a single sample. The most commonly used SV
benchmark is the GIAB v0.6 benchmark for HG002'. This benchmark was built as a
consolidation of short-read and noisy long-read discovered variants with Tier 1 regions defined
to exclude segmental duplications and complex SVs. However, other SV studies which have
used newer long-reads exclusively or whole-genome assemblies have shown that the number
and complexity of SVs is greater than the subset found in the GIAB v0.6 Tier1 regions'.
Furthermore, genotyping SVs across a population increases evaluation complexity by
increasing the occurrences of loci containing multiple neighboring and/or overlapping SV alleles.
Previous genotypers have some stratification of their benchmarking results based on the
presence of neighboring SVs'™, however this is only in the context of a single sample or trios.
The diversity of alleles at any given locus, particularly in tandem repeat loci, is expected to grow
as more samples are considered® s,

In this work we describe our software for long-read SV genotyping, kanpig. We
showcase kanpig through a comprehensive benchmarking framework, evaluating its accuracy
using a diverse set of haplotype-resolved long-read assemblies. We compare kanpig's genotype
accuracy with that of other long-read SV genotypers. In addition to evaluating kanpig using
high-confidence, single-sample SVs, we also benchmark against SVs discovered by the
commonly used SV caller sniffles and multi-sample SV VCFs. Across all experiments, kanpig
consistently produced more accurate genotypes and successfully avoided common errors seen
in other genotypers, particularly for neighboring SVs within and across samples.

Results

Kanpig Algorithm

Kanpig incorporates four major steps (Figure 1a). First, a VCF containing SVs is parsed
and SVs within a specified distance threshold of one another are identified as a “neighborhood”.
Second, kanpig constructs a variant graph from a neighborhood of SVs with nodes holding SVs
and directed edges connecting downstream, non-overlapping SVs. Next, a BAM file is parsed
for long-read alignments which span the neighborhood of SVs and pileups within user-defined
size boundaries (default 50bp to 10kbp) are generated before reads are clustered to identify up
to two haplotypes. Finally, a breadth-first search connecting the variant graph’s source and sink
nodes is performed to find the path which maximizes a scoring function with respect to an
applied haplotype.
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Figure 1: Overview of Kanpig’s Algorithm a) Schematic of the main steps of kanpig’s
algorithm. b) Sequence similarity vs Canberra similarity of 250bp insertion pairs within 500bp
from GIAB v1.1 SVs.

A novelty of kanpig’s approach is its representation of sequences in a variant graph’s
nodes or a read’s pileups as a k-mer vector, using a small k-value, which defaults to 4 base
pairs (bp). A k-mer vector contains the counts of all possible k-mers (256 for k=4) and tracks
how often each k-mer is observed in a sequence. These vectors are then used as part of the
scoring function’s measurement of sequence similarity via Canberra distance®. To calculate this
similarity, kanpig uses a representative read from a haplotype and includes k-mers that occur a
minimum number of times (default: 2) across the read’s pileups and the SV sequences from a
path’s nodes. This filtering helps reduce the impact of artifacts, such as sequencing errors. To
assess this approach’s accuracy, we compared Canberra similarity (1 minus distance) of k-mer
vectors to sequence similarity measured using edlib' over 141,680 insertion SV pairs =50bp
and within 500bp of one another from GIAB v1.1 SVs'8. The Canberra similarity of k-mer vectors
has a Pearson correlation coefficient of 0.994 (p < 0.01) with traditional sequence similarity
(Figure 1b) and a mean squared error of 7x107*. Of these nearby insertion pairs, 41,152 (29%)
have a size and edlib sequence similarity above 95%, which included 30,641 compound
heterozygous pairs occurring at the exact same position. Of these 295% similar insertion pairs,
37,918 (92%) also had a Canberra similarity above 95%. Therefore, many neighboring SVs are
highly similar and the Canberra similarity metric accurately measures them.

Two crucial components of kanpig’s algorithm are how reads are clustered into
haplotypes before applying them to a variant graph and how variant graphs lack edges
connecting overlapping SVs. K-means clustering of reads by their k-mer vectors produces up to
two haplotypes. Each haplotype then only needs a single search for the optimal path through
the graph to apply all its constituent reads simultaneously. Furthermore, by disallowing paths
through overlapping variants, kanpig prevents haplotypes from creating conflicting genotypes.
For example, in the neighborhood of SVs illustrated in Figure 1a, kanpig ensures a haplotype
can only be applied to one of the three overlapping variants. Conversely, if either reads or SVs
were evaluated independently, it is possible for reads from the same haplotype to support
different, conflicting SVs or for overlapping SVs to redundantly recruit support from the same
read. This could give rise to problems such as two overlapping SVs being genotyped as
homozygous. Since human autosomal chromosomes are diploid, a homozygous variant which
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overlaps another present variant in a single sample is conflicting as it is biologically implausible
to e.g. lose both copies and then additional copies of overlapped deletions at the same time.
Kanpig’'s design prevents this type of genotyping error by correctly handling overlapping and
nearby SV neighborhoods.

Establishing a baseline of structural variant genotypes

The Genome in a Bottle consortium (GIAB) has released two sets of structural variants
researchers use to evaluate the performance of their SV discovery and genotyping tools. The
first, GIAB v0.6'?, was constructed from a merge of multiple SV discovery tools’ results and the
second, draft GIAB v1.1'8, derived from a single highly polished diploid Telomere-to-Telomere
assembly. These two benchmarks of insertions and deletions greater than 50bp have vastly
different levels of completeness. GIAB v0.6 contains 9,646 SVs compared to 27,560 SVs for
v1.1. The ratio of heterozygous to homozygous variants (het/hom ratio) in GIAB v0.6 is 1.16
compared to 4.15 for v1.1. These benchmarks’ differences are especially notable in the context
of overlapping and closely adjacent SVs. While GIAB v0.6 has no Tier1 passing SVs within 1kbp
of another SV, 15,685 (43%) of GIAB v1.1 SVs have at least one neighbor. These observations
of het/hom ratio and neighboring SVs are not independent as 92.2% of GIAB v1.1 SVs with at
least one neighbor are heterozygous compared to 65.5% without neighbors being heterozygous
(chi-squared test p<0.01). Therefore, SV genotypers benchmarked primarily against GIAB v0.6
may be biased towards a subset of homozygous SVs.

To comprehensively evaluate kanpig, we leveraged high-confidence assemblies from the
Human Pangenome Reference Consortium (HPRC)'" to create SVs from 47 genetically diverse
genome assemblies using dipcall®® alignment to GRCh38 (Methods: Data Collection). To ensure
the assembly-derived SVs are of high quality, we compared the HPRC HG002 SVs against
GIAB v1.1 SVs using truvari®. This resulted in a 0.996 precision and 0.987 recall with a 99.3%
genotype concordance. The consistency of the HG002 variants from the HPRC assembly and
dipcall pipeline to GIAB v1.1 suggests the pipeline is sufficient for generating baseline VCFs
across all HPRC samples.

Single Sample SV Genotyping

To assess kanpig's performance, we collected 32x coverage of PacBio long-reads
derived from the same 47 HPRC individuals which comprise the assembly-derived baseline
variants described above (Methods: Data Collection). We genotyped autosomal SVs between
50bp and 10kbp for each sample using kanpig and three other long-read SV genotypers of
SVJedi-graph™ (heretofore referred to as SVJedi) and two long-read SV discovery tools with
genotyping-only (a.k.a. “force-calling” or ‘-fc‘) modes: sniffles?!, and cuteSV?%. The average
genotyping concordance of a sample’s kanpig predicted genotypes was 82.1% compared to
74.2% for SVJedi, 67.1% for sniffles-fc, and 63.8% for cuteSV-fc. Measurement of genotyper
performance was repeated across two down-samplings of the reads to 16x and 8x coverage
(Figure 2a). It was observed that lower coverage causes lower genotyping concordance.
Notably, kanpig’s performance at 8x (77.8%) was higher than other tools’ performance at 32x.
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Figure 2 Performance of genotypers on single-sample assembly-derived SVs
across 47 samples. Left side: Genotype concordance a) for three read coverages b) stratified
by SV type of deletion (DEL) and insertion (INS) c) stratified by SV location inside or outside
tandem repeats. Note that left figures have truncated y-axes (50%-90%) for readability. d)
Genotype concordance by number of neighboring SVs within one thousand base pairs (top) and
proportion of SVs by number of neighbors (bottom). e) Average genotype distribution per
sample in the baseline assembly-based variants and for each tool’s result. REF = reference
homozygous, HET = heterozygous, HOM = homozygous alternate, NON = Missing genotype
(./.). All bar plot error bars represent 95% confidence intervals.

The assemblies produced an average of 9,706 deletions and 16,870 insertions
per-sample. Stratifying genotyper performance by SV type found that all tools’ deletion
genotypes had higher concordance than their insertion genotypes (Figure 2b). The best
performing genotyper on deletions was SVJedi at 88.2% average genotype concordance
followed by kanpig at 86.5%. For insertions, kanpig’s 79.5% genotype concordance was much
higher than SVJedi's at 66.1%. Kanpig's performance between SV types had the lowest
imbalance (i.e. difference between deletion and insertion concordance) at 7.0 percentage points
(p.p) compared to 22.1 p.p. for SVJedi, 23.2 p.p. for sniffles-fc, and 20.5 p.p. for cuteSV-fc.
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Another important stratification for SVs is their overlap with tandem repeats since they
harbor ~70% of SVs and pose unique challenges due to their sequence context'®. We found that
kanpig’s genotype concordance on SVs within TRs was 81.7% and 89.0% outside of TRs
(Figure 2c). SVJedi had the second highest performance at 72.4% inside and 78.6% outside of
TRs.

A strong predictor of a genotyper’s ability to correctly assign a genotype was the
presence of neighboring variants since they increase the complexity of the locus being
evaluated. We measured tools' genotyping concordance stratified by variants having neighbors
within 1,000 bp and those without (i.e. isolated) (Figure 2d). In the 49.2% of SVs per-sample
with neighbors, kanpig had the highest average genotyping concordance at 70.9%, followed by
SVJedi at 52.5%, sniffles-fc at 39.9%, and cuteSV-fc at 35.7%. Over the remaining 50.8% of
isolated SVs per-sample, SVJedi had the highest average genotype concordance at 95.0%
followed by sniffles-fc at 93.3%, kanpig at 92.7%, and cuteSV-fc at 91.0%. This suggests that all
tested genotypers perform reasonably well on isolated SVs while kanpig’s ability to correctly
genotype SVs in close proximity to one another differentiates it. The full table of tools’ average
genotyping concordance across samples by coverage, SV type, and overlap with TRs is
available in Supplementary Table 1.

As observed in the GIAB v1.1 SVs described above, there are approximately four times
as many heterozygous SVs as there are homozygous SVs expected in an individual, and
heterozygous SVs more frequently neighbor another SV than homozygous SVs. We next
explored the distributions of genotypes in the assembly-derived SVs to confirm this observation
and assess each tool’s ability to classify both heterozygous and homozygous SVs (Figure 2e).
We first found kanpig’s 3.00 average het/hom ratio per sample is closest to the assembly SVs’
average het/hom ratio of 4.58. The other tools had a stronger bias towards assigning
homozygous genotypes with SVJedi having a het/hom ratio of 1.38, sniffles-fc 1.10, and
cuteSV-fc 1.38. Since every variant assessed in this experiment is known to be present
according to their respective assemblies, any assignment by a genotyper of a reference
homozygous state is an error. Kanpig exhibits the second highest average reference
homozygous error rate at 11.4% behind cuteSV-fc at 16.5%. However, the above genotype
concordance measurements are already penalized for these mistakes and did not prevent
kanpig from recording the highest genotyping concordance. Finally, the highest missingness
rate (i.e. insufficient evidence to assign any genotype: ./.), is from kanpig with an average of
3.5% of variants per-sample while SVJedi is second at 1.2%.

These measures of genotype concordance, het/hom ratio, reference homozygous errors,
and missingness rate suggest that in some stratifications other tools may be able to confirm the
presence of alternate alleles (i.e. recall) slightly better than kanpig. However, kanpig’s
consistently high assignment of correct genotypes (i.e. precision) across all stratifications lead to
a significantly higher overall genotyping accuracy.

Single Sample Discovery Genotyping

Most projects generating SVs will not have access to high-quality assemblies but will
instead discover SVs from raw reads’ alignments using tools such as sniffles*'. SV discovery
tools are susceptible to errors in the form of imperfect variant representations, false negatives,
and false positives, each of which challenges the subsequent use of SV genotypers. To test
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kanpig’s ability to handle errors in the variant graph, we generated SVs on the 47 HPRC 32x
samples using sniffles discovery, genotyped with the tools being tested, and compared results to
the assembly-derived SV set. On average, kanpig’s average genotype concordance on the 32x
coverage experiments was 85.0% compared to 76.2% for SVJedi, and 78.1% for cuteSV-fc.
Since sniffles was used to discover the SVs, we measured both its original discovery genotypes
as well as its force-genotyping modes’ concordance separately at 80.5% and 80.4%,
respectively. In general, the same patterns of genotypers’ relative performance by coverage, SV
type, and TR status hold when analyzing the sniffles-discovery VCF as was seen when
analyzing the assembly-derived VCFs described above (Supplementary Table 2).

In addition to genotype concordance, we measured how the genotypers changed the
precision and recall of present (heterozygous or homozygous alternate) discovered variants. A
perfect genotyper would call all false positives (FP) as reference homozygous - thus ‘removing’
the FP - while preserving a present status on all true positives (TP). Unsurprisingly, sniffles
force-genotyping on the sniffles discovery SVs created the least amount of change with only 23
FPs and 87 TPs genotyped as reference homozygous per-sample. Kanpig removed an average
of 52 FP variants and 206 TPs whereas cuteSV-fc removed an average of 51 FP variants and
745 TP variants. Interestingly, while SVJedi only lost an average of 50 TP variants per-sample, it
also found 63 additional FP variants per-sample. These additional false positives were caused
by discovered variants which originally had poor quality and a reference homozygous genotype
but SVJedi determined the variant was present and therefore created an additional present FP.
Supplementary Table 3 contains a full report of tools’ impact on the average precision and recall
across the 47 samples and on three read coverages of 32x, 16x, and 8x.

Computational Performance

Kanpig was written in Rust in order to achieve high speed and memory safety and is
available under an open source MIT license. Kanpig can be built from source or run with
available statically-linked binaries for POSIX-compliant systems. To test kanpig's speed and
memory usage relative to other genotypers, we first tested each tool's computational
performance on chr1 of a single 12x sample when given only a single core. Of the tools which
operate on a BAM file, kanpig was the fastest and least memory intensive at 93 seconds (s) and
17.6 megabytes (Mb) max resident set size followed by cuteSV-fc at 160s (813.9Mb) and
sniffles-fc at 350s (209.3Mb). SVJedi’'s core code took 7 seconds to run, however it needs
unaligned reads in FASTQ format as input in order to run minigraph? read alignment which took
4.6 hours. For context, pbmm2%, which was used to create the BAM file given to other
genotypers, took 4 hours. All tested genotypers can run using multiple threads and therefore
were also tested when given 16 cores and a whole-genome 20x sample. Again, kanpig was the
fastest at 43s (1.7 gigabytes (Gb) memory) followed by sniffles-fc (56s / 1.3Gb), and cuteSV-fc
(63s / 1.2Gb). SVJedi needed 24Gb of memory and, after discounting the 2h 15m for minigraph
runtime, took 95s.

Multi-Sample SV Genotyping

The input to a genotyper analyzing SVs across multiple samples is a VCF containing SV
discovery results per-sample which have been consolidated to remove redundant SVs between
samples. To test kanpig’s ability to process a multi-sample VCF, we merged the sniffles
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discovery variants on the 47 HPRC samples introduced above and used truvari® to collapse
putatively redundant variant representations of the same type, within 500bp, and 295% similar in
sequence and size (Methods: Data Collection). The initial set of discovered SVs had 561,735
total variants and truvari collapse left 257,323 total variants (54.1% reduction) were input into
the genotypers. Kanpig had the highest genotype concordance to the baseline SVs at 84.9%
followed by SVJedi at 55.4%, cuteSV-fc at 34.1% and sniffles-fc at 33.8%. Furthermore, the
programs’ present SV f1 score (harmonic mean of precision and recall) was 0.948 for kanpig,
0.817 for SVJedi, 0.611 for cuteSV-fc, and 0.605 for sniffles-fc. Details of genotyper
performance on multi-sample discovered SVs are available in Supplementary Table 4.

While kanpig’s multi-sample performance was consistent with its single sample SV
benchmarking, the other tools had a remarkable decrease in genotyping concordance. To
ensure that the processes of SV discovery and SV merging were not confounding factors to
these changes in performance, we took the assembly-derived SVs per-sample and consolidated
them with bcftools merge®. This multi-sample input VCF therefore holds the entire set of
un-manipulated high-confidence SVs. By not merging the SVs before genotyping, the input VCF
contains many highly similar SVs which are entirely valid representations within the context of
their derived assembly but ostensibly redundant representations in the context of multiple
samples®. The consolidated assembly-derived SVs from the 47 HPRC samples contained
403,031 autosomal SVs between 50bp and 10kbp. A total of 371,771 SVs (92.2%) were within
1,000bp of another SV; this included 346,843 (86.0%) within 500bp of another SV of the same
type that was also at least 95% similar in terms of size and sequence.

Kanpig had the highest genotype concordance for the assembly-derived, multi-sample
SVs at an average of 86.6% across samples followed by SVJedi at 42.8% (Table 1). CuteSV-fc
and sniffles-fc had an even lower average genotype concordance of 12.7% and 12.2%,
respectively. The average kanpig genotyped sample had a precision of present SVs
(non-reference homozygous) of 0.973 (mean 598 FPs) while SVJedi had a precision of 0.564
(19,515 FPs). Both cuteSV-fc and sniffles-fc averaged over 100,000 FP SVs per-sample,
dropping their precision to under 0.20. Simultaneously, kanpig maintained a reasonable recall of
0.953, which was lower than the other genotypers which achieved a recall of at least 0.956.
These observations indicated that kanpig was able to maintain a high genotyping concordance
for multi-sample SV genotyping due to having high precision while the other genotypers falsely
applied reads to alternate alleles not present in a sample. Details of genotyper performance on
assembly-derived multi-sample SVs by coverage, SV type, and overlap with TRs are available
in Supplementary Table 5.

Program Concf);rtiance TP-base TP-comp FP FN precision recall f1
kanpig 86.6% 22,671 21,640 598 1,129 0.973 0.953 0.963
SVJedi 42.8% 25,153 25,317 19,515 327 0.564 0.987 0.718

cuteSV-fc 12.8% 22,928 22,981 104,495 1,051 0.180 0.956 0.303
sniffles-fc 12.3% 24,886 24986 121,394 763 0.171 0.970 0.290

Table 1: Multi-Sample SV Genotyping Performance. Average performance of
genotypers across 47 samples when given a multi-sample VCF of assembly-derived SVs and
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32x long-read coverage. SV matching was performed using truvari bench and is detailed in
Methods: Measuring Genotyping Performance.

For both the sniffles discovery/truvari merge SVs and assembly-derived SVs, the
strongest predictor of genotyping concordance was the presence of neighboring SVs (Figure 3).
On the 32x coverage experiments, SVs without neighbors within 1,000bp had high genotyping
concordance between 87.9% (kanpig) and 75.6% (SVJedi) on discovered SVs and between
97.5% (kanpig) and 82.0% (SVJedi) on the assembly-derived SVs. These isolated SVs account
for only 16.5% of the discovered SVs and 7.8% of the assembly-derived SVs. For the remaining
SVs having at least one neighbor, kanpig’'s genotyping concordance was 83.2% on the
discovery-derived SVs and 83.8% on the assembly-derived SVs. The second highest
performing tool was SVJedi with genotyping concordance of 47.1% and 37.3% for discovered
and assembly SVs, respectively. Both sniffles-fc and cuteSV-fc had genotyping concordance
below 25% on SVs with neighbors in the multi-sample VCFs.

a) Discovered SV Genotype Concordance c) Assembly SV Genotype Concordance
100% 100%
° = kanpig e gyjedi == sniffles == cutesv ’

] 80% -

1 60% -

1 40%

1 20% A
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Figure 3 Multi-sample SV genotyping performance. Genotype concordance by
number of neighbors for discovered SVs (a) and assembly-derived SVs from 47 samples (b).
Genotype distribution for discovered (c) and assembly-derived SVs (d). For b & d, the x-axis has
been truncated to 20%-100% for readability. For b, the baseline corresponds to the original
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sniffles discovery genotypes without full genotyping and all missing (*./.’) genotypes assumed to
be reference homozygous. REF = reference homozygous, HET = heterozygous, HOM =
homozygous alternate, NON = Missing genotype (./.). Bar plot error bars represent 95%
confidence intervals.

Analysis of the kanpig results found no evidence of conflicting genotypes from
homozygous SVs overlapping non-reference-homozygous SVs. However, of the 257k
multi-sample discovery SVs, SVJedi had conflicting genotypes from at least one sample for
29.4% of variants, cuteSV-fc had 40.7%, and sniffles-fc had 45.7%. For the multi-sample
assembly-derived SVs, the percent of variants with =1 samples having a conflicting genotype
was again zero from kanpig, 40.5% from SVJedi, 59.1% from cuteSV-fc, and 66.5% from
sniffles-fc. The majority of errors from SVJedi, sniffles-fc, and cuteSV-fc were not from
mis-assignment between heterozygous or homozygous status but instead an inability to assign
a reference-homozygous status to variants which are not present in the sample. To further
illustrate where these genotyping errors arise, we investigated the average genotype state
distribution per-sample (Figures 3c/3d). In the merged assembly-derived VCF, there are
403,031 SVs found across samples. For any one sample, an average of 7% (~28,000) of these
SVs were expected to be present (heterozygous or homozygous alternate). Kanpig genotyped
an average of 7% of SVs as present and 6% as missing. SVJedi genotyped 15% of SVs as
present and 16% as missing while sniffles-fc and cuteSV-fc genotyped 33% and 66% of all SVs
as being present per-sample, respectively, with both producing missingness rates below 1%.

Performance on Nanopore R9/R10 Sequencing

The above experiments were all performed on PacBio HiFi sequencing, which has a
reported read accuracy of ~99%%2. Another available long-read sequencing technology is Oxford
Nanopore Technologies (ONT) which recently released an update to their sequencing chemistry
raising read accuracy from ~96% (R9 chemistry) to ~99% (R10 chemistry)?. To investigate the
ability of kanpig to leverage ONT reads and the impact of read accuracy on genotyping, we ran
3 whole-genome samples with publicly available R9 and R10 replicates having >30x coverage®.
We found that when genotyping the single-sample assembly SVs, kanpig had a mean
genotyping concordance of 77.8% on R9 reads and 80.1% on R10 while SVJedi had 76.9% R9
and 76.1% R10, sniffles-fc 70.8% / 72.3% and cuteSV-fc 70.3% / 71.2%. The comparability of
genotyper performance on ONT and PacBio reads suggests all tools can effectively leverage
both technologies. However, kanpig’s 2.3 p.p drop in concordance using R9 compared to R10
being higher than other tools (second sniffles-fc at 1.5p.p) indicated kanpig is more dependent
on the base-pair level accuracy of reads.

The ONT samples were technical replicates of three of the same individuals in the HPRC
PacBio samples. Therefore, we also checked the ability of genotypers to consistently apply
genotypes to a sample’s assembly-derived SVs across the replicates. The most consistent
genotyper was SVJedi which assigned the correct genotype on all three replicates for 72.2% of
SVs. Second was kanpig which had 62.2% consistently correct SVs while sniffles-fc and
cuteSV-fc had 55.8% and 49.7%, respectively. When considering only the pair of technologies
with higher read accuracy (PacBio HiFi and ONT R10), 72.7% of SVJedi’'s genotypes were
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consistent and concordant, 71.4% of kanpig genotypes, 59.9% for sniffles-fc, and 53.2% for
cuteSV-fc (Supplementary Table 6).

Discussion

Here we presented a detailed description and evaluation of our long-read SV genotyping
tool kanpig. By leveraging high-quality SV benchmarks from multiple samples and testing under
various conditions, we showed kanpig’'s superior accuracy to other genotypers. Our results
demonstrated that kanpig consistently outperforms other long-read SV genotypers across most
stratifications and use cases. Specifically, we found that kanpig more frequently assigns the
correct genotype to nearby (i.e. neighboring) SVs which dominate the SV landscape, particularly
when analyzing SVs across multiple samples. In contrast, other widely used methods frequently
fail in these situations. An ideal genotyping method for SVs should not just try to maximize the
number of SVs present in a sample. This behavior might appear successful for single sample
SV genotyping, but, as demonstrated in this work, will lead to issues such as numerous false
positives and conflicting genotypes when dealing with a population set of SVs. A major flaw of
many SV genotypers is the inability to handle neighboring SVs, which occurs when highly
similar, but still distinct SVs occur in close proximity to one another. Neighboring SVs
predominantly reside within tandem repeats, which are highly polymorphic and contain around
70% of all SVs in the human genome™. If the evaluation of neighboring SVs is improper,
genotypes which produce biologically implausible haplotypes per sample (e.g. three overlapping
deletions in a diploid genome), can be generated, undermining downstream analyses. Kanpig is
able to properly genotype neighboring SVs due to its algorithm evaluating variant graphs
constructed over windows of the genome instead of independently searching for read evidence
supporting each SV. Furthermore, kanpig’s measurement of sequence similarity between
long-reads and paths through the variant graph helps ensure that the single, highest scoring,
optimal path through multiple SVs is chosen.

Part of the reason the limitations of other SV genotypers went unnoticed is due to the
choice of baseline SVs against which the tools were benchmarked. The GIAB v0.6 SV
benchmark has been instrumental in advancing SV discovery algorithms. However,
contemporary understanding of SV prevalence and composition highlights the need for more
sophisticated benchmarks such as GIAB v1.1 SVs and the HPRC assemblies'®. As we showed,
this benchmark has ~2.5x more SVs, including ~43% within 1,000 bp of another SV, and a
het/hom ratio of ~4. Additionally, the HPRC assemblies - which comprise 47 genetically diverse
individuals - supported the increased variant count of ~26 thousand SVs between 50bp-10kbp
and ~4 het/hom ratio per-sample. Not only was kanpig able to achieve the best genotyping
concordance on these high-confidence benchmarks, but we also showed kanpig’s ability to
accurately genotype discovered SVs from sniffles. While this manuscript only reports test results
using sniffles discovery VCFs, kanpig is able to process any compliant VCF with SVs having
accurate breakpoints and full allele sequences (i.e. non-symbolic alleles), which are routinely
produced by many long-read SV discovery tools.

We benchmarked kanpig’s accuracy when given PacBio HiFi and ONT R9 and R10 to
demonstrate its utility across multiple long-read technologies. However, SV genotypers are not
only reliant on sequencing technology but also the quality of the provided input SV’s description
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since genotypers are designed to investigate the postulated SVs. Interestingly, kanpig’s
precision in applying sequencing to SVs' variant graphs was able to reduce the number of
falsely discovered SVs while maintaining a high recall, thus, improving not only the calls’
genotypes but also the set of SVs reported per-sample. This is dependent on the information a
SV caller provides in terms of accurate and complete allele descriptions. In addition to
sequencing technology and SV discovery tools, SV genotyping of multi-sample projects such as
pedigrees or populations is also dependent on the SV merging strategy employed. We
previously outlined the causes and consequences of over and under merging SVs and
implemented our findings in truvari®. Alternative methods of SV merging can be utilized to create
inputs to kanpig, but researchers need to be aware that over or under merging will impact the
performance of not only the SV genotyping methodology but all subsequent analysis.

Any bioinformatics tool designed to assist genomics researchers must undergo
continuous development and maintenance. While the version of kanpig presented here can
immediately begin serving researchers, future development can implement further
improvements. Currently, kanpig is limited to parsing continuous alignments and does not
leverage the split or clipped alignment signals that typically occur around larger SVs. As a
result, kanpig is currently applicable to variants smaller than the read length. Future versions of
kanpig should be able to incorporate split/clipped alignments to better genotype SVs larger than
~10kbp. Furthermore, kanpig currently requires long-read alignments to span the neighborhood
of variants in each locus's variant graph. However, a future implementation of kanpig could
potentially relax this requirement by applying partial alignments to their corresponding subgraph,
thereby increasing kanpig's sensitivity, particularly in low-coverage scenarios. Though this will
require careful design to ensure there is no regression in kanpig’s accuracy when genotyping
neighboring SVs.

In conclusion, we have described kanpig, a novel SV genotyper, and the potential
impacts of improved SV genotyping to SV research. The results presented here on
high-confidence benchmarks and other datasets should promote rapid adoption of kanpig for
at-scale SV studies, thus improving the reliability of population SV results and potentially
contributing to novel findings in biological and clinical research.

Methods

Kanpig Algorithm

K-mer Vectors

Let n be the set of nucleotides n = {A, G, C, T} and the function E be the two-bit encoding
of each element of n such that A=6; G=1; C=2; T=3. Let S be a string of nucleotides with
length 1 such that S = n,, n; n,  n;. Ak-merK of size k is a substring of S beginning at
0-based position i and defined as K,;(S) = n;, Ny, ..N. . K-mer vectors (V) hold the
counts of all K(S). Each possible k-mer combination of n can map to a unique index p of a
conceptual array V with size |n|*. The index p of K., can be calculated using a left bitshift
operation (<<) and the formula:
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EQ1: p = 2icfe.0 [ E(Si) << ((k-1-1)-2) ]
As an example, p of the first 3-mer for the sequence “CAGT” is:
(2 << (2°2)) + (B << (1-2)) + (1 << (©:2)) = binary 100001 = 33
V, is then incremented. Next, for every n from S, ;, we alter p via
Eq2: p = ((m & p) << 2) + E(S,)

This operation updates p by first masking (m) the two leftmost bits, left-shifting the remaining bits
twice, and adding the current nucleotide’s encoding before again incrementing V,. For the
example sequence “CAGT”, the second 3-mer’s p is 7 (binary 000111).

Vector comparison

The similarity of two k-mer vectors can be calculated using the Canberra distance
function

Eq3: SZ(p,q) = 1 - 2ice.my IP: = Q| /7 (lpil + 1a:il)

To limit the impact of small sequencing errors, infrequent k-mers (|p;| + |qg;| <

minkfreq) are excluded from Eq3. By default, kanpig sets minkfreq to 1, but this threshold can
be set by users via a parameter.
In addition to comparing the k-mer vectors’ sequence similarity, the size similarity of two vectors
associated with insertion or deletion variants can be compared by separately recording the
length of their variants. Deletions constitute a removal of sequence and are thus negative in
length whereas insertions add sequence and are thus positive in length. Two vectors’
associated lengths must be of the same sign (e.g. two deletions would both have negative size)
to be compared and their size similarity is calculated as

Eq4: SS(p,q) = min(length(p), length(q)) / max(length(p), length(q))

The thresholds for minimum size and sequence similarity needed for two vectors to be
considered defaults to 0.90 and can be set by users via a parameter..

Variant Graph Construction

A variant call format file (VCF) containing full alleles (REF and ALT sequence) is parsed
and partitioned into chunks of variants which are within --chunksize distance from one
another. This creates sets of variants where the distance between the upstream-most variant’s
start position and the downstream-most variant’s end position is at least --chunksize base
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pairs away from any other variant on the same chromosome. A directed graph is constructed
with nodes representing each variant and edges linking variants to all non-overlapping
downstream variants. A source node upstream of all variants is added to the graph with edges
to all variants as well as a sink node downstream with edges from all variants. During
conversion of variants into nodes, the reference and alternate sequences are stored as a k-mer
vector V(ALT)-V(REF). Additionally, the length of the variant’s described change is recorded

as length(ALT)-1length(REF).

Pileup Generation

For each independent variant graph, read alignments from a BAM file over the graph’s
region are parsed. Primary alignments which fully span the region and have above a minimum
mapping quality are then piled up to identify insertion and deletion variants within a
parameterized size range. Both minimum mapping quality and minimum/maximum size are user
parameters with defaults of 5 and 20/10,000, respectively. Each variant’s sequence is converted
into a k-mer vector and size is recorded. Reads with identical sets of pileup variants are
consolidated and total coverage recorded.

Haplotype Creation

The set of pileup variants for each read is then summed to create all putative haplotypes’
k-mer vectors as well as the total size of changes relative to the reference. Putative haplotypes
are then grouped with k-means clustering (using k=2) on the k-mer vectors to identify up to two
alternate allele haplotypes. For each resultant cluster, the highest covered alternate allele is
chosen as the representative for the haplotype. If only one alternate haplotype is identified, the
proportions of alternate and reference homozygous read coverage are analyzed (see Methods:
Genotyping and Annotation) to identify if the cluster is homozygous alternate or heterozygous. If
two clusters are identified, kanpig first compares the size similarity of the two alternate
haplotypes and if they are above a threshold ‘hapsim’ they are consolidated and het/hom-alt
genotyping performed. Otherwise, the two alternate haplotypes are considered a compound
heterozygous pair of alleles and returned to be applied to the variant graph.

Applying a Haplotype to a Variant Graph

Given a haplotype and variant graph from a region of the reference, kanpig searches for
the path through the variant graph that maximizes the score of the haplotype and path’s
similarity. First, a breadth first search starts at the source node and traverses each outgoing
edge to create paths to the neighboring nodes. These in-progress paths are pushed to a binary
min-heap which prioritizes in-progress paths with lengths more similar to the target haplotype’s
size. Kanpig then iteratively analyzes the highest priority paths with the same breadth first
search by creating new paths which are extensions of the current path with the head node’s
outgoing neighbors. When an edge points to the sink node, kanpig then sums the paths’ variant
nodes k-mer vectors and size. Only paths with size and sequence similarity above the user
provided minimum thresholds are kept. To allow for false-negatives in the variant graph, when
comparing a path to the haplotype, kanpig allows pileup variants in the haplotype to be skipped
when summing haplotype k-mer vectors and size (default maximum 3). To account for
split-variant representations in the scoring, e.g. the read evidence in the haplotypes suggests
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two 50bp deletions while the variant graph holds a 100bp deletion. A penalty is incurred for
every non-1-to-1 pileup to variant. The algorithm ends its search when either all possible paths
have been checked or a user-defined parameter of maximum number of complete paths (default
1000) have been checked.

Eq5: Score(P, H) = ((SS(P,H) + SZ(P,H)) / 2) - (Ag-|L(P)-L(H)|) -
(Af-N)

The kanpig scoring function for a path and haplotype is in Eq5 where P and H are the
path and haplotype, respectively, SS is the sequence similarity defined in Eq3, SZ is the size
similarity defined in Eq4. The L function measures the length in nodes of a path or number of
pileups which comprise a haplotype. The variable N is the number of false-negative (i.e.
skipped) pileups. The penalty Ag for split-variant representations defaults to 0.01 while the
penalty AT for false-negatives defaults to 0.10 and both can be set with user-defined
parameters.

Genotyping and Annotations

For each variant, the above processes have collected the count of reads supporting the
presence of a variant’s alternate allele. The number of reads not supporting the alternate allele’s
presence (either reads supporting a second alternate allele or the reference allele) have also
been collected. The ratios of reads supporting the presence and absence of a variant’s alternate
are then analyzed to determine the variant’s diploid genotype using the same bayesian formula
as Chian et.al. 8 This formula leverages three priors of allele coverage ratios for reference
homozygous, heterozygous, and homozygous alternate read proportions. Kanpig sets these
priors to 1e-3, 0.55, and 0.95 for loci with less than 10x coverage and 1e-3, 0.50, 0.90 for loci
with at least 10x coverage. The conditional probability of each genotype state given the priors is
then calculated and the most likely state assigned. These derived likelihoods are then leveraged
to calculate a genotype quality score (confidence in the assigned genotype state) and sample
quality score (confidence that the alternate allele is present in any genotype state). Genotype
quality score is derived as -10 multiplied by the absolute difference of the second most likely
genotype state and most likely genotype state. Sample quality score is derived as -10 multiplied
by the absolute difference of the reference homozygous likelihood and the log10 sum of the
heterozygous and homozygous alternate likelihoods. Both genotype and sample quality scores
range from O (lowest quality) to an artificial cap of 100 (highest quality).

In addition to the genotype, genotype quality score, and sample quality score, kanpig will
record additional annotations to each variant. These include two common genotyping
annotations of depth (DP: total number of reads from a locus analyzed to evaluate this variant)
and alternate depth (AD: how many reads from DP support the reference allele and alternate
allele). The score described in Eq5 of the haplotypes created for a locus to the final chosen
paths through the variant graph are reported as well as a phase-set (PS) unique identifier which
annotates the set of variants that comprise each independent variant graph.

Finally, a filter flag (FT) is populated as a bit-flag with states to assist users in filtering
genotypes. A flag of 0 can be considered passing. The bits are defined as: 0x1 - The genotype
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observed from variants matching paths is not equal to the genotype observed from measuring
the proportions of reads supporting the two alleles; 0x2 - the genotype quality score is less than
5; Ox4 - the observed coverage is less than 5; 0x8 - the sample quality score is below five for a
non-reference-homozygous variants; 0x16 - the alternate allele supporting coverage is below 5;
0x32 - the highest scoring path didn't use the entire haplotype, which may suggest a
false-negative in the variant graph relative to the read evidence.

Data Collection

HPRC assemblies and PacBio CCS reads were downloaded from the HPRC AnVIL
workspace [A]. Only samples in the assembly_sample table were considered. CCS reads
were downloaded from column hifi of the sample table, after removing duplicated entries
among the BAM and FASTQ files in each cell. For each sample, reads were subset to a desired
coverage as follows. Given a list of source files, the list was randomly permuted. For each file in
the permuted order, the file was converted to FASTQ if it was a BAM (using samtools fastq),
and it was appended to a growing FASTQ, until a desired total number of bases was reached or
exceeded (measured with segkit stats). Then the FASTQ was randomly permuted (using
terashuf [B]), and the prefix that achieved the desired number of bases was kept. ONT reads
were downloaded from a CARD Google Cloud Bucket [E]. Specifically, we downloaded the
fastq.gz files from directories X/reads/ (R9 reads) and X_R16/reads/ (R10 reads) for
every sample X, and we downsampled such files as described above.

Given each high-quality assembly and the GRCh38 reference, dipcall was run with
default parameters, and multiallelic records were removed from its output using bcftools
norm --multiallelics -. Finally, only INS and DEL events of length at least 50 bp and
with a FILTER field equal to PASS or . were kept. To assess the expected quality of the
assembly-derived SVs, truvari bench and then truvari refine was run to compare the HG002

assembly SVs to GIAB v1.1 " using default parameters and a bed file that was the intersection
of the GIAB v1.1 high-confidence regions and the dipcall high-confidence regions. The
multi-sample dipcall VCF was created by performing a bcftools merge of all the
single-sample dipcall VCFs, followed by a final bcftools norm --multiallelics - to
remove any remaining multiallelic records.

PacBio CCS reads at each coverage were mapped to GRCh38 with pbmm2 align
--preset CCS using ppbmm2 1.13.0 [C]. Single-sample discovery VCFs were created by
running Sniffles 2.3.3 [I] in discovery mode on the 32x CCS BAM of each sample, using default
parameters and the tandem repeat track from [D]. The resulting VCFs were then cleaned as
follows. BND and CNV records were removed, as well as symbolic INS. The ALT sequence of
every symbolic DEL and INV was filled in using the reference, and every DUP was converted
into an INS located at the same start position. SVLEN fields were made consistent with REF
and ALT fields, and calls longer than 1Mb were removed. The multi-sample discovery VCF was
created by running bcftools merge --merge none over all the cleaned single-sample
VCFs, followed by the following truvari v4.2.2 command:
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truvari collapse --sizemin @ --sizemax 1000000 --keep common --gt all

ONT reads were mapped to GRCh38 using minimap2 [F] v2.28 with parameters -ayYL
--MD --egx --cs, and specifying -x map-ont for R9 reads and -x 1r:hq for R10 reads.

Long-read genotypers were run as follows. Sniffles 2.3.3 [I] was run in genotyping mode
(--genotype-vcT) with default parameters. cuteSV 2.1.1 [G] was run with the following flags,
derived from its command-line help. For CCS reads:

--max_cluster_bias_INS 1000 --diff_ratio_merging_INS 0.9
--max_cluster_bias_DEL 1000 --diff_ratio_merging_DEL 0.5
--merge_ins_threshold 500 --merge_del_threshold 500 --min_support
1

For ONT reads:

--max_cluster_bias_INS 100 --diff_ratio_merging_INS 6.3
--max_cluster_bias_DEL 100 --diff_ratio_merging_DEL 0.3
--merge_ins_threshold 500 --merge_del_threshold 500

SVJedi-graph 1.2.1 [H] was run with --minsupport 1 and all other parameters set to default.
Kanpig 0.3.1 was run with a GRCh38 ploidy BED file and with the following parameters for
single-sample VCFs:

--sizemin 20 --sizemax 10000 --chunksize 1000 --gpenalty 0.02
--hapsim 0.9999 --sizesim 0.90 --seqgsim 0.85 --maxpaths 10000

and with the following parameters for multi-sample VCFs:

--sizemin 50 --sizemax 10000 --chunksize 500 --gpenalty 0.04 --hapsim
0.97

We tested LRcaller 1.0 [L] on three pairs of 32x CCS BAM and single-sample discovery VCFs,
but it got killed by the OS on a cloud VM with 128GB of RAM, so we excluded it from the
analysis.

[A] https://anvil.terra.bio/#workspaces/anvil-datastorage/AnVIL_HPRC/data
[B] https://github.com/alexandres/terashuf

[C] https://github.com/PacificBiosciences/pbmm2
[D] https://github.com/PacificBiosciences/pbsv/tree/master/annotations

(E]
https://console.cloud.google.com/storage/browser/fc-46bf051e-aec3-4adb-8178-3c51bc5e64ae;
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tab=objects?authuser=0&pageState=(%22StorageObjectListTable%22:(%22{%22:%22%255B%

255D%22))&pli=1&prefix=&forceOnObjectsSortingFiltering=false

[F] https://qithub.com/Ih3/minimap2
[G] https://github.com/tjiangHIT/cuteSV commit

9baddecbh32cfbdfbea95be895d0b4edbb6cd17fe2

[H] https://github.com/Sandral ouise/SVJedi-graph
[1] hitps://github.com/fritzsedlazeck/Sniffl

[L] hitps://github.com/DecodeGenetics/LRcaller

Measuring Genotyping Performance

For the single-sample benchmarking experiments on the assembly-derived variants, SVs
between 50bp and 10,000bp from the original VCF and genotyped VCF were merged using
bcftools merge -m none before the baseline and predicted genotypes were compared.
Phase information was ignored e.g. 1|0 is equal to 0|1. SVs on autosomes and with start and
ends within dipcall’'s reported high-confidence regions were then counted. SVs genotyped as
missing (e.g. ./.) were counted separately from the total number of calls and genotype
concordance was calculated as the number of matching genotypes over total number of calls.

For all other benchmarking experiments, the assembly-derived variants were matched to
the genotyped variants using truvari v4.2.2 and the parameters bench --pick ac --no-ref
a --sizemin 50 --sizemax 10000 along with dipcall’s high-confidence regions as the
--includebed. The ‘pick ac’ parameter leverages a call’'s genotype to determine in how many
matches it is allowed to participate. For example, if a genotyper assigns a homozygous status to
a variant, its allele count (ac) is two and can therefore match up to two baseline variants. The
‘no-ref a’ parameter ignores variants with a missing or reference homozygous status in the
baseline or comparison VCFs. Every genotyped variant with a match and a truvari annotation of
GTMatch=0 had an equal baseline genotype and was classified as having a consistent
genotype. Every matched variant but with GTMatch != 0 and every unmatched (i.e. false
positive) genotyped variant was classified as having an inconsistent genotype. Genotyping
concordance is therefore defined as the percent of present calls (heterozygous or homozygous
alternate) from the genotyper with a matching variant and matching genotype in the
assembly-derived variants.

Stratification of genotyper performance by overlap with tandem repeats was performed
by subsetting the adotto TR catalog v1.2*° to TR regions contained entirely within an assembly’s
dipcall autosomal high confidence regions and only counting an SV as within TR if its start and
end boundaries occur within a single TR region. Stratification of genotyper performance by
number of neighbors was performed by running truvari anno numneigh which annotates
an INFO field ‘NumNeighbors’ indicating the number of SVs within 1,000bp for each variant
inside the genotyped VCF.

Measuring Computational Performance

To measure the single-core performance of each tool, we used as input the subset of a
12x CCS HGO002 BAM and the subset of the 32x CCS HGO002 discovery VCF that relates to

chromosome 1 (we used samtools view to subset the BAM, samtools fastq to get a


https://console.cloud.google.com/storage/browser/fc-46bf051e-aec3-4adb-8178-3c51bc5e64ae;tab=objects?authuser=0&pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&pli=1&prefix=&forceOnObjectsSortingFiltering=false
https://console.cloud.google.com/storage/browser/fc-46bf051e-aec3-4adb-8178-3c51bc5e64ae;tab=objects?authuser=0&pageState=(%22StorageObjectListTable%22:(%22f%22:%22%255B%255D%22))&pli=1&prefix=&forceOnObjectsSortingFiltering=false
https://github.com/lh3/minimap2
https://github.com/tjiangHIT/cuteSV
https://github.com/SandraLouise/SVJedi-graph
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corresponding FASTQ for SVJedi-graph, and bcftools view to subset the VCF). We used
only chromosome 1 as the reference. We set the number of threads to one on the command line
of each tool, and we pinned each tool to the fifth logical core of our machine with the taskset
command. We measured wall clock time and maximum resident set size with /usr/bin/time
(specifically, we timed a set of five iterations of each program, we divided the runtime measure
by five and we used the max RSS measure as it is). For minigraph, we used the "Real time" and
"Peak RSS" measures that were printed in output.

To measure performance under a typical workload, we ran each tool on a 20x CCS
HG002 BAM and on the 32x CCS HGO002 discovery VCF over the entire genome, setting the
number of threads to 16 on the command line of each tool, and pinning each tool to logical
cores 8-23 (all located on the same processor). We ran SVJedi-graph and pbmm2 just once in
this experiment.

All experiments were run on a Ubuntu 20.04.4 LTS server (kernel 5.4.0) with two AMD
Epyc 7513 processors (64 physical cores in total), 500 GB of RAM, and an NVMe SSD disk. No
other user or major task was active.

Contributions

AE designed the project and implemented kanpig. AE and FC conducted the analysis. AE, FC,
GM, RG, and FS wrote the manuscript.

Code availability

Kanpig is available under an MIT license at https://github.com/ACEnglish/kanpig. Analysis
scripts and pipelines used to create and summarize the results presented here are available in

the github repository https://github.com/fabio-cunial/kanpig_experiments/.
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