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Abstract

Compartmentalization is vital for cell biological processes. The field of rule-based stochastic

simulation has acknowledged this, and many tools and methods have capabilities for

compartmentalization. However, mostly, this is limited to a static compartmental hierarchy

and does not integrate compartmental changes. Integrating compartmental dynamics is

challenging for the design of the modeling language and the simulation engine. The lan-

guage should support a concise yet flexible modeling of compartmental dynamics. Our work

is based on ML-Rules, a rule-based language for multi-level cell biological modeling that

supports a wide variety of compartmental dynamics, whose syntax we slightly adapt. To

develop an efficient simulation engine for compartmental dynamics, we combine specific

data structures and new and existing algorithms and implement them in the Rust program-

ming language. We evaluate the concept and implementation using two case studies from

existing cell-biological models. The execution of these models outperforms previous simula-

tions of ML-Rules by two orders of magnitude. Finally, we present a prototype of a WebAs-

sembly-based implementation to allow for a low barrier of entry when exploring the

language and associated models without the need for local installation.

1 Introduction

Compartmentalization is a central aspect of cell biological systems [1]. Modeling such systems

as interrelated compartments in and between which processes occur allows approximating the

system structure and its effect on the processes. To include the causal influence of compart-

ments on the processes, it suffices to support static compartments, that is, compartments that

do not change. However, to account for the causal influence of the occurring processes on the

compartmental structure and interactions, the model must support dynamic compartments.
This includes the creation of new compartments, their deletion, merging, and splitting of com-

partments, as well as one compartment entering or leaving another (Fig 1).

The reciprocal influence of compartments and the processes that occur in and between

them can be observed in many cell biological systems. For example, the life cycle of a cell can

be modeled as intracellular processes affecting cell growth, ultimately leading to cell division
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[2]. Intercellular communication in cell populations affects the intracellular behavior of indi-

vidual cells. Signaling pathways include intracellular compartmental processes such as endocy-

tosis or the transfection of lipoplexes. Although such processes can sometimes be

approximated with static compartments, dynamic compartments are the natural method for

precise and expressive models.

Several modeling approaches that support dynamic compartments have been proposed in

the past [3–6]. However, in contrast to approaches limited to static compartments, running

simulations for these modeling approaches proved too computationally challenging for usage

in relevant biological applications. In fact, some of the approaches developed were never

equipped with a (publicly available) simulator implementation.

In the following, we present an approach that overcomes these performance problems and

makes dynamic compartments feasible for studying cellular processes. In particular, our con-

tributions are:

• an analysis of rule-based language design choices on efficiently executing dynamic

compartments,

• an analysis of execution requirements for an expressive rule-based language, such as

ML-Rules, which allows compact and expressive specifications of models with dynamic

compartments [7],

• a design of a new efficient stochastic simulation algorithm tailored to models with dynamic

compartments combining various algorithms with code generation,

• an implementation of a new modeling and simulation tool ML-Rules 3 in Rust based on the

new efficient stochastic simulation algorithm, and slight adaptations in comparison to earlier

implementations of ML-Rules; the latter includes syntactic enhancements to improve usabil-

ity, like type checking of units of measurements, and a new type of attributes to facilitate effi-

cient simulation,

• a realization of a WebAssembly-based web simulation tool at http://mlrules.pages.dev to

enable simple deployment of the tool,

• and an evaluation of the expressiveness and performance of ML-Rules 3 based on case stud-

ies from cell biology, including an mRNA delivery model, where based on dynamic compart-

ments, due to ML-Rules 3, now closer matches to biological results become possible.

1.1 Compartmental dynamics

Cell biology considers compartments essential elements of cell behavior [8]. Compartments

affect cellular processes by controlling both the reactions that can occur and the rate at which

they do. They are considered important to modeling signaling pathways, in which extracellular

ligands trigger a cascade of biochemical reactions that span various cellular compartments,

such as membrane, cytosol, and nucleus [9]. A prominent example is the canonical Wnt/β-

catenin signaling pathway, which is essential for cellular functions such as proliferation and

differentiation and is involved in several diseases, including cancer [10]. In the last 20 years,

more than 20 quantitative models have been built to analyze the Wnt/β-catenin signaling path-

way [11]. Many of these models express the causal influence of compartments on processes,

e.g., constrain processes to specific compartments or study proteins shuttling between com-

partments [12, 13]. Also, the volume of the compartment may influence the reactants’ density

and, consequently, the kinetics within the different compartments [9, 14]. Compartmental
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Fig 1. Examples of compartmental dynamics in cell biology. The figure shows a sketch of the processes, the specification in

ML-Rules 3, and the n-ary tree structure of the term rewriting that underlies ML-Rules interpretation. The red lines in the n-ary

tree structure indicate structures that are changed during the reaction. For the rules, we use the ML-Rules notation. The left side

is transformed (using the!) into the right side at a rate (following the @ symbol). The {} denote nesting relationships. (a)

Fission and fusion of compartments: A large mitochondrium can divide into two smaller ones, whereby its content (here ?M1
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constraints on reactions are supported by most simulation tools and standardized modeling

exchange formats such as SBML [14].

Considering dynamic compartments opens up new possibilities. Treating compartments as

regular species with attributes enables causal effects between compartments and of the

compartmentalization on underlying processes, called downward causation [6]. Causality also

occurs in the opposite direction— intra-compartmental dynamics can influence the compart-

mental level, including its attributes such as volume. This upward causation can also result in

changes to the compartmental structure, such as fission and fusion, or the creation and dele-

tion of compartments.

The changes in the compartmental hierarchy occur during the simulation execution. There-

fore, they have been called dynamic compartments [15]. Dynamic compartments are one form

of variable structure model [16] and might occur at and involve various levels of cellular orga-

nization [6]. Signaling interactions within multi-cellular populations synchronize and organize

the individual cells’ behavior in dynamic processes such as tumor growth [17] or morphogene-

sis [18]. Cell proliferation, migration, and differentiation are regulated by several signaling

pathways, which again react to changes in the cells’ environment. Dynamic compartments are

also necessary for intracellular dynamics; during the last decades, it became evident that a

static view of intracellular compartments does not suffice [8]. The internalization of receptors

is crucial in regulating signaling pathways [19]. Receptors are sorted into different endosomal

compartments when entering the endocytic pathway. To accomplish this sorting, the organ-

elles undergo frequent compartmental dynamics such as maturation, transformation, fusion,

fission, and degradation [20]. More recently, the development of mRNA vaccinations has

increased the interest in studying liposomal dynamics [21] and its modeling [22] to provide

effective drug delivery systems.

Compartmental dynamics take on various forms, as also discussed in [23] and modeling

approaches such as Bioambients [3], Brane Calculi [24], or BetaBinders [25], including a) the

fission and fusion processes of compartments, as in the case of mitochondria [26] (Fig 1a), b)

the formation and disintegration of cellular compartments, as in the case of liposomal dynam-

ics [27] (Fig 1b), and c) a compartment entering or leaving another compartment, as in the

case of a viral entry or release [28] (Fig 1c).

1.2 Stochastic simulation

To simulate these compartmental dynamics, we will interpret compartments as discrete enti-

ties. We assume that the discrete compartments can be arbitrarily nested, that entities can exist

within and outside of compartments, that compartmental dynamics rely on the explicit defini-

tion of reactions, and that the reactants are well-mixed within and outside of each

compartment.

Based on these assumptions, adopting stochastic simulation algorithms (SSA), popularized

under the term of Gillespie algorithms [29], appears most appropriate. These algorithms can

be formalized using Continuous-Time Markov Chains (CTMCs) [30]. In CTMCs, the distri-

butions for the waiting time until the next state transition and the successor state only depend

on the current state. The sojourn time in a state is exponentially distributed, similar to a

and ?M2) is distributed between the two new mitochondria. Two mitochondria can also fuse into a large one containing the

solution of both smaller ones. (b) Creation and removal of compartments: During the endocytosis of the lipoplex, an endosome

is formed around it. Inside the cell, the lipoplex can unpack its content (?L) into the cell. (c) Shuttling of compartments: A virus

carrying DNA or RNA can enter a cell. New viruses produced in the cell can level it and spread.

https://doi.org/10.1371/journal.pone.0312813.g001
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physical decay process. The propensity is the expected rate of firing for a particular transition,

given a specific model state. Each potential transition i between states in the CTMC has a pro-

pensity pi.
In the direct method family of methods [31], a timestep is sampled using the exponential

distribution. The total propensity sum ∑ipi is used as the rate parameter of the exponential dis-

tribution. The reaction is selected by weighted random choice (PðiÞ pi). The first reaction fam-

ily of methods [29] computes a time for every possible reaction by sampling from the

exponential distribution (with the respective pis) and then selecting the smallest one. Both

original approaches are wasteful, as many computations might be needlessly redone. Major

performance benefits result from storing results, such as propensities [32] or the time of the

next event of a reaction [33], and updating this information on demand. For this update on

demand, a dependency graph stores the dependencies between reactions and the associated

propensities. The next reaction method [33] builds on the first reaction method and maintains

a schedule of reactions and the time they will occur. After a reaction is executed, based on the

dependency graph, the affected reactions are rescheduled. Another approach builds on the

direct method, stores the propensities of reactions, and, based on the dependency graph,

updates the affected propensities in each step [32].

1.3 Rule-based modeling and compartments

The modeler enumerates all possible species and reactions in species reaction models. This

modeling approach is limited when dealing with complex systems, like proteins involving mul-

tiple binding sites, as the number of possible species and reactions can grow exponentially in

these cases [34]. The fundamental idea of rule-based modeling (combined with CTMC seman-

tics) is to use rewriting rules to specify transition classes of a CTMC. The left side of a rewriting

rule specifies the reactants and their context as a pattern matched to the current state. Using

patterns, a single rule can express a large set of reactions, which can be parametrized with the

variables matched in the pattern. The patterns on the left rule side constrain the reactants par-

ticipating in a reaction, for example, a pattern like A(x) + B(x)! . . . expresses that one entity

A and one entity B can only react if they share an attribute value x. Each successful match con-

tributes one transition within the CTMC. The rewriting rule is annotated with a rate expres-

sion, which is evaluated based on the left side’s match. This can include factoring mass action

kinetics into the transition rate (based on the multiplicities of the reactants) as well as employ-

ing attribute values of the reactants or their context. The successor state of the resulting transi-

tion is computed by applying the rewriting operation: removing the reactants and adding the

products.

Including dynamic compartments poses a challenge to rule-based modeling languages.

Languages like Kappa [35, 36] or BNGL (as part of BioNetGen) [37, 38], for example, are

based on graph rewriting rules. Their focus is on modeling interacting entities between which

bonds are created and destroyed. Bonds are defined for exactly two entities, which precludes

using them to express compartments. Static compartments can be integrated [9, 39]. They are

used to restrict the scope within which a reaction takes place. Shuttling of simple (or bound)

molecules between static compartments as they are commonly supported also by the modeling

standards [14], can be easily expressed, e.g., by Protein@Cytosol! Protein@Nucleus in Bio-

NetGen. However, here, neither the cytosol nor the nucleus forms a species and, as such, a

potential reactant or product of a rule or reaction.

Dynamic compartments can be expressed using graph rewriting when extending the for-

malism with hyperedges. Hyperedges are those that can connect to more than two vertices.

This approach is used in the modeling formalism React(C) [4]. Here, a compartment can be
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denoted by a hyperedge, which can join any number of entities. In addition, the compartment

itself can be represented as a species. The following rule describes a cell containing a nucleus

and a protein that shuttles into the nucleus (Fig 1c):

CellðcÞ þ Nucleusðn; cÞ þ ProteinðcÞ ! CellðcÞ þ Nucleusðn; cÞ þ ProteinðnÞ :

Note that the containment relation is expressed purely via variables c and n, identifying the cell

and nucleus as a compartment (hyperedge). So the values of the variables c and n are identifiers

for the respective compartments and as such unique. Entities not affected by the rule can be

omitted on both rule sides, Therefore, we could have omitted Cell(c). However, this would

have made it harder to understand the role of the value of variable c.
In the approaches based on hypergraphs, new compartments can be created by introducing

new, unused (“fresh”) values for variables on the right side. Similar solutions to model

dynamic compartments can be found in process algebras, e.g., the attributed PI calculus [40].

The following rule expresses the fission of an organelle, with the ν operator yielding fresh val-

ues (identifiers) for the two new cells, i.e., c1 and c2:

CellðcÞ ! ðnc1; c2ÞCellðc1Þ þ Cellðc2Þ

However, this cell fission example also shows a fundamental problem with the hypergraph

approach: the effects on the contained entities can not be modeled as easily as the effect on the

compartments. In the above reaction, all entities referencing the value of c as their containing

compartment need to be updated to either c1 or c2. Also the fusion of compartments

Cellðc1Þ þ Cellðc2Þ ! ðncÞCellðcÞ

would require that all entities referencing the values c1 and c2 would now need to reference c.
These changes can be expressed with workarounds, for example, by defining intermediate

states and additional rules for each species contained within the original compartment, with

infinite propensities, but this clutters the model description and is computationally rather

expensive. An additional problem with the extension of graph rewriting to hypergraphs is that

finding occurrences of the left rule side in the current state is harder. Whereas graph rewriting

can exploit some properties (e.g., Kappa exploits “rigidity” [41]) to speed up this process, simi-

lar optimizations for hypergraphs are not known. As a consequence, no simulation tool based

on hypergraph rewriting has been published. In particular, no simulator for React(C) is

available.

An alternative approach to graph rewriting is multiset rewriting, a special case of term

rewriting [42, 43]. Here, the containment in compartments is structurally equivialent to an n-

ary trees (see also Fig 1). Therefore, they can be expressed as terms with a variadic function

symbol or, equivalently, an associative and commutative function symbol for forming multi-

sets [44, 45]. The contents of a compartmental entity can then be represented by a multiset,

usually denoted with the symbol + or, in infix notation. The protein movement rule above

(Fig 1c) can be written as

CellðNucleusð?nÞ þ Proteinþ ?cÞ ! CellðNucleusðProteinþ ?nÞ þ ?cÞ ;

where ?c captures the remaining multiset within the cell after finding a nucleus and a protein

in a cell, and ?n captures the contents of the nucleus. These variables starting with ? (called

“sequence variables” in the rewriting literature [46]) play a central role, as they denote the enti-

ties unaffected by a rule and allow operations on those multisets of entities, i.e., the content of

the compartments [47]. One line of work that very closely follows the idea of multiset rewriting
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is Colored Stochastic Multilevel Multiset Rewriting (CSMMR) [5, 48]; another is ML-Rules

[6, 49].

In multi-set rewriting, the cell fission rule could be written as

Cð?cÞ ! Cð?c1Þ þ Cð?c2Þ where ð?c1; ?c2Þ ¼ splitHalf ð?cÞ ;

binding the result of the function splitHalf to a pair of variables in a where block [47]. In the

syntax of CSMMR, the rule would read as

CðxÞ ! letðz; yÞ ¼ x in CðzÞ þ CðyÞ :

In the syntax of ML-Rules 3, the operator “+” is overloaded to realize an inline function on cell

content, which randomly assigns each element of C to bind either to the sequence variable ?c1

or ?c2, i.e.,

Cð?c1 þ ?c2Þ ! Cð?c1Þ þ Cð?c2Þ

(see Fig 1a). In some biological processes, fission events occur asymmetrically. For example,

such asymmetrical fission events are observed in mitochondria. The small mitochondria

might include many damaged parts and can be removed from the cell, thereby contributing to

the health of the mitochondrial network. To model this process weights can be assigned to the

sequence variables

Mitoð?m1½R1� þ ?m2½R2�Þ ! Mitoð?m1Þ þMitoð?m2Þ

where R1/(R1 + R2) and R2/(R1 + R2) are the ratios of elements assigned to ?m1 and ?m2,

respectively.

While multi-set rewriting provides an expressive and readable way to model dynamic com-

partments (see Fig 1), languages that are built on multi-set rewriting, such as ML-Rules, are

still hard to execute efficiently precisely because of their expressive power. One approach to

alleviate this is to provide specialized simulators that exploit that some language features are

not used in a given model [49], thus working on a subclass of models. Another subclass is con-

sidered in the modeling approach presented in [15]: it only considers models where compart-

ments are not nested, and entities do not exist outside compartments.

2 Simulation engine

We implemented version 3 of ML-Rules using the Rust programming language to develop and

test an efficient simulator for dynamic compartments. The model is specified within an exter-

nal domain-specific language which is parsed into Rust code. The structure of the implementa-

tion and its components is shown in Fig 2. We have tuned the implementation for

performance on the main expected code paths. That means we specifically applied several opti-

mizations to the typical main loop at the potential cost of the unusual behavior. Overall opti-

mizations include minimizing allocations, a flat, indexed-based data layout, and partial

evaluation of repeated computations. The following sections will discuss differences from the

previous versions and their implications on runtime performance and user experience.

Compared to the previous implementation, we introduced a few changes to the syntax of

ML-Rules (Section 2.1). However, the focus of our research has been to develop a simulation

approach that is able to handle models that may exhibit a wide range of compartmental

dynamics efficiently. It incorporates a new variant of an SSA specifically designed for large

SSA systems (Section 2.3). This variant of the SSA (labeled flat model simulator in Fig 2) is not

specific to compartmental models, as compartmentalization is abstracted away in a previous

step. One significant optimization is code generation for repeated expression evaluation 2.4.
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We also incorporated a hybrid rule-based simulation method, allowing individual attributes to

be simulated in a network-free manner (Section 2.1). Finally, through the use of recent

advances in web technology (namely WebAssembly), we can provide a simple web editor that

enables fast local execution using the same codebase (Section 2.5).

2.1 Language

ML-Rules 3 builds on and adapts the language ML-Rules for rule-based multi-level modeling

of cell biological systems [6] and its formal semantics [47]. The model is comprised of

• constants that can be used as input parameters for simulation experiments,

• definitions of functions for simplification of repeated notations,

• the initial model state,

• rewriting rules, that can also change the structure of compartments and may use complex

expressions for the rates and attribute values, and

• a definition of potential outputs of the model.

The rewriting rules have the form:

<left> � > <right> @ <rate>

Fig 2. This Figure shows the flow of information between components when running a simulation. The user specifies the model, which is

checked for syntactic and semantic consistency (like units or variable names). This is done through interaction with the web editor or command

line interface. If these checks fail, errors are returned. Otherwise, the simulation loop starts by enumerating all possible species and reactions within

the system into a flat representation. This can lead to errors if the system is too large. This flat representation is then optimized and put into the flat

model (non-compartmental) simulator. Whenever a dynamic structural change is needed, the flattened model is transformed into a hierarchical,

compartmental representation to execute those changes, and the loop starts again with the enumeration.

https://doi.org/10.1371/journal.pone.0312813.g002
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We have a left side transformed (using the arrow) into the right side at a rate (following the @

symbol). The {} denote nesting relationships.

In the following, we describe some key aspects of ML-Rules and some slight changes com-

pared to earlier implementations. The syntactic enhancements (with the exception of the net-

work-free attributes) were not intended to improve the simulation performance but modeling

in ML-Rules. A core aspect of the language design is the nature of the patterns on the rules’ left

side. Modeling languages based on graph rewriting, such as Kappa or BNGL, employ graph

patterns. Modeling languages based on multiset rewriting, such as CSMMR or ML-Rules,

employ term patterns whose matching can be considered a specific case of unification [50].

The matching relates to compartmental structures and attributes [6, 49]. Attributes can be

addressed either by position (structural pattern matching) or by name.

For a species

Sðatt 1: int; att 2: StringÞ

the previous ML-Rules versions required to list all attributes of a species:

Sða1;a2Þ � > Sða1þ1; a2Þ

as attributes were identified by their position. Instead, we now have named attributes, where,

in the case above, only the changed attribute needs to be listed:

SðÞ � > Sða1¼S:a1þ1Þ

From a formal perspective, rule-based approaches implicitly match omitted attributes. For

example, given a cell species that has two attributes denoting its phase and volume, the rule

Cellðphase ¼¼ 1Þ � > Cellðphase¼2Þ

would be implicitly extended to

Cellðphase ¼¼ 1; volume ¼¼ vÞ � > Cellðphase¼2; volume¼vÞ

to express that the volume does not change. Named attributes have been used in other tools

like BioNetGen [38] or Chromar [51].

The use of named attributes is obviously particularly useful if species have many attributes.

For example, a simulation model of the Baltic Cod, which was developed in a previous version

of ML-Rules, relied on structural pattern matching [52], and is available at http://github.com/

Baltic-Cod/EBC_IBM/blob/main/Basic_asph/Basic_asphyx.mlrj, has been rewritten using

ML-rules 3 to exploit the more efficient execution. This also resulted in a more succinct repre-

sentation due to the named attributes http://mlrules.pages.dev/gm/4/day.

Typically, the simulation engine for rule-based models transforms rules into reaction net-

works by enumerating all possible values of attributes in advance to speed up the actual simula-

tion [53]. Attributes that may assume many different and potentially unbound possible values

are a challenge. In the case of unbound continuous attribute values, e.g., if the size of a lipid

raft changes depending on the number of membrane proteins being aggregated within the raft

or due to merging [54], this in-advance-enumeration becomes impossible. Even finite, categor-

ical values can lead to a combinatoric explosion in the number of reactions and thus increase

the reaction network size beyond tractable limits. This results in a model too large error in

Fig 2. We have introduced specific types for this kind of attribute called network-free-integer

and network-free-continuous. If an attribute is defined as one of these types, its values will not

be explicitly enumerated before simulation execution (to generate the reaction network). For

simulation, the attribute of type network free is equipped with a vector that stores the currently
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existing attribute values when a reaction fires. Once a rule fires, the species is instantiated with

appropriate values. The approach is similar to the network-free simulation in BioNetGen [55]

or CSMMR [5], particularly to the hybrid approach introduced in [56] that combines net-

work-free and network-based calculations. However, instead of specifying entire species as

network-free species, the modeler declares individual attributes to be network-free, and the

simulator handles only those attributes or combinations as network-free. This distinction

between being executed as network-based or network-free applies only to attributes of species

that do not form a compartment. All compartments are handled as individual entities, as com-

partments are typically characterized by an attribute of continuous type, i.e., the volume, and

they may contain an arbitrary number of diverse species (which again might be attributed), so

one compartment’s state is very likely different from the next and is (including its attributes’

values) treated individually.

Other adaptations compared to earlier ML-Rule implementations are motivated by further

increasing readability. In the previous ML-Rules versions, only equality constraints on the

attribute values could be expressed on the left side of the rule. For example,

Cellðvol; MÞ � > . . . if vol > 100 than k1 else 0

can be expressed in ML-Rules 3 as

Cellðvol > 100; phase ¼¼ MÞ � > . . . @ k1

Further adaptations aim to provide further support to define correct models. Similarly, as

in other tools [57], modelers are now asked to assign units of measurement to numerical vari-

ables and constants, like micrometer, 1/second, and liter. The simulator performs the proper

conversion and automatic type checking [58] (Fig 2). This means a meter is correctly added to

centimeters but not seconds. In addition, we introduced an enum type, allowing the modeler

to constrain the admissible string values for a specific attribute to a specific set. Type inference,

as well as constraint checks, occur ahead of simulation execution.

2.2 Efficient handling of dynamic structure reactions

As discussed in Sections 1.1 and 1.3, dynamic changes in the system’s structure are core to the

ML-Rules modeling language. Their efficient execution has been a challenge in the past. Most

simulation tools assume static compartmental structures, and their simulators have been opti-

mized accordingly [36, 38, 57]. Integrating compartmental dynamics into these simulators

without significant loss of efficiency has been identified as a daunting challenge [59].

One option to solve the problem of dynamic structural changes is to write a fully dynamic

simulator. This simulator traverses the tree structure of the model after each reaction execu-

tion to instantiate new reactions and re-calculate propensities on demand. It also checks

whether the dependency graph requires any updates. This is how a previous implementation

of ML-Rules was realized [49] and what is shown in the left panel of Fig 3. However, compared

to methods optimized for static networks [53], this has a significant overhead.

For ML-Rules 3, we implemented a new hybrid simulator approach shown on the right

panel of Fig 3. During an additional analysis step, every reaction is analyzed and marked if its

execution would result in a structural change. In the models we encountered, most reactions

do not induce a structural change. These reactions are called regular reactions. A similar dis-

tinction between regular and complex reactions has been made when simulating part of the

system using deterministic numerical integration methods [60] or by tau-leaping [61].

The primary mode of our simulator is running an SSA (Section 2.3) that executes only regu-

lar (non-dynamic) reactions. The model representation has been flattened, enabling static
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index-based access to the model’s state, i.e., every species’ amount is stored in an array. Hierar-

chical relations are only preserved to the point where they are needed to reverse the system

representation to a tree form. But they are neither accessed nor needed during the simulation

as long as no transformation to a tree form is required. Therefore, we call this the Flat model
simulator in Figs 2 and 3. When we encounter a structure-changing reaction, the model is

transformed back into the tree representation reflecting the compartmental structures. The

reaction is applied to this structural representation of the model. The resulting structured state

is then transformed back into a flat representation, and processing is continued. This circular

process is shown on the right side of Fig 3. This Figure shows the inner loop within the flat

model simulator and the loop involving the dynamic structure changes. Every dynamic struc-

ture change requires an entire rebuild of the simulator, including re-enumerating all potential

reactions and a do-over of the static optimization phase. Especially for larger systems, this can

be relatively costly; however, as long as dynamics structural changes are rare, the costs amor-

tize. We will analyze this in the evaluation section 3.

2.3 Stochastic simulation algorithm for static compartments

Based on our experience with different SSAs, we developed our variant, which is suited partic-

ularly well for typical problems in ML-Rules, where systems can be very large, e.g., for simulat-

ing multi-cellular models. Systems become particularly large when identical reactions are

replicated across many different compartments. This is the Flat model simulator in Fig 2. The

implementation is based on storing the propensities in a binary tree with cumulative sum

tracking [62]. Each node in the tree corresponds to one potential reaction and stores two val-

ues: The propensity of that reaction and the sum of all propensities of its child nodes. This

allows for updates of the total propensity sum with logarithmic complexity changing a single

propensity. Furthermore, reaction selection (a weighted random choice based on the reaction

propensities) can also be completed in logarithmic time complexity. Similar approaches are

Fig 3. Comparison of the dynamic structure approaches. On the left, we have the previous network-free method. It is simpler to

implement, but due to the dynamic structure, each step is significantly more costly in terms of performance. For example, neighborhood

relations are dynamic, and therefore, the nesting tree structure needs to be traversed. Our approach (a subset of Fig 2) is on the right. We can

utilize a faster flat (i.e., static) model simulator and have a costly but amortizing transformation and optimization process on the rare

occasion of a structural change. For example, all relations can be encoded by static indices.

https://doi.org/10.1371/journal.pone.0312813.g003
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used in other algorithms like the logarithmic direct method [63] or the simulator implementa-

tion for Sπ@ [64].

An additional advantage of the tree-based approach is its improved numerical stability due

to the fewer operations needed to update the propensities. Another way to minimize total pro-

pensity calculation time is by keeping track of the total propensity sum and only adding and

subtracting the changes to reaction propensities after reaction execution as done by the Opti-

mized Direct Method [32]. However, here, numerical errors from floating-point addition and

subtraction accumulate over time and need to be dealt with. In our tree-based approach,

numerical rounding errors only originate from the single summation, similar (arguably even

better) to a single linear summation approach. The numerical error does not accumulate over

time. It is independent of the number of steps and depends only on the number of reactions.

After a reaction has fired, multiple propensities in the tree must be updated. In principle,

each update in the tree could be done individually based on the dependency graph via updat-

ing the cumulative sum until we reach the root. Instead, we roll these changes out in two

phases. First, the node values are changed based on the dependency graph. Afterwards, the

cumulative sums are updated as needed. If one were to update all sums individually, some

nodes near the root might perform repeated summation updates. What total summation oper-

ations need to be done for each reaction is calculated ahead of time in the static optimization

component (Fig 2). This computation has been accelerated via the use of bitsets. The genera-

tion of the dependency graph and the propensity tree must be efficient, as it needs to be redone

after every non-regular reaction. Reaction selection is based on a weighted random choice

based on the reaction propensities stored in the tree. The performance of reaction selection is

improved by sorting the more likely reactions towards the root of the tree.

2.4 Performance templates

ML-Rules is an external domain-specific language. This means that all expressions are written

in a custom text format. This format is parsed by the simulation tool. One of the main down-

sides of using an external domain-specific language is the significant computational overhead

in the repeated evaluation of mathematical expressions. Generally, the more expressive and

generic a domain-specific language is, the harder it is to execute efficiently. In a more con-

strained language, code and algorithmic variations that are tailored to the specific require-

ments of the application and hardware architecture are easier to achieve. However, a domain-

specific language is typically more useful if it is more generic and expressive.

In [49], we developed specialized simulators for specific sub-classes of ML-Rules models,

e.g., those that do not exploit compartmental dynamics. In [65], we developed an approach

generating an entire simulator optimized for a specific model defined in a rule-based language,

such as BioNetGen [37]. After parsing the model, custom C or Rust code was generated. This

code was then compiled and optimized using existing compiler software, resulting in a high

throughput performance. This technique (called partial evaluation or Futamura projection)

[66, 67] is an established technique to deal with the problem that genericity does not go along

well with achieving performance.

The central idea of partial evaluation is that a function with multiple inputs can be reduced

to a simpler version if some of the inputs are known. For example, the power function f(base,

exponent) may be simplified to f(base, 2) = base � base for the case of a known exponent. The

two core applications of this in the context of SSA are the dependency graph and the propen-

sity calculations. For the dependency graph, data structures and loops can be omitted. With

the propensity calculations, optimizations focus on reducing mathematical expressions and

removing overhead from dynamic interpretation.
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Adopting the approach developed in [65] for dynamic compartments appears impractical.

Its performance gain relied to a large degree on optimizing the updates of the dependency net-

work. With dynamic compartments, these reaction networks change during execution; thus,

optimization (recompilation) would need to be repeated after each structural change. How-

ever, the (re-)compilation induces a significant overhead. Especially for large models (which is

typical for ML-Rules models), the additional compilation steps on every model run increase

runtime significantly, independently of model execution duration. Therefore, we developed an

approach that combines dynamic interpretation and partial evaluation and does not require

repeated compilation on every change. Our approach focuses on the rate evaluation (and thus

propensity updates). This is costly for most dynamic compartmental models, as rate expres-

sions involving dynamic compartments are typically complex. The complex expressions result

in large abstract syntax trees (AST) that need to be parsed during execution. When using an

interpreted or reflection-capable language like Java, code generation for these expressions can

be introduced relatively simply [68]. For compiled languages such as Rust, a different approach

is required. Our approach developed for ML-Rules 3 generates performance templates during

the simulation and stores them for later reuse. Every time the simulator encounters a new

AST, it checks whether generated code in the form of a performance template is available to

replace this tree. Each performance template presents a partially evaluated AST and can be

parameterized with numerical values (like model-specific constants) and indices (as used to

identify involved species). If such an optimized previous version is found, it is used instead of

the AST. If not, the simulator dynamically interprets the expression (by evaluating the AST). It

generates an optimized code for future use and stores the corresponding performance template

for later reuse. With every new model developed or recompilation of the model, the simulator

can reuse previously created templates.

2.5 Web editor

The software tool is primarily designed as a command line tool. However, as a proof of con-

cept, we also built a web-based version. The idea to run simulations on the web is not new and

has been around almost as long as the web itself [69]. There have also been attempts at running

stochastic simulations of biochemical models using a web interface [70].

However, the execution has been typically delegated to a server in the background or the

cloud to enable an efficient simulation of models [71]. WebAssembly is a binary format

recently developed that enables fast execution in web browsers [72]. WebAssembly is executed

on a stack-based virtual machine similar to other native code. Additionally, it interoperates

well with JavaScript. WebAssembly allows reasonable performance for simulation without

installation in a web browser or major changes to the underlying simulator code [73].

As the Rust language can be compiled into WebAssembly, we can use the same code base

for the simulator and only need to add a small frontend. We used the Rust Yew framework

(http://yew.rs/) for this. A two-panel user interface is provided at http://mlrules.pages.dev,

which includes a code editor with some syntax highlighting based on the Monaco editor from

Visual Studio Code and another panel to display simulation results or any errors and instruc-

tions from the simulator.

A significant advantage of this WebAssembly approach is that there are next to no host

costs. The simulation is executed on the end user’s machine. The web page is static and has a

size of roughly 10 Megabytes, which is very cheap or free to host compared to other

approaches that run the simulation on the server. We also added the possibility to link to spe-

cific models. We use this in our case studies to provide links to the various models, which facil-

itates the reproduction of results and allows users to change and adapt models and conduct

PLOS ONE Expressive modeling and fast simulation for dynamic compartments

PLOS ONE | https://doi.org/10.1371/journal.pone.0312813 October 31, 2024 13 / 24

http://yew.rs/
http://mlrules.pages.dev
https://doi.org/10.1371/journal.pone.0312813


basic experiments with no additional setup. As done throughout this paper, linking to an exe-

cutable model with a custom URL is possible.

3 Evaluation

In this section, cell biological simulation models showcase the capabilities and performance of

ML-Rules 3. All performance experiments were conducted using an intel i9-13900K CPU, run-

ning Rust 1.74. WebAssembly was run in Firefox version 120 using its spidermonkey engine.

3.1 Fission yeast model

The first case study is based on a multi-cellular model of fission yeast, including cell division

and mating type switching depending on intracellular dynamics. The model is available at

http://mlrules.pages.dev/yeast/300/min. The model (see Fig 4) has been adopted from the orig-

inal ML-Rules publication [6] to show the expressiveness of ML-Rules. The fission yeast model

includes an early cell cycle model [2].

Fig 4. Fission yeast model. Inside the cell, proteins oscillate. Outside the cell, Sxa2 and pheromones (P and M-type)

can inhibit the cell cycle of cells of the opposite mating type. Triggered by the cell cycle, a yeast cell can fission into two

daughter cells.

https://doi.org/10.1371/journal.pone.0312813.g004
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The cell cycle model consists of two proteins (cyclin and cdc2) that can form the matura-

tion-promoting factor (MPF). MPF exists in three versions (active, inactive, and repressed),

which oscillate with a cycle duration of approximately 200 minutes (see Fig 5). This oscillation

triggers the cell to change between its phases (G1, SG2, and M), and eventually, a spike in inac-

tive MPF causes cells in its M-phase to divide into two daughter cells. In addition, cells are

characterized by a mating type (P or M) that might differ in one daughter cell from the type of

the mother cell. Based on the mating type, cells produce and secrete pheromones (M- or P-fac-

tor) to inhibit the cell cycle of the opposite mating type cells by changing MPF from its inactive

to the repressed variant. M-type cells also release P-factor-specific protease (Sxa2) that inhibits

the P-factor pheromone.

This model relies on a unique combination of ML-Rules features and its expressiveness.

Individual cells are defined as compartments that frequently divide. Compartments and pro-

teins are equipped with attributes, e.g., to denote the cell cycle phase, the cyclin’s phosphoryla-

tion state, or the cell’s volume. The cells secrete pheromones into the extracellular

environment. They influence the cell cycle of other cells of the opposite mating type. The

kinetics depend on rate factors that require complex expressions, e.g., a Hill-type sigmoidal

response curve defines the MPF repression (depending on the number of pheromones).

We have used this model as a performance benchmark. The reaction throughput rates for a

run until 1000 minutes (simulation time) are shown in Table 1. ML-Rules 3 is significantly

Table 1. Run time and reactions per second for different simulators. The fission yeast model is executed until 1000

minutes (20 replications). The values in parenthesis refer to executing ML-Rules 3 as WebAssembly code. The

ML-Rules 2 implementation of the model contains ten species and 20 rules. The ML-Rules 3 version of the model con-

sists of 7 species and 20 rules. The model starts with two cell compartments and ends with about 12. During the simula-

tion time, the model undergoes about 10 structural changes and half a million static reactions.

simulator runtime [s] throughput [1000/s]

ML-Rules 2 12.4 40.8

ML-Rules 3 0.124 (0.190) 4190 (2690)

ML-Rules 3—network free 0.321 (0.352) 1590 (1440)

ML-Rules 3—w/o templates 0.259 (0.331) 1950 (1530)

https://doi.org/10.1371/journal.pone.0312813.t001

Fig 5. Two sample replications of the fission yeast model show the oscillation of active, inactive, and restricted MPF. At 200 minutes and 163 minutes,

respectively, a fission event is triggered by the spike of inactive MPF.

https://doi.org/10.1371/journal.pone.0312813.g005
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faster than the previous Java implementation, ML-Rules 2. If performance templates are used,

we observe a roughly 2-order speedup. Even without the templates, the performance is 26 to

18 times faster. The 18x speedup is observed when enabling network-free attributes (see Sec-

tion 2.1). The model does not use network-free attributes; even only enabling this capability

introduces more branching in the critical code and slows down execution. We also tested the

WebAssembly version. The data for this plot can be generated locally by visiting http://

mlrules.pages.dev/benchmark/yeast/3/1000. The first number is the number of replications,

and the second is the longest test duration in minutes of simulation time. The WebAssembly

has a performance penalty of only about 10% to 50%.

3.2 mRNA delivery model

Our second case study is centered around the delivery of mRNA into cells. Understanding

how to deliver mRNA into cells is crucial for its use as a drug or vaccine [21]. Ligon et al. [74]

published a simulation model capable of simulating the mRNA delivery based on lipoplexes

(small lipid spheres containing mRNA).

In their model, shown in Fig 6, lipoplexes are present within the extra-cellular environment

for an hour before being removed by an event mimicking the cell’s washing. During this time,

clathrin-coated pits containing one or more lipoplexes form at the cell’s surface. Via the invagi-

nation of the plasma membrane, endosomes are formed, and the lipoplexes enter the cell.

Inside the cell, the endosome releases the lipoplexes, which then unpack their mRNA. After-

ward, the mRNA can be translated into proteins.

With their model, the authors could gain insight into mRNA delivery by lipoplexes and the

dose-response relationship. However, they also state a few simplifications and workarounds

needed in their model, as the used modeling and simulation method only supported static

compartments. One simplification is that all lipoplexes carry the same amount of mRNA in

the model. In wet lab experiments, this number has been found to vary due to the different

sizes of the lipoplexes [74, 75].

One possibility to model lipoplexes more realistically is to model each lipoplex as a com-

partment that contains the mRNA and enters the cell (which is also represented as a compart-

ment). For this, support of dynamic compartments is required. Another possibility is to model

Fig 6. Sketch of the mRNA delivery model. Lipoplexes are present in the cell’s environment and can accumulate in

pits in the cell membrane. The lipoplexes in the pit can enter the cell via endocytosis, and the endosome can lyse to

release the lipoplexes into the cell. Once they unpack their mRNA, the mRNA gets translated to proteins. The arrows

that point down indicate the degradation of the species.

https://doi.org/10.1371/journal.pone.0312813.g006
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the amount of mRNA a lipoplex contains as a specific attribute of type integer. Both solutions

are possible in ML-Rules but were not possible in the tool(s) used by the authors. This led to

the simplification of assuming a fixed number of mRNA per lipoplex (i.e., 350) in the model.

As a result, the simulation of the protein expression in the original model shows narrow

bands, depending on the number of lipoplexes that could enter the cell and unpack their

mRNA (see Fig 7 left), which is not the case in the wet-lab data [75]. The authors tried to use

the modeling and simulation tool SPim [76], which is based on the stochastic π calculus [77]

and allows to assign an attribute to a lipoplex that states how much mRNA it carries and

unpacks this amount into the cell. However, they ran into performance issues, which made it

impossible to use SPim for their study (see supplement TextS001 p. 7 from [74]).

As stated above in ML-Rules, this simplification is unnecessary, and a varying number of

mRNA can be assigned to the lipoplexes modeled as compartments. The modified model can

be found under http://mlrules.pages.dev/lipoplex_ext/30/h. At the beginning of the simulation,

the simulation state is set to contain one cell and 200 lipoplexes containing mRNA. The

amount of mRNA per lipoplex (L) is calculated based on the lipoplex size sampled from a nor-

mal distribution. The lipoplex can then move into the cell, like in the original model. Inside

the cell, the lipoplex compartment L can unpack its content (?solL).

CellfLf?solLgþ?solCg � > Cellf?solLþ?solCg @ kU;

The ?solL denotes the content of the lipoplex, here a population of mRNA, and ?solC is the

cell’s content, including other lipoplexes, mRNA, and proteins. Alternatively, we could have

modeled the mRNA as an attribute of type integer. In such an implementation, the lipoplex

would not be a compartment carrying the mRNA but a simple species equipped with an attri-

bute (NmRNA) that denotes the amount of mRNA inside. The unpack rule shown above

would change:

CellfLþ?solCg � > CellfðL:NmRNAÞ mRNAþ?solCg @ kU;

Fig 7. Protein amounts over time for the original (left) and modified (right) mRNA delivery model. The time courses are for 100 replications. The

colors indicate the number of lipoplexes that unpack their mRNA in the cell. The histograms next to the time courses show the distribution of proteins after

30 hours without the cells that express no protein (1000000 replications). Runs where no lipoplexes unpack their mRNA in the cell and no proteins are

generated are not shown.

https://doi.org/10.1371/journal.pone.0312813.g007
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A second minor simplification is that lipoplexes can unpack their mRNA not only in the

cell but also in the endosome, where the unpacked mRNA can start to deteriorate. This mecha-

nism, called the “fully nested transfection model” by the authors (see Fig 8 in Ligon et al. [74]),

is missing in the original model.

In the ML-Rules 3 model, it is realized by the two reactions:

CellfEfLf?solLgþ?solEgþ?solCg � > CellfEf?solLþ?solEgþ?solCg @ kU;

for the unpacking inside the endosome, and

EfmRNA : mþ?solEg � > Ef?solEg @ dM∗m;

for the degradation of mRNA in the endosome.

Besides the simplification in the original model, some reactions, like the formation of pits,

are lengthy to write down. Due to the lack of attributes or dynamic compartments, the number

of lipoplexes that reside in a pit is stated in the name of the species. The original model uses

ten pit species (P1—P10) denoting 1 to 10 lipoplexes inside the pit. Consequently, ten reac-

tions need to be specified for all Pi regarding the formation of pits, the endocytosis, the lysis,

and the degradation of pits. This workaround only works for a low number of P-species. The

growing number of reactions makes writing the model down for larger numbers increasingly

harder. In ML-Rules 3, the dynamic nesting allows us to write down reactions more compactly.

For example, the ten endocytosis reactions in the original model:

P1 � > E1

. . .

P10 � > E10

translate into a single rule in ML Rules 3.

Cellð?solCÞþPf?solP � > CellfEf?solPgþ?solCg

By applying the abovementioned changes, the model produces more realistic results, as can

be seen by the protein expression over time in Fig 7. As stated above, the narrow bands as

observed in the original model (Fig 7 left) are not observed in the wet lab experiments [74, 75].

By varying the mRNA number inside the lipoplexes, these bands in the protein expression

broaden and overlap (Fig 7 right), resulting in a more realistic model behavior.

Finally, we have a look at the model’s runtime performance. Therefore, we compared the

runtime for executing the original model written in COPASI (version 4.41) and its ML-Rules

equivalent (available at http://mlrules.pages.dev/lipoplex_orig. The original COPASI model

consists of 48 reactions and 26 species compared to the ML-Rules model with its 12 rules and

8 species. This is due to the manual unrolling of the underlying nesting processes and illus-

trates ML-Rules’ expressiveness, which also results in succinct models. We measured the run-

time for 1000 replications.

As the simulation model contains events to describe the removal of external lipoplexes,

only the Direct Method implementation within COPASI is able to execute the entire simula-

tion model. This is not a limitation of the method but of the implementations. Timed events

can be added relatively easily to most methods as an implementation feature. The difference in

methods should be considered when interpreting the runtime measurements. For larger sys-

tems, the direct methods used generally perform worse than a more optimized logarithmic

method, like the next reaction method.

We found the average runtime for a single execution to be 4.8 seconds (see Table 2). How-

ever, in two-thirds of the simulation runs, no lipoplex can unpack their mRNA into the cell,
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and consequently, no proteins are created. The 20% quantile takes 0.13 seconds, and the 80%

quantile is 11.2 seconds. The equivalent simplified model in ML-Rules takes only about 0.6

seconds on average but 0.59 seconds for 20% and 0.84 seconds for the 80% quantile, respec-

tively. Most of the runtime (87% on average) in the ML-Rules model is spent on a dynamic

structure reactions, something that COPASI does not need to consider. When no mRNA is

unpacked into the cell, and no proteins are created, a simulation run has as many static as

dynamic structure reactions (about 200). When one lipoplex unpacks its mRNA into the cell,

about 200 dynamic structure reactions happen, and about 2 million static structure reactions

occur. Nevertheless, the dynamic structure reactions need about five times longer to be exe-

cuted. We find similar runtimes for the adapted version of the model in ML-Rules.

4 Conclusion

We built ML-Rules version 3, making concise formulations of dynamic structure models run

with high performance. A performance-oriented implementation of various data structures,

including a partial summation tree, made this possible. We also made some changes to the lan-

guage, like introducing named attributes and units of measurement. We found that this imple-

mentation outperforms the previous version of ML-Rules by two orders of magnitude. The

evaluation of the simulator is based on two biological case studies. First, we used a fission yeast

model that was also used in the original ML-Rules publication to show that we have a similar

expressiveness but a higher performance than the previous implementation. Second, we rebuilt

and extended an mRNA delivery model and showed how using dynamic compartments needs

fewer simplifications than the original model that uses a static compartmental approach. The

extended model matches the wet-lab data more closely, allowing a more compact notation and

better performance. Finally, we built a prototypical web-based simulator using the same source

code compiled to WebAssembly that can run locally on the end user machine. WebAssembly’s

ease of deployment and development using existing code bases and competitive performance

are promising. We see further opportunities for simulation tool developers to make their soft-

ware more accessible using this technology.

Our investigation has also raised some questions for future research. Currently, the net-

work-free execution part of the model is determined by attributes explicitly defined as net-

work-free. However, possibly a larger portion of the model could benefit from a network-free

execution. To learn during simulation which part of the model to execute most efficiently in a

network-based or network-free manner, possibly reinforcement learning approaches could be

adapted [78].

The main simulator for ML-Rules 3 now conforms to standard SSA, with the potential

exception of more complex rate expressions. It is easier to integrate with previous research on

more advanced SSA variants like the partial propensity method [79] or approximate methods

like advanced tau leaping [80]. Preliminary experiments with approximate tau leaping showed

significant improvement for some models. However, frequently, the limiting factor is the

Table 2. Run time for different simulators. The mRNA delivery model is executed until 30 hours (1000 replications).

The ML-Rules 3 model is initialized with 201 compartments (1 cell and 200 lipoplexes) and ends with one compart-

ment. On average, about 207 structural changes are executed during a simulation run.

simulator runtime [s]

20% quantile average 80% quantile

Copasi 0.13 4.8 11.2

ML-Rules 3 0.59 0.6 0.84

https://doi.org/10.1371/journal.pone.0312813.t002
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repeated structural conversion. Moving forward, only a subset of the simulator could be trans-

formed if changes to the dynamic structure are localized. It would also be possible to integrate

the dynamic structure more closely with the simulator, at the cost of some performance for the

regular transitions. The simulator is currently applied in three different simulation studies, i.e.,

studying the fission and fusion of mitochondria, bone remodeling processes, and the role of

endocytosis in cellular signaling.
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