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Abstract 
 
 

Modern data-intensive techniques offer ever deeper insights into biology, but render the process of 

discovery increasingly complex. For example, exploiting the unique ability of single-molecule 

fluorescence microscopy (SMFM)1–5. to uncover rare but critical intermediates often demands manual 

inspection of time traces and iterative ad hoc approaches that are difficult to systematize. To facilitate 

systematic and efficient discovery from SMFM data, we introduce META-SiM, a transformer-based 

foundation model pre-trained on diverse SMFM analysis tasks. META-SiM achieves high 

performance—rivaling best-in-class algorithms—on a broad range of analysis tasks including trace 

selection, classification, segmentation, idealization, and stepwise photobleaching analysis. Additionally, 

the model produces high-dimensional embedding vectors that encapsulate detailed information about 

each trace, which the web-based META-SiM Projector (https://www.simol-projector.org) casts into 

lower-dimensional space for efficient whole-dataset visualization, labeling, comparison, and sharing. 

Combining this Projector with the objective metric of Local Shannon Entropy enables rapid identification 

of condition-specific behaviors, even if rare or subtle. As a result, by applying META-SiM to an existing 

single-molecule Förster resonance energy transfer (smFRET) dataset6, we discover a previously 

unobserved intermediate state in pre-mRNA splicing. META-SiM thus removes bottlenecks, improves 

objectivity, and both systematizes and accelerates biological discovery in complex single-molecule 

data. 
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Introduction  

 

In the main strength of single-molecule observation also lies its greatest challenge: while it can reveal 

transient intermediates and other rare behaviors that would be masked in ensemble measurements, 

identifying such rare states in datasets of thousands of single-molecule traces is often time- and labor-

intensive. While initial population-level characterization through FRET efficiency histograms7,8 or 

transition occupancy density plots (TODPs)9 is informative, such methods still require careful trace 

curation, do not capture the entirety of information contained in single-molecule traces, and can still 

obscure, e.g., minority FRET states or changes in kinetics through the underlying ensemble averaging. 

This is particularly true in multi-step biological processes such as translation and pre-mRNA splicing, 

where it may be impossible to strongly enrich for specific intermediates while maintaining conditions that 

closely resemble the native intracellular context. As a result, manual inspection of traces is still an 

indispensable step in many SMFM studies, introducing potential bias and slowing the pace of discovery. 

Furthermore, distinguishing biologically significant minority behaviors from artifacts is not trivial10, and 

often requires deep domain expertise in single-molecule biophysics. Thus, although the increased 

commercial availability of turnkey fluorescence microscopes has rendered SMFM more accessible, the 

analysis of single-molecule results continues to require extensive domain knowledge, and remains time- 

and labor-intensive despite the community’s progress towards standardizing and streamlining 

workflows11–14.  

A key obstacle to devising a more comprehensive, systematic method for analysis and discovery in 

SMFM experiments is the diverse array of information it must encompass, such as (i) FRET efficiency as 

a measure of distances7,8; (ii) kinetics of state transitions15–20; (iii) the presence and number of 

photobleaching steps21–23; and (iv) the presence and kinetics of fluorophore blinking24,25. Extraction of this 

information is typically achieved through explicit physical or statistical models with well-defined 

parameters26 such as with Hidden Markov modeling (HMM)27–29. However, HMM idealizations reflect only 

a subset of the information contained in the data, potentially discarding useful information (e.g., non-
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Markovian behavior, or rapid dynamics that may superficially appear as measurement noise in an SMFM 

trace15). Furthermore, critical decisions such as which segments of traces to include in further analysis 

depend on features that are not straightforward to encapsulate in conventional algorithms, such as the 

sequence of disappearance of donor or acceptor fluorophores, the presence or absence of one or more 

photobleaching steps, and absence of intrinsic measurement artifacts. Due to these complexities and 

their varying applicability to different systems, researchers often develop customized tools only applicable 

to specific data analysis tasks and apply them in an ad hoc fashion, reducing the generality as well as 

the accessibility of these tools to non-experts3. 

To address these challenges, we introduce a foundation model, META-SiM or Multitask Enabled 

Transferrable Attention model neural network for processing Single-Molecule fluorescence traces (Fig. 

1). Rather than the task-specific training of earlier deep learning approaches30,31, META-SiM adopts a 

holistic approach, learning diverse characteristics of fluorescence traces in a network training strategy 

increasingly popular in natural language processing32–34, but underexploited in scientific research. This 

strategy divides the network training into upstream pre-training and downstream use cases with specific 

fine-tuning. Here, we pre-trained META-SiM with simulated fluorescence traces designed to capture a 

broad range of characteristics (Fig. 1b), and fine-tuned it with experimental or simulated fluorescence 

traces for specific downstream use cases (Fig. 1h, i, j), covering most single-molecule data analysis 

needs for one- and two-color measurements, including: (i) trace classification and segmentation; (ii) trace 

idealization; (iii) photobleaching step counting; and (iv) kinetic fingerprinting. The use of simulated traces 

for pre-training is important because, unlike experimental data, it provides training datasets of defined 

ground truth and much larger (~1 million) than those typically collected in single-molecule experiments 

(hundreds to thousands). META-SiM achieves high performance in all four prototypical use cases, either 

with no further training or with fine-tuning on very small datasets (comprising ~100 traces), demonstrating 

its high adaptability compared to previous deep learning approaches14,30,31.  

Moreover, to aid in dataset visualization and exploration, we leveraged META-SiM’s unique ability to 

transform fluorescence time traces (Fig. 1a) into high-dimensional latent space embeddings to create the 
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META-SiM Projector (Fig. 1c), an online interactive visualization tool that streamlines identifying patterns 

among complex single-molecule datasets. Using this Projector, we constructed an smFRET Atlas (Fig. 

1d) as a step towards the comprehensive, standardized representation of information from smFRET 

traces in a common feature space. To conquer the “black-box” nature of deep neural networks, we 

introduce a Principal Projection function to help users interpret the clustering of projected traces and 

easily understand the model’s predictions (Fig. 1l). We also propose two useful metrics calculated from 

the META-SiM embeddings: a label Self-Consistency Score (SCS; Fig. 1k), which can be used to 

evaluate the quality of labels created by different users, as well as an objective method for training new 

users; and Local Shannon Entropy (LSE; Fig. 1e, f), which can be used as an index to quickly identify 

condition-specific behaviors, even when they are rare—often a key rate-limiting step in discovery. For 

instance, we show that projecting smFRET datasets from a previous study of paused transcriptional 

elongation complexes, color-coded by LSE, enables rapid identification of salt-dependent trace 

behaviors35. 

Finally, as a more stringent test of the ability of META-SiM to expedite discovery in SMFM data, we 

applied it to an smFRET dataset from an in vitro study of the spliceosome in yeast whole cell extract6. 

Despite this system’s complex multi-state FRET dynamics, users with no prior knowledge of splicing 

exploited META-SiM and its LSE metric to efficiently (within one week) identify a new intermediate state, 

not previously detected by bioinformatic cluster analysis6, but later biochemically isolated36, describing 

an extended pre-mRNA conformation involved in 3’-splice site selection. These results illustrate the 

potential of META-SiM and its Projector to reduce the burdens of time and expertise, thereby accelerating 

the pace of discovery from complex single-molecule datasets. 

 

Multitask Pre-Training of META-SiM 

As is common with AI foundation models,37 we employed a multitask training strategy (see Methods) in 

order to (1) reflect all essential capabilities in SMFM and (2) permit optimization of network 

hyperparameters to simultaneously accommodate all tasks. META-SiM comprises a multi-layer attention 
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model that generates trace- and frame-level embedding vectors (Fig. 2), which are shared among tasks. 

For each task, we use a task-specific linear projector (“Head”) to convert the embeddings into the target 

space (Fig. 2). Pre-training was performed using 1 million synthetic traces that simulate a wide range of 

one- and two-color channel behaviors, including varying kinetics, numbers of states, and signal-to-noise 

ratio (SNR; Methods, Supplementary Table 1). While such synthetic data run the risk of exhibiting artificial 

traits or not representing the full range of possible experimental behaviors, leading to potential 

performance gaps when applied to experimental data, our multitask pretraining leaves no such gaps in 

downstream tasks (Fig. 3). We hypothesize that the diversity of our training tasks harmonizes the learning 

from individual tasks, allowing the model to learn fundamental traits more generalizable than those 

learned from only one or two specific tasks. 

 

META-SiM achieves high performance in diverse downstream tasks with minimal fine-tuning 

Performance evaluation and benchmarking is important to establish not only META-SiM’s reliability as an 

analysis tool, but the accuracy and relevance of the information contained in its output embeddings that 

are employed for visualization and discovery. We considered four distinct use cases reflecting common 

needs in analysis of single-molecule time traces—trace classification and segmentation, trace 

idealization, stoichiometry analysis, and kinetic fingerprinting—and benchmarked performance against 

existing state-of-the-art or commonly used tools (Fig. 3, Methods, Supplementary Fig. 1). In contrast to 

earlier task-specific neural network-based tools, META-SiM rivals both advanced computational tools and 

manual analysis on all tasks. The model successfully curated and segmented traces from five distinct 

smFRET datasets to build accurate FRET histograms (Fig. 3a-d); idealized traces in a two-state system 

to extract accurate dwell time distributions, rate constants, and FRET states (Fig. 3e-g); counted 

photobleaching steps in close agreement with manual analysis (Fig. 3h, i); and discriminated between a 

point mutant and wild-type DNA sequence by SiMREPS kinetic fingerprinting38 with higher sensitivity and 

specificity than the original HMM-based analysis (Fig. 3j, k). While supervised fine-tuning of the model 

based on user-labeled examples using a logistic regression (see Methods) was used to improve the 
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accuracy of the model at most tasks, since such fine-tuning only involved re-training the final layer of the 

network, it could be achieved with only ~100 examples, 10- to 100-fold fewer than for previous task-

specific tools based on deep neural networks14,30,31, and could thus be performed locally on a standard 

laptop computer (see Methods). In addition, this fine-tuning can typically be skipped entirely if a desired 

task, such as trace idealization, is already among the tasks the model was pre-trained on (Fig. 3f, g, 

Supplementary Table 1). 

 
 
META-SiM Projector: a flexible and powerful tool for visualizing whole single-molecule datasets 

The complexity and heterogeneity of single-molecule datasets makes them challenging to visualize in a 

comprehensive manner with conventional methods, frequently necessitating labor-intensive inspection 

of individual traces to develop a thorough understanding of an experiment. Since META-SiM generates 

a trace-level embedding vector broadly encoding the attributes important for the multiple analysis tasks 

on which the model was trained, entire single-molecule datasets (regardless of complexity) can be 

visualized by projecting these high-dimensional embeddings into a cloud of points in 2D or 3D space 

using dimensionality reduction algorithms such as PCA39 , UMAP40 and t-SNE41, where each point 

represents a single time trace (Fig. 4a). To  test whether the pattern of point clusters in these projections 

meaningfully represents the clustering of relevant data attributes, we constructed and visualized synthetic 

time trace datasets―not used for training―with controlled variations in commonly considered data 

attributes such as SNR (Fig. 4b), state dwell times (Fig. 4c), FRET values (Supplementary Fig. 2a), 

number of FRET states (Supplementary Fig. 2b), and number of photobleaching events (Supplementary 

Fig. 2c) while keeping other attributes constant. The clustering of traces with similar traits in the 2D UMAP 

plots aligns well with variations in each attribute, demonstrating the effectiveness of the dimensionality 

reduction. Furthermore, when we performed the UMAP operation on experimental traces from datasets 

D1 (Fig. 4d) and D2-D5 (Supplementary Fig. 2d-g) that were manually either accepted or rejected by 

researchers for further analysis, the clustering of points was correlated with the labeled subgroups (Fig. 
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4d). Note that the META-SiM Projector also allows individual traces to be inspected and their nearest-

neighbor traces (most similar in embedding vector) to be highlighted by clicking on points in the projection, 

enabling interactive exploration of the structure of heterogeneous single-molecule datasets. 

While these projections are comprehensive, a limitation is that they may not always yield strong 

clustering with respect to a variable of interest (Fig. 4e). To enable visualization of datasets based on 

specific data traits, we leveraged our multitask training strategy to group the 30 training task heads into 

seven attributes (three attributes for single-channel data; Supplementary Table 1), and calculated the 

operator for each attribute by low-rank matrix decomposition. In this way, an embedding projected to 

each attribute’s dimension was generated before the dimensionality reduction operation, yielding a 

“Principal Projection” that reflects the desired combination of traits (Fig. 4f, Methods). Thus, when specific 

data attributes are known or suspected to be important in differentiating populations of traces, this 

Principal Projection operation can be employed to more clearly segregate populations into meaningful 

clusters (Fig. 4g) than the general UMAP operation (Fig. 4e). In addition, the Principal Projection permits 

visualization of the basis of decisions by the network, such as those made in classifying traces or counting 

photobleaching steps (Fig. 4h-j). The network-predicted labels are clustered differently under different 

Principal Projections (Supplementary Fig. 3), providing insights into the most dominant differentiating 

factor(s) in the network’s decision-making process. The fractional contribution of each attribute in 

decision-making can be quantified as the correlation between the network’s head layer and each Principal 

Projection operator (see Methods), notably yielding quantitative insights into the importance of each 

attribute in predictions by the network (Fig. 4l, Supplementary Fig. 4). The Principal Projection can also 

yield tighter clustering based on known combinations of traits, providing a potential basis for multiplexed 

detection of distinct molecular species based on their trace characteristics. For example, three related 

macromolecular complexes (DNA walker systems with different stepping rates) were separated well in a 

Principal Projection based on two dimensions: kinetic rate and FRET value (Fig. 4k).  

Although the above methods can greatly facilitate understanding of complex single-molecule 

datasets and classification decisions made by the network, the experiment-specific projections are not 
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optimal for comparisons between experimental systems or laboratories. To establish a universal 

framework for such comparisons, we constructed a UMAP model based on 1 million simulated traces to 

create an smFRET Atlas capturing a broad range of commonly relevant characteristics (Fig. 4m): FRET 

state number, SNR, FRET values, and transition rates. In this Atlas, traces with similar characteristics 

(e.g., rapid 2-state transitions between a low- and a mid-FRET state with high SNR) cluster together, and 

the separation between these clusters increases when only high- or low-SNR traces are considered 

(Supplementary Fig. 5). This smFRET Atlas thus provides a common coordinate space for visualizing 

and comparing traces from different datasets based on their FRET states and dynamics, with the potential 

to standardize SMFM analysis. 

 

Model-derived metrics enable systematic quality control and hypothesis generation 

The information META-SiM stores in embedding vectors provides a basis not only for analysis and 

visualization of single-molecule data, but for extracting quantitative metrics that assess the consistency 

of analysis or identify behaviors unique to certain experimental conditions. For example, consistency of 

trace labeling and segmentation—either for conventional analysis or fine-tuning of META-SiM—is a 

critical aspect of single-molecule analysis, but challenging to objectively assess due to the wide range of 

data characteristics and use cases that must be considered. To address this need, we leverage the 

detailed information about trace characteristics encapsulated in the high-dimensional embeddings to 

define label SCS, whose value (ranging from 0 to 1) indicates the degree of alignment with labels for 

similar traces (Figs. 1k, 5a; Methods). The label SCS empowers researchers to not only produce high-

quality training data for the foundation model, but also to identify possible human errors during manual 

data analysis. For each of the five datasets examined here, the label SCS initially increases as a 

researcher labels an increasing fraction of traces, approaching an asymptotic consistency score 

(generally ≥ 0.8) after ~5-20% of traces are labeled (Fig. 5b). The SCS varies among individual 

experiments for any given system, but the mean score is generally above 0.8 for our five experimental 

datasets (Fig. 5c). As many experiment-specific factors can impact labeling consistency, one should be 
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cautious not to over-interpret the absolute value of the SCS between different experimental systems. 

However, for a given experimental system, the SCS provides meaningful quantitative feedback about 

labeling consistency. Based on these results, we suggest targeting a label SCS of at least 0.8 as a general 

rule-of-thumb (Fig. 5c); a lower score may signal inconsistent analysis and/or indicate that further labeling 

should be performed. 

Another critical challenge in single-molecule analysis is the identification of new or unique behaviors 

in large and heterogeneous datasets. This conventionally requires ad hoc approaches that involve an 

initial (often manual) trace curation, followed by population-level characterization by FRET histograms, 

TODPs, and/or kinetic analysis (e.g., dwell time or cross-correlation analysis) tailored to the system in 

question. Because it may not be known in advance what new behaviors will arise under certain 

experimental perturbations, and how compatible these behaviors are with model (e.g., HMM) 

assumptions, the selection of processing methods often involves substantial manual trace inspection as 

well as trial-and-error, reducing efficiency and possibly missing significant discoveries. To systematize 

this process of discovery, we propose the LSE metric, which evaluates the level of rarity of trace behaviors 

across multiple datasets (see Methods). Trace behaviors common across a group of datasets possess a 

high LSE, while those found only in a minority of datasets have a low LSE. Thus, clusters of traces with 

low LSE (e.g., on a UMAP projection) may signal the presence of behaviors strongly dependent on 

experimental conditions. To evaluate the utility of this metric on experimental data, we calculated the LSE 

for 9 experiments from a titration of KCl into the paused transcriptional elongation complex (D4 in Fig. 

3a). In a common UMAP projection space, non-curated traces with low LSE in 50 mM KCl (Fig. 5d) are 

clustered in a different region than at 1,000 mM KCl (Fig. 5e), indicating KCl-dependent behaviors. These 

differences are highlighted even more strongly if only the 10% of traces with lowest LSE across all 

conditions are plotted (Supplementary Fig. 6e, f). Inspection of these low-entropy traces reveals a shift 

from predominantly low-FRET to high-FRET behaviors as KCl is increased, which is also reflected in 

FRET histograms of the two conditions (Supplementary Fig. 6d, h). However, unlike FRET histograms, 

the LSE-coded UMAP plots preserve individual trace information, can encapsulate a broader set of 
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characteristics such as kinetics, and do not require prior trace curation (Supplementary Fig. 6a, b, c, d). 

The FRET histogram of the 10% lowest LSE traces clearly unveiled that the inflection point from low- to 

high-FRET resides at 400 mM KCl (Supplementary Fig. 6h), while the change from 300 mM to 400 mM 

KCl is recognizable, but not obvious in the corresponding traditional FRET histograms (Supplementary 

Fig. 6i). The LSE metric thus facilitates rapid identification of condition-specific trace behaviors without 

prior assumptions of which traits to consider, resulting in better informed analysis method selection.   

 

META-SiM Projector and LSE enable efficient discovery of a new intermediate in a complex 

smFRET system 

Single-molecule data are inherently complex, but become even more so in the case of experimental 

systems that strive to reconstitute multistep biological processes such as translation or splicing. In such 

systems, observed behaviors result from the often complicated, dynamic interactions between one or 

more substrates and potentially several catalytic subunits and cofactors. Even with carefully designed 

controls to stall such pathways at specific steps, finite efficiency and a lack of synchronization  

dramatically increase the degree of heterogeneity of the observed single-molecule behaviors. As a result, 

even the intermediates of greatest biological insight, such as those appearing only in complexes stalled 

by the omission of a specific cofactor, may comprise only a small minority of the traces observed. A 

general method to quickly identify such condition-specific behaviors would greatly accelerate the pace of 

discovery. While the single-molecule clustering analysis (SiMCAn) method6, developed to systematically 

cluster related behaviors from highly heterogeneous datasets from a smFRET study of pre-mRNA 

splicing, represents progress towards this goal, it still relies on explicit modeling (e.g., HMM) and lacks a 

quantitative metric like LSE to quickly visualize and identify condition-specific behaviors. 

To test its ability to accelerate discovery from such complex biological systems, we used META-SiM 

to analyze the smFRET data from the SiMCAn study of the yeast spliceosome, in which dynamic 

rearrangements of a pre-mRNA substrate were monitored as a function of progression through the 

splicing pathway6. In this study, a Ubc4 pre-mRNA substrate was labeled with a FRET pair comprising a 
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Cy5 seven nucleotides upstream of the 5′ splice site (5′SS) and a Cy3 six nucleotides downstream of 

the branch point (BP; Fig. 6a), and immobilized via the biotin-streptavidin interaction on a quartz slide for 

smFRET imaging. The splicing pathway was stalled at specific steps by mutation of the pre-mRNA or of 

cofactors, or by depletion of specific cofactors from the extract, and the impacts of these perturbations 

on pre-mRNA dynamics monitored by smFRET (Fig. 6b). We used META-SiM to convert the smFRET 

traces from all experimental conditions to embeddings and calculated the LSE (Supplementary Fig. 7). 

Focusing on four of the most critical conditions related to the first and second steps of splicing (Fig. 6c), 

UMAP projections of the trace embeddings into either the smFRET Atlas (Fig. 6c) or system-specific (Fig. 

6d) coordinates clustered low-entropy traces in specific regions. By contrast, for three of the four 

conditions, any differences in the FRET histograms (Fig. 6e) and TODPs (Fig. 6f) are subtle. By plotting 

only the 10% lowest-LSE traces across all datasets, we were able to isolate condition-specific behaviors 

in the UMAP projections (Fig. 6g-h), FRET histograms (Fig. 6i), and TODPs (Fig. 6j). Not only is the 

transition from a predominantly low-FRET state in the ΔPrp2(WT) condition to a predominantly high-

FRET state in Prp16DN(WT) more prominent among the low-entropy traces, but there is evidence of a 

re-emergence of a minority low-FRET state in the WT(3’SS) and WT(WT) conditions (Fig. 6i). These 

observations suggest that the pre-mRNA is locked in a high-FRET conformation in the absence of a 

functional Prp2 helicase (Prp16DN(WT)), but can enter a state with a more extended (low-FRET) pre-

mRNA in the presence of a functional Prp2 (WT(3’SS) and WT(WT) conditions; Fig. 6b red dashed box).  

This minority low-FRET population, not detectable in the original SiMCAn splicing study6, is consistent 

with observations from a later study that biochemically isolated an inactivated complex with an extended 

pre-mRNA36, and represents a rare and transient intermediate conformation involved in repeated 3’SS 

sampling that appears only in the presence of functional Prp2 and Prp22 helicases (Fig. 6b).  

Notably, the 10% lowest LSE traces are distributed differently across experimental conditions 

(Supplementary Fig. 8), which can help identify which conditions may yield the most unique or interesting 

behaviors. Our unprecedented discoveries from existing smFRET data were not evident until the traces 
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with lowest LSE (most condition-specific behavior) were isolated and their properties examined, thus 

demonstrating the potential of the LSE metric and META-SiM Projector to readily identify rare, but 

biologically important behaviors in complex datasets.  

 

Discussion 

Despite the power of single-molecule methods to deliver unique insights into the dynamic and 

heterogeneous properties of many biological systems19,20,42,43, their utility as a discovery tool has been 

hampered by data complexities that necessitate inefficient manual and ad hoc approaches for analysis. 

While automated tools and software have been developed to streamline or systematize data analysis, 

they have to date focused only on narrow sets of tasks30,31 or required the use of explicit physical or 

statistical models26–29 that, depending on the validity of model assumptions and the quality of fitting, may 

not accurately capture the full range of behaviors within a dataset. In addition, none of the existing tools 

provide a means of comprehensively visualizing the structure of SMFM datasets according to trace 

characteristics, or systematically identifying rare or condition-specific behaviors, without prior 

assumptions regarding what traits to consider.  

Due to its multitask training, META-SiM not only excels at a variety of common single-molecule 

analysis tasks with little or no fine-tuning data but, by virtue of its high-dimensional output embeddings 

that encapsulate a rich array of information about each trace, establishes a new paradigm for systematic, 

open-ended biological discovery in single-molecule datasets. In particular, the META-SiM Projector 

enables the intuitive visualization of entire datasets and interactive inspection of related behaviors, while 

the LSE metric permits isolation of condition-specific trace behaviors—even if rare—for rapid hypothesis 

generation and further analysis. These capabilities not only enable more efficient discovery in 

conventional single-molecule studies, but may also lay the foundation for much higher-throughput 

discovery and screening efforts involving single-molecule observation, as well as facile data comparison 

across research groups. 
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Strikingly, this systematization allowed non-experts with no prior knowledge of splicing or the 

smFRET system to quickly identify a new intermediate that was not observed in the original study 

producing the data, despite the use of advanced data clustering methods6.  The dataset visualization and 

LSE-based filtering tools, together with the automated trace classification and segmentation capabilities 

of META-SiM, render interpretation of single-molecule results much more accessible to researchers 

without expertise in single-molecule methods. The SCS metric further promotes accessibility and quality 

control by providing feedback on the consistency of trace classification and segmentation, while the web-

based META-SiM Projector provides intuitive means of labeling datasets for model fine-tuning as well as 

sharing datasets and analyses with other researchers. Thus, while some domain expertise will still be 

required for full interpretation of results, META-SiM and its Projector have the potential to greatly 

streamline the analysis and discovery processes, which may contribute to the democratization of SMFM 

techniques by rendering their analysis more accessible to researchers outside of single-molecule 

biophysics. 

Finally, the smFRET Atlas (Fig. 4m) offers a powerful means of visualizing and comparing entire 

single-molecule FRET datasets in a common space that reflects differences in FRET efficiency, number 

of states, kinetics, and other parameters relevant to smFRET analysis. Importantly, this and other 

visualizations in the META-SiM Projector can be performed without any prior curation, manual inspection, 

or model-based processing of traces, thus providing a rapid overview of even complex datasets prior to 

detailed analysis. 

Foundation models have ushered in a revolution in natural language processing and other domains 

due to their versatility and consideration of a wide range of relevant information. In line with these 

precedents, we hope META-SiM will greatly increase the pace and scope of discovery in single-molecule 

biology. In the future, the model may be extended to an even wider range of applications in single-

molecule biophysics. Furthermore, connecting the high-dimensional embeddings generated by META-

SiM to large language models may allow users to summarize and interact with these complex datasets 

using natural language for even greater accessibility. 
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Methods and Materials 

Network Formulation 

Prior to feeding it into the network, each trace is divided into 50-frame patches and tokenized with a linear 

projection operation; each token thus reflects more information than a single frame, including short-range 

intensity changes and fluctuations. To encode the time dimension, we built a tokenizer similar to the one 

used for images in a vision transformer44: that is, we added a learnable position embedding45 to the 

tokens before the first layer of the attention model. In addition, we prepended a special learnable "trace-

token" to the sequence of trace tokens to represent the intention to seek trace-level information, 

analogous to the class token in the language model BERT45. The corresponding output of the network 

from this trace-token is used for trace-level tasks, while output of other tokens was used for frame-level 

tasks. The attention block consists of multiple identical attention layers and maps the sequence of tokens 

to a sequence of embedding vectors. As a token represents a patch comprising multiple (50) frames, we 

further map the embedding vector of each patch to a list of embedding vectors for all frames with a linear 

projector to yield frame-level resolution for each trace. Both the trace-level and the frame-level 

embeddings are shared for all tasks. 

We represent each time trace as a ℝ்×  tensor where 𝑇 is the total number of time steps and 𝐶 is 

the number of color channels. 𝐶 = 2 for two-color smFRET time traces and 𝐶 = 1 for single color time 

traces. For ease of network training, we always use 𝐶 = 2 and fill any non-existing color channel with 

zeros. We set up the tokenizer as a matrix multiplication operator over a segment of time steps. Each 

segment is a ℝௐ vector denoted as 𝑥segment, where 𝑊 is the width of the tokenizer, and the tokenization 

operation is: Tokenizer(𝑥segment) = Matmul൫𝑥segment, 𝑾tokenizer൯ + 𝑏tokenizer, 
where 𝑾tokenizer ∈ ℝௐ× and 𝑏tokenizer ∈ ℝ are the weights and bias of the tokenizer, respectively, D is 

the dimension of the embedding vectors, and Matmul denotes the matrix multiplication operation. 
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The tokenized sequence has a length of 𝑇 / 𝑊 . We prepend a learnable class token and add a 

learnable absolute position embedding to the sequence. Therefore, the input sequence to the attention 

model is of length 𝑇ᇱ = 𝑇/𝑊 + 1. We denote it as 𝑥attention ∈ ℝ்ᇲ×. 
We use N layers of the standard multi-head self-attention model with layer normalization to operate 

on 𝑥attention:  Attention(𝑥attention, 𝑁) = 𝑧 ∈ ℝ்ᇲ×. 
We use the first step of 𝑧 as the trace-level embedding denoted as 𝑧, and denote the remaining 𝑇ᇱ −1 time steps as 𝑧ଵ, ..., 𝑧. We further implement an unstack operator, the reverse operator of the tokenizer, 

to convert 𝑧 into the embedding for each time step in the original time trace. The unstack operator reads: Unstack(𝑧) = Matmul൫𝑧, 𝑾Unstack൯ ∈ ℝௐ× , ∀1 ≤ 𝑖 ≤ 𝑇ᇱ 
where 𝑾Unstack ∈ ℝୈ×ௐ×ୈ is the weight. 

Synthetic Training Data Generation 

To obtain enough training data for all tasks, we used a trace simulator31 to generate over 1 million 

synthetic traces. Ground truth labels were generated from simulation parameters or ideal measurements 

with no noise. The simulation is based on the stochastic Markov chain process describing the state 

transitions of a time trace. To sample simulation parameters, we first sample the number of distinct states 

uniformly ranging from 1 to 4, and then the initial state probability distribution 𝑝init(𝑠)  and transition 

probability matrix 𝑝transfer(𝑠ଵ, 𝑠ଶ) from independent uniform distributions, where 𝑠 is the initial state and 𝑠ଵ 

and 𝑠ଶ are the states before and after a transition. We also sample the total intensity 𝐼max from a uniform 

distribution. We can thus generate a two-color time trace 𝐼donor(𝑡), 𝐼acceptor(𝑡) or one-color time trace 𝐼(𝑡) 

that has states and transitions but no noise or photophysical behavior.  

Next, we simulated the photophysical behavior including photobleaching, blinking and quantum yield. 

We sampled the photobleaching lifetime for each color channel from independent exponential 

distributions with expected lifetime 𝜏ୠ୪ୣୟୡ୦ sampled from a uniform distribution ranging from 1 frame to 

2000 frames. Then we sampled the blinking of Cy3 dye by sampling the non-blinking lifetime and the 
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blinking lifetime from independent exponential distributions with expected lifetime 𝜏non-cy3-blink  and 𝜏cy3-blink sampled from uniform distributions. Finally, we drew the relative acceptor brightness parameter 

from a uniform distribution from 0.9 to 1.0 and multiplied this value with the original 𝐼acceptor to generate 

the new 𝐼acceptor. 
Lastly, we added Gaussian noise to the intensity traces, as well as a constant offset value, sampled 

from a uniform distribution yielding 1.8 < SNR < 6, to represent background signal. 

 

Multitask Training and Hyperparameter Optimization 

We used the synthetic training data to create various learning tasks (Supplement Table 1) for the network 

to recognize important features of single molecule time traces. These learning tasks include trace-level 

tasks such as recognizing kinetic states, SNR, photobleaching lifetime and blinking, and frame-level tasks 

such as recognizing regions of active kinetic transitions and predicting idealized FRET states. We 

designed a multitask pre-training strategy to optimize the training on all trace- and frame-level tasks 

simultaneously using the combined loss of all tasks. One common challenge when combining the loss of 

multiple tasks is that one or a few tasks can dominate the total loss, leading to the network being poorly 

optimized on other tasks. For example, the labels measuring photobleaching lifetime have a range of [1, 

2000] frames, while the labels measuring FRET ratio have a very different range of [0, 1]. If we use a 

mean-absolute-error loss, the network will likely be optimized for photobleaching lifetime but poorly 

optimized for FRET value prediction. In addition, the training dataset includes both classification and 

regression tasks, necessitating a unified loss function. To address this concern and unify the loss function 

across all tasks, we employed a cross-entropy loss function and quantized all tasks as multi-class 

classification problems, unifying classification and regression tasks. Specifically, we quantized the labels 

for all tasks and used a KL divergence loss function for all the tasks. The loss function, which is denoted 

as:  𝐷KL(𝑝taskෟ||𝑝task) 
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and measures the difference between the training labels' empirical probability distributions 𝑝taskෟ(𝑦) and 

the model's predictions 𝑝task(𝑦; 𝑥, 𝜽),  is similarly valued for all tasks even though their labels have 

divergent values. Putting it together, the combined loss function to optimize, ignoring the constant terms, 

is:  

ℒ(𝜽) = − 1𝑁   𝑝taskෟ(𝑦)ே
ୀଵ log 𝑝task (𝑦; 𝑥 , 𝜽)task  

 

as a function of network parameter θ.  

To generate 𝑝task(𝑦; 𝑥, 𝜽), we used an independent linear operator for each task followed by a softmax 

operation 𝜎(⋅)  to generate a probability distribution. We denote the trace- or frame-level encoding 

outlined in Network Formulation as METASIM(𝑥), the predicted probability distribution is:  

 𝑝task(𝑦; 𝑥 , 𝜽) = 𝜎൫Matmul൫METASIM(𝑥), 𝑾task൯ + 𝑏task൯, 
 

where 𝑾task and 𝑏task are the task-specific weight and bias. 

Another common challenge in multitask learning is competing tasks leading to poor optimization. To 

avoid training tasks in the next iteration of network training unintendedly competing with those of the 

previous iteration, we made sure each iteration's training data were sampled evenly from all training tasks 

(Fig 2b). The network was optimized using the ADAM optimizer46 with 𝛽ଵ = 0.9  and 𝛽ଶ = 0.999 . The 

network was trained on 1.5 million synthetic time traces, equivalent to 55 gigabytes of float32 data, for 2 

days on a single NVIDIA A100 GPU.  

The training and validation loss decay approximately linearly as a function of the logarithm of training 

steps, showing the slow-down of network optimization as the compute time increases (Fig. 2c). We 

optimized the important hyper-parameters of the network by a grid search of the depth, width, the number 

of attention heads, the activation function in each attention layer, and the width of the tokenizer 
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(Supplementary Fig. 9a, b, c, d). The lowest validation loss, indicating the best performance, was 

obtained for a self-attention network 4 layers deep and 96 dimensions wide with 4 attention heads, with 

a Gaussian Error Linear Units activation function, comprising a total of 7 million parameters. Further 

increasing the number of network parameters by increasing the depth, the width, or the number of 

attention heads did not additionally decrease the validation loss (Supplementary Fig. 9e), a sign that the 

network’s learning capacity is high enough to learn the features of the time traces in the training data. In 

other words, we do not expect that a larger foundation model would dramatically increase the 

performance on common single molecule data analysis tasks unless more complex synthetic data 

generation models—resembling more complex experimental systems—must be included for model 

training. 

 

Supervised fine-tuning 

To fine-tune META-SiM for common downstream tasks (Fig. 3), we assigned a new head to the model 

containing one linear classification layer for each task, and performed a logistic regression to the head 

with a small amount of labeled data on the order of 100-1,000 traces. Specifically, we perform supervised 

fine-tuning with frozen encoders, a widely used fine-tuning strategy for small datasets. In this fine-tuning, 

referred to as “logistic regression” (LR), only 𝑾task  and 𝑏task  in the last classification layer are varied 

during training, while the remaining network parameters in METASIM(⋅) are kept fixed. This vastly reduces 

the amount of data and computational power required for training; for example, fine-tuning using 100-

1,000 labeled traces can be completed on a typical laptop in a few minutes. While the network also 

supports fine-tuning that updates all the model's parameters, this is not anticipated to be a common need, 

and is not used for any of the examples in this study. 

 

Evaluation of Performance in Downstream Tasks 

To evaluate the performance of META-SiM fine-tuned for trace classification and segmentation—e.g., to 

identify traces and segments thereof that provide meaningful information, an essential early step in 
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analysis of smFRET traces—we employed five experimental smFRET datasets (Fig. 3a).  For 

benchmarking, we used the previously reported task-specific deep learning model DeepFRET31, but 

initially found that its direct application to D1-D5 yielded low concordance (below 80%, Fig. 3b). This 

suggests that DeepFRET may not generalize well to these five experimental systems without further fine-

tuning. Therefore, for a fair comparison we performed the same logistic regression operation with the 

same fine-tuning dataset as META-SiM to yield a fine-tuned DeepFRET (Fig. 3b, c). Across the five 

datasets, META-SiM_LR_CS and DeepFRET achieved similar concordance (Fig. 3b), FRET-distribution 

overlap (Fig. 3c), and area under the receiver-operating characteristic curve (ROC AUC) (Supplementary 

Fig. 2a), indicating comparable performance of META-SiM to a state-of-the-art task-specific network 

when both models are similarly fine-tuned for the task. Compared to our previous network Auto-SiM30, a 

task-specific deep learning network for classification and segmentation that used more than 50,000 

manually labeled experimental traces for training, META-SiM_LR_CS achieved a similar ROC AUC while 

needing only 82-215 (Supplementary Table 2) labeled traces for fine-tuning and no experimental data in 

pre-training. This >200-fold reduction in the amount of manually labeled data required for fine-tuning 

makes META-SiM much more practical as a customizable labor-saving tool than task-specific models, 

while retaining high performance. Note that the web app META-SiM Projector streamlines the creation of 

these manual labels for new datasets in case any fine-tuning is needed. 

To evaluate the performance of META-SiM in trace idealization without fine-tuning, we used META-

SiM directly to idealize 19 traces from a dataset in a public benchmark study14 of a two-state smFRET 

experimental system. Rate constants of FRET transitions were obtained by exponential fitting of the 

cumulative dwell time distributions in the low- and high-FRET states from these idealizations 

(Supplementary Fig. 1c). As ground truth values of the rate constants and FRET states in the 

experimental dataset are unknown, the results from META-SiM were compared with those from 14 other 

methods (Fig. 3f, g), following the assessment conventions in the prior benchmarking study14. The kinetic 

constants derived from the idealized FRET states by META-SiM deviate a modest 3.6% and 6.8% from 

the mean predicted for the kinetic constants k12 and k21, respectively, while the FRET state values 
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predicted by our model deviated only 0.86% and 0.24% from the mean predictions, respectively. By 

comparison, the mean deviation from the mean prediction among the 14 other tools were 9.2% and 12.1% 

for kinetic constants k12 and k21 and 1.4% and a 0.42% for the FRET state values, respectively.  The fine-

tuned version (META-SiM-FT) for trace idealization gave similar results compared to the non-fine-tuned 

one (Supplementary Fig. 1g, h). These findings demonstrate that META-SiM performs on par, if not better, 

than all other currently available, state-of-the-art single molecule analysis tools. 

To evaluate the performance of META-SiM in counting photobleaching steps—apparent as 

instantaneous drops in fluorescence corresponding to the bleaching of single fluorophores—we 

compared the predictions of the model to those of manual counting by researchers. This strategy was 

implemented because incomplete labeling and activity of fluorophores makes it challenging to ascertain 

a ground truth in these experiments. The fine-tuned META-SiM achieved a concordance of 68.0% for 

exact count matching and 90.0% for exact or off-by-one matching (Supplementary Fig. 1e). For reference, 

concordance between independent researchers was higher, at 84.5% for exact count matching and 95.0% 

for exact or off-by-one matching (Supplementary Fig. 1e). However, the histogram of photobleaching 

steps counted by META-SiM is in close agreement with the manual labeling (Fig. 3i), and the mean 

number of steps (3.9 +/- 0.14, 1 s.d.) aligns well with the mean value from manual labeling (3.9 +/- 0.13, 

1 s.d.). 

To evaluate the performance of META-SiM for single-molecule recognition through equilibrium 

Poisson sampling (SiMREPS)38,47, we tested its ability to distinguish traces resulting from EGFR 

fragments containing the cancer-related single-nucleotide substitution T790M (mutant) and those from 

wild-type EGFR fragments (Fig. 3j,k)48. Compared to conventional classification based on HMM fitting 

followed by kinetic thresholding, META-SiM consistently accepts more true positives and fewer false 

positives, corresponding to an ~40% increase in sensitivity and an ~3.75-fold increase in specificity (Fig. 

3k). META-SiM also increases the sensitivity by 1.4-fold for a standard curve of T790M in the absence of 

wild-type sequence (Supplementary Fig. 1f). This high performance, despite fine-tuning only for the last 
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layer of the network with less than 200 trainable parameters, suggests that the META-SiM foundation 

model can be easily adapted to a wide variety of specialized trace-classification tasks. 

 

META-SiM Projector 

To help researchers easily visualize dimensionally reduced projections of their own single-molecule data 

and apply labels for fine-tuning of the foundation model to their own projects, we built an online interactive 

tool called META-SiM Projector (https://www.simol-projector.org). This tool allows users to visualize the 

embeddings generated by META-SiM from their own experimental data as 2-D or 3-D projections created 

with PCA, t-SNE or UMAP algorithms. In these projections, each point represents a single-molecule trace.  

When a point is selected, the corresponding trace is shown along with a list of other traces ordered by 

distance in embedding space from the selected trace, facilitating interactive browsing of the dataset by 

trace similarity. Users can also use a label creation tool to apply numerical, text, and/or Boolean labels 

to traces; upon so doing, label Self-Consistency Scores (SCS) are calculated in real time for feedback 

on the consistency of labeling. These labels can then be directly used for fine-tuning of META-SiM via 

the provided Google Colab notebooks (https://www.simol-projector.org), and can be saved with the raw 

time traces to a local hard drive. Even in cases where META-SiM performs well without fine-tuning, 

manual labeling of a small subset of the data (followed by complete labeling with the fine-tuned model) 

can be very useful as an annotation tool that facilitates recognition of patterns in a dataset from its 

projection plot (e.g., UMAP). PCA, t-SNE and UMAP embedding projections can be exported as images, 

and individual time trace plots can be saved as vector graphics files. META-SiM Projector also allows 

isolation of individual sub-populations within a dataset and re-calculation of the embedding projection to 

investigate variation within the sub-population. Finally, when a user analyzes data with this tool, a unique 

link can be generated for easy sharing of traces and embedding projections between users and research 

groups. More comprehensive guidelines and details about software functions are described in the META-

SiM Projector Quick User Guide on the website.  
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Principal Projection of Embedding Vectors 

To provide more direct control over the projection of information contained in the embedding vectors 

generated by the network into a lower-dimensional space, we developed a method to find linear 

operations 𝑼෩ ∈ ℝ×෩  that project a D-dimensional META-SiM trace-level embedding vector 𝒛 =METASIM(𝑥) ∈ ℝ into a lower-dimensional embedding vector. The projection operator for a group of 

tasks {task}, 𝑖 ∈ [1, 𝑛]  is obtained by finding the principal directions that contribute the most to these 

tasks. This is achieved by computing a single-value decomposition of the concatenated task weight matrix 𝑊tasks = ൫𝑊taskభ , 𝑊taskమ , … ൯ = 𝑼𝑺𝑽், where the weight matrices are obtained from pre-training.  

To reduce the rank of the projection matrix, we keep the largest diagonal components of 𝑆  that 

account for 𝜆 = 95% of total second 2nd momentum, i.e., ∑ 𝑠ଶ෩ୀଵ = 𝜆 ∗ ∑ 𝑠ଶୀଵ   where 𝑆 is in decreasing 

order. The matrix 𝑼෩  is obtained by using the corresponding columns of the left unitary matrix 𝑼 of the 

singular-value decomposition. The tasks are grouped together based on their common physical 

meanings for time traces, such as kinetic rate constant, FRET value distributions, signal-to-noise ratio 

and photophysical properties (Supplementary Table 1). 

To measure the alignment of two low-rank projection matrices 𝑼෩ଵ and 𝑼෩ଶ, we use the 2-norm of their 

product matrix, i.e., ϕ = ||𝑼෩ ଵ் 𝑼෩ଶ||ଶ where we denote the alignment as ϕ. For orthogonal 𝑼෩ଵ and 𝑼෩ଶ, 𝜙 =0. For equivalent 𝑼෩ଵ and 𝑼෩ଶ up to a unitary rotation, 𝜙 = 1. For general 𝑼෩ଵ and 𝑼෩ଶ, 0 ≤ 𝜙 ≤ 1.  

 

Label Self-Consistency Score (SCS) 

The label SCS is defined as the probability of observing the same label between two traces if they are k-

nearest-neighbors in the embedding space, i.e., one trace is among the k nearest neighbors of the other 

based on the k-nearest neighbors algorithm (k-NN)49, averaged across all traces in the dataset. Given a 

dataset of traces {𝑥} and their labels {𝑦} where 𝑖 ∈ [1, 𝑁], we first run network inference to obtain the 

trace-level embedding vectors 𝑧 = METASIM(𝑥)  for each trace. For each 𝑧 , we find the 𝑘  nearest 

neighbours NN(𝑧 , 𝑘). The label SCS for a label 𝑙 is defined as:  
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SCS({𝑧}, {𝑦}, 𝑙, 𝑘) = 1𝑘𝑁   𝛿(𝑦 , 𝑙)𝛿൫𝑦 , 𝑦൯∈ேே(௭,)
ே

ୀଵ , 
 

where 𝛿(𝑖, 𝑗) is the Kronecker delta function. We used 𝑘 = 1 throughout this study.  

 

Local Shannon Entropy (LSE) of Single-Molecule Traces 

Given a dataset of traces {𝑥}  and their experimental conditions {𝑦},  where 𝑦  is a categorical label 

belonging to a finite set of experimental conditions 𝐶, we obtain the trace-level embedding of each trace 𝑧 = METASIM(𝑥). Then, for each 𝑧, we find the 𝑘 nearest neighbors NN = NN(𝑧, {𝑧}, 𝑘). The LSE for a 

trace itself and its local nearest neighbors, following the standard definition of Shannon entropy, is written 

as follows:  

 𝑆(𝑥) = −  𝑃൫𝑦 = 𝑐ห𝑗 = 𝑖 or 𝑗 ∈ NN൯ log 𝑃 ൫𝑦 = 𝑐ห𝑗 = 𝑖 or 𝑗 ∈ NN൯∈ , 
 

where the probability 𝑃 can be calculated by: 

 

𝑃൫𝑦 = 𝑐ห𝑗 = 𝑖 or 𝑗 ∈ NN൯ = 11 + 𝑘 𝛿(𝑦 , 𝑐) +  𝛿൫𝑦 , 𝑐൯∈NN . 
 

where 𝛿(𝑖, 𝑗) is the Kronecker delta function. 

In this study, we used 𝑘 = 50 for all Shannon entropy calculations. In principle, 𝑘 should be much 

smaller than the total number of traces for locality. A very small 𝑘, however, should also be avoided to 

minimize fluctuations of the Shannon entropy value due to randomness in small samples. A rule-of-thumb 

for initial value of 𝑘 is to use 𝑘 = 2√𝑁 where 𝑁 is the total number of traces in the dataset. Users can 
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visualize the Shannon entropy values (as in Figs. 5-6) to empirically determine whether the selected 𝑘 

value can reliably detect heterogeneous behaviors in a given dataset. 

 

Single-molecule FRET Atlas 

The smFRET Atlas allows sharing and comparison of diverse smFRET datasets in a common, global 

UMAP projection space. In this Atlas, traces with a given behavior pattern will always appear within 

certain regions of the coordinate space. To construct this Atlas, we generated 1 million synthetic smFRET 

traces with varying dynamics, signal-to-noise ratio (SNR) and FRET value distributions, aiming to sample 

as diverse a set of behaviors as possible to serve as a basis for the global UMAP projection. The UMAP 

model was optimized with unsupervised training using these synthetic traces. 

To annotate this space for greater comprehensibility, the synthetic traces were grouped into 22 

categories with a systematic nomenclature based on the simulation parameters used, "number of states 

- SNR - FRET values – transition rate". While the number of states (1-3) is already an integer parameter, 

SNR, FRET values, and transition rates were divided into categories as follows. SNR was divided into 

"clean" (SNR ≥ 4 ) and "noisy" (SNR < 4 ); FRET value into "high" (value > 0.65 ), "medium", (0.35 ≤
value ≤ 0.65) and "low" (value < 0.35); and transition rate into "fast" (average rate ≥ 0.05 frameିଵ ) and 

"slow" (average rate < 0.05 frameିଵ). Categories are labeled using the first number or letter of each 

classification label. For example, "2-c-mh-f" means a trace with 2 kinetic states, clean SNR, one medium 

state and one high state, and a fast transition rate. A full list of category labels is presented in 

Supplementary Table 3. For annotation, we simulated 22,000 traces in total—1,000 for each category—

and fit the probability density of the projected UMAP scatter plot with a two-dimensional 4-component 

Gaussian mixture model. We chose a small probability density 𝑝 = 10ିଶ to draw the contour of the fitted 

probability density, which shows an approximate boundary for each category (Fig. 4m, Supplementary 

Fig. 5).  



26 
 

An end user can directly load the trained UMAP to project their own data and plot the fitted boundary 

to relate their own data to the categories used in the synthetic smFRET traces, increasing interpretability 

of this low-dimensional projection of their dataset(s). 

 

 

Experimental Datasets 

Experimental datasets for downstream task analysis evaluation are from 9 different biological systems 

(Supplementary Table 2). For trace classification and segmentation, 5 systems were included for fine-

tuning and testing: a toehold-exchange-based DNA walker15 (D1), a DNA swinging arm50 (D2), a 

preQ1 riboswitch51 (D3), a paused transcriptional elongation complex35 (D4), A Mn2+ riboswitch52 (D5). For 

stoichiometry analysis, we used an unpublished dataset (D6) from a 6-subunit protein complex bearing 

up to one HaloTag Alexa Fluor 660 (Alexa660) label per monomer. For kinetic fingerprinting, the dataset 

(D7) is from the detection of the EGFR point mutation T790M DNA sequence48. For trace idealization, 

the dataset (D8) is from a benchmark study of 14 tools where this specific testing dataset is from ACTR-

NCBD Binding at 10-ms binning14,53. For the biological discovery assisted by LSE, the dataset is from an 

smFRET study of pre-mRNA splicing in yeast6.  

 

Data Availability 

Experimental traces (stored in a customized data format) and META-SiM model weights (stored in HDF5 

format) are available in our GitHub repository https://www.github.com/simol-lab/meta-sim .  

 

Code Availability 

Code for generating embedding vectors and UMAP projections, applying META-SiM for downstream 

tasks and calculating metrics including the SCS and LSE and is available in our GitHub repository 

https://www.github.com/simol-lab/meta-sim. 
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Fig. 1 | META-SiM enables analysis, visualization, and efficient discovery from diverse single-molecule 
datasets. a, Information from experimental time traces is encoded into high-dimensional embeddings by META-
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SiM for diverse downstream tasks. b, META-SiM is pre-trained with ~1M synthetic traces on diverse common 
analysis tasks. c, The META-SiM Projector enables visualization of entire datasets based on information from the 
extracted embeddings. d, The embeddings from smFRET experiments can be projected into a global coordinate 
space, the smFRET Atlas, to facilitate comprehension and comparison. e, f, g, Local Shannon Entropy scores 
enable identification and analysis of rare or condition-specific behaviors, facilitating efficient discovery from complex 
datasets. h, i, j, META-SiM (with or without fine-tuning) can be used for diverse downstream analysis tasks. k, 
Optional manual labeling of a small subset (~100 traces) of data from new types of experiments can be performed 
in the Projector, and assessed through a label Self-Consistency Score (SCS); these labels can be used to fine-tune 
the model for new tasks. l, Basis for model predictions visualized through Principal Projection. 
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Fig. 2 | Architecture and training of META-SiM model. a, Architecture of META-SiM foundation model. An 
intensity vs. time trace of n frames is converted to n/W trace patches of width W frames. Trace patches are 
converted into tokens by a flatten operation, followed by a linear projection. The tokens are then combined with a 
position embedding, prepended by a class token, and fed into the transformer block with N multi-head attention 
layers, followed by a feed-forward network to create a trace-level embedding. A linear projection followed by an 
unstack operation transforms the output back to a D-dimensional frame-level embedding. For trace-level tasks, the 
trace-level embedding vector is used for linear logistic regression. For frame-level tasks, each frame-level 
embedding vector is used for linear logistic regression. b, Multitask training groups the simulated traces into mini 
batches with an equal split among training tasks to avoid catastrophic forgetting that can occur when tasks are 
trained sequentially. c, Loss function plots for the total loss (left) and for six representative tasks (right). All loss 
function values decreased, as expected, after 1,000 training steps, showing that the model learned from all the 
training task in parallel.  
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Fig. 3 | Performance of META-SiM on diverse analysis tasks. a,b,c,d, Evaluation of performance in trace 
segmentation and classification, and benchmarking against the recent AI model DeepFRET. a, Schematic of the 
five systems used in fine-tuning and testing: a toehold-exchange-based DNA walker (D1)50, a DNA swinging arm 
(D2)51, a preQ1 riboswitch (D3)51, a paused transcriptional elongation complex (D4)52, and a Mn2+ riboswitch (D5)14. 
b, The concordance of trace curation (acceptance or rejection for further analysis) of AI models with manual analysis. 
c, FRET distribution overlap between each AI model and manual analysis. d, Representative FRET histograms 
based on traces curated and segmented by META-SiM (fine-tuned) versus manual analysis (Supplementary Fig. 
2b). e,f,g, Evaluation of performance in trace idealization for META-SiM not fine-tuned, and benchmarking against 
14 other tools15: (1) Pomegranate; (2) Tracy(HMM); (3) FRETboard; (4) Hidden-Markury; (5) SMACKS(SS); (6) 
SMACKS; (7) Correlation; (8) Edge finding(CK); (9) Edge finding(k-means); (10) Step finding; (11) STaSI; (12) 
MASH-FRET(bootstrap); (13) MASH-FRET(prob); (14) postFRET. Time traces from a two-state FRET system (e) 
were idealized to estimate FRET efficiency in the two states (g) and create dwell time distributions (Supplementary 
Fig. 2c) that are fit with single exponential distributions to yield transition rate constants (f). h, i, Evaluation of 
performance in analysis of stoichiometry using a photobleaching dataset from a 6-subunit protein complex bearing 
up to one HaloTag Alexa Fluor 660 (Alexa660) label per monomer (h). (i) The distribution of photobleaching steps 
by manual counting performed by 3 trained experts vs. predictions by META-SiM fine-tuned for photobleaching 
steps counting. j,k, Evaluation of performance in kinetic fingerprinting and benchmarking against HMM-based 
analysis, in a use case involving detection of the EGFR point mutation T790M in DNA (j) with representative traces 
arising from of mutant (MUT) and wild-type (WT) or non-specific binding in the experiments. (k) MUT-like traces per 
field of view accepted by META-SiM vs. conventional HMM analysis and thresholding.  
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Fig. 4 | Whole-dataset visualization and interpretation with META-SiM Projector. a, 3D projections of high-
dimensional embeddings for an smFRET dataset created with UMAP, PCA and t-SNE algorithms. Each point 
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represents a projection of the high-dimensional embedding of a single time trace into 3D space. b, c, 2D UMAP 
projections of simulated traces with varying signal-to-noise ratio (SNR) (b) or mean dwell time (c). d, 2D UMAP 
projection of traces from dataset D135 that were manually accepted (red) or rejected (blue) for further analysis. e, 
2D UMAP projection of the traces from a dataset D46 collected in 600 mM or 100 mM KCl. f, Schematic of the 
Principal Projection operation. The general dimensionality reduction uses the trace-level embedding h generated 
from META-SiM, while the Principal Projected embedding h’ is generated by projecting h with a low-rank matrix U, 
which is generated by low-rank decomposition of the head layers grouped by task. g, 2D UMAP projection of the 
same traces in panel (e), but with Principal Projection by FRET Value. h, i, j, 2D UMAP projections of the traces 
from datasets D4 (h), D7 (i), and D6 (j) colored by the predicted labels from META-SiM classifiers, with Principal 
Projection according to different attributes of interest as indicated in the blue inset boxes. k rate = transition rate; 
FRET State # = number of FRET states; FRET Value = trace-wide FRET efficiency; A Lifetime = acceptor lifetime 
prior to bleaching; D Lifetime = donor lifetime prior to bleaching; PB steps = photobleaching steps; SNR = signal-
to-noise ratio; Sgl.Ch.k rate = single-channel transition rate; Sgl.Ch.PB steps = single-channel photobleaching steps; 
Sgl.Ch.SNR = single-channel SNR. k, 2D UMAP projections of traces from dataset D1 where DNA walkers of 
different toehold lengths (8, 7, or 5 nucleotides, nt) yielded different stepping rates. The Principal Projection by 
kinetic rate and FRET value yields clustering of traces by toehold length, illustrating clear differences in behavior 
among these three constructs. l, Alignment of specific data analysis attributes with the META-SiM classifier.   m, 
smFRET Atlas showing a UMAP projection of 22,000 simulated traces grouped by behavior, according to the 
following nomenclature: “FRET state number–SNR–FRET value–transition rate.” FRET state number takes values 
of “1”, “2”, or “3”; SNR takes values of “c” (clean, or high SNR) and “n” (noisy, or low SNR); FRET value takes values 
of “h” (high), “m” (middle), and/or “l” (low); transition rate takes values of “s” (slow) and “f” (fast). Contours indicate 
where the fitted probability density of the corresponding cluster drops to 0.01; a trace outside the contour is thus 
unlikely to belong to the corresponding cluster.  
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Fig. 5 | Quantitative metrics for quality control and discovery. a, Schematic of two proposed metrics: label Self-
Consistency Score (SCS) and Local Shannon Entropy (LSE). The distance between two trace-level embeddings is 
used to quantify the similarity of any two traces, which is used as a basis for both metrics. The label SCS is a metric 
from 0 to 1 that is the average of the probability Pi in a dataset, where Pi is the probability of any given k-nearest 
neighbor (k-NN) trace, denoted by the dashed circle, having the same label as the center trace i. In this example, 
User A’s labeling has a higher score than User B’s since the labels within the area enclosed by the dashed line are 
more similar to that of trace i. LSE is a non-negative metric that quantifies the experiment condition complexity of 
the target trace and its k-NN traces by calculating the Shannon entropy of the probability distribution of the traces’ 
experiment conditions. A high entropy (Behavior Type #1) indicates that a behavior can be found in multiple datasets 
or experimental conditions (e.g., in Experimental Conditions A and B), and a low entropy (Behavior Type #2) 
indicates that a behavior can be found in fewer datasets or conditions (e.g., only in Experiment Condition B). b, 
Label SCS of individual users as a function of the fraction of traces analyzed. c, Label SCS distribution of movies 
in datasets D1-D5 from 5 individual users. d, e, UMAP projection of two experimental conditions from dataset D4 
where each trace is colored by LSE. The low-entropy traces are clustered at different locations on the UMAP at 
different concentrations of KCl, indicating the presence of KCl-dependent behaviors in the corresponding smFRET 
traces. 
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Fig. 6 | META-SiM as a tool for biological discovery in complex smFRET data. a, Labeling and immobilization 
scheme for use in a smFRET study of pre-mRNA splicing6. D = FRET donor, A = FRET acceptor, SS = splice site. 
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b, Model of the multitude of pre-mRNA conformational changes and defined complexes during splicing, involving 
the first and second steps of catalysis. The dashed red box indicates a conformational intermediate discovered here 
in the experimental smFRET dataset. c,d, 2D UMAP projections of the manually curated traces from four critical 
conditions related to the first and second steps of splicing, where the traces are projected into smFRET Atlas (c) or 
system-specific (d) coordinates. e,f FRET histograms (e) and TODP plots (f) of the traces in (c) and (d). g,h 2D 
UMAP projection of the 10% of traces with the lowest LSE, projected into the smFRET Atlas (g) or system-specific 
(h) coordinates. i,j FRET histograms (i) and TODP plots (j) of the traces in (g) and (h). 
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