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Abstract 42 

Aging is associated with increased breast cancer risk and outcomes are worse for the oldest and 43 

youngest patients, regardless of subtype. It is not known how cells in the breast tumor 44 

microenvironment are impacted by age and how they might contribute to age-related disease 45 

pathology. Here, we discover age-associated differences in cell states and interactions in human 46 

estrogen receptor-positive (ER+) and triple-negative breast cancers (TNBC) using new 47 

computational analyses of existing single-cell gene expression data. Age-specific program 48 

enrichment (ASPEN) analysis reveals age-related changes, including increased tumor cell 49 

epithelial-mesenchymal transition, cancer-associated fibroblast inflammatory responses, and T 50 

cell stress responses and apoptosis in TNBC. ER+ breast cancer is dominated by increased 51 

cancer cell estrogen receptor 1 (ESR1) and luminal cell activity, reduced immune cell metabolism, 52 

and decreased vascular and extracellular matrix (ECM) remodeling with age. Cell interactome 53 

analysis reveals candidate signaling pathways that drive many of these cell states. This work lays 54 

a foundation for discovery of age-adapted therapeutic interventions for breast cancer. 55 

 56 

Main text  57 

Breast cancer is the second most commonly diagnosed cancer worldwide1,2. Relative to patients 58 

55-64 years of age, both younger (<45) and older (>65) patients with early-stage disease have 59 

worse breast cancer-related outcomes, regardless of subtype, and older women fare the worst3,4. 60 

It is not known why breast cancer mortality rates are higher for the youngest and oldest women 61 

and the reasons are likely complex. Confounding our understanding is the fact that older women, 62 

despite accounting for the vast majority of breast cancer cases, are underrepresented in clinical 63 

trials5,6. Inclusion of women under the age of 40 in clinical trials is also rare due to the fact that 64 

they represent only ~7% of all breast cancer cases7. These deficits raise the question of whether 65 

trial results reflect real world outcomes. 66 

 67 

Age at diagnosis affects prognosis differently based on molecular subtype8–10. Young women are 68 

more likely to develop more aggressive subtypes of breast cancer, such as triple-negative breast 69 

cancer (TNBC). Furthermore, young age is considered an independent risk factor for TNBC 70 

recurrence and death7,11,12. The incidence of all breast cancer subtypes increases with age, with 71 

hormone receptor-positive (HR+) disease increasing the most dramatically and thus representing 72 

the most prevalent subtype among older women13. These facts suggest there are age-related 73 

factors that underlie breast cancer initiation and progression. 74 

 75 
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Current breast cancer treatments are often tailored to the needs of different age populations due 76 

to tolerability, comorbidities, and variable toxicity14–17; however, very little is known about the 77 

relationship between age and treatment efficacy. We may therefore be missing opportunities for 78 

care and treatment of different breast cancer patient populations. 79 

 80 

Results from prior studies, including our own, show that the breast cancer landscape is 81 

molecularly distinct with age17,18. Various prognostic “aging” signatures have been developed19–82 
22; however, these signatures were derived from bulk data and are subtype agnostic. We reasoned 83 

that a deeper understanding of the age-associated molecular and biological programs defining 84 

breast cancer at cell-type resolution that also considers the well-documented biological and 85 

prognostic differences observed across breast cancer subtypes could provide a foundation for 86 

developing age-specific treatments, which may be necessary to improve outcomes for all patients.  87 

 88 

In this Analysis, we develop a comprehensive computational framework for understanding cell-89 

specific age-associated changes in gene expression and intercellular interactions within the tumor 90 

microenvironment of TNBC and estrogen receptor-positive (ER+) breast cancers. Our results 91 

establish that age is a strong driver of microenvironment heterogeneity, and that tumor-associated 92 

epithelial, immune, and stromal cell types are biologically distinct with age in a breast cancer 93 

subtype-dependent manner. Collectively, our results offer new insights into age-related functional 94 

programs, suggesting that breast cancer therapies could be improved by tailoring them to age-95 

related molecular features. 96 

 97 

Results 98 

Age-related gene expression and functional gene set enrichment in TNBC and ER+ breast 99 

cancer 100 

To characterize the age-related molecular landscape of breast cancer, we analyzed bulk gene 101 

expression in age-stratified tumors from patients with TNBC and ER+/HER2- (ER+) subtypes. We 102 

used the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) bulk gene 103 

expression database to identify differentially expressed genes (DEGs) between patients <45 104 

years (“younger”) and >65 years (“older”) at diagnosis with stage I-III disease (Supplementary 105 

Table 1).  106 

 107 

For TNBC, 38 DEGs were significantly enriched in tumors from younger patients and 20 in tumors 108 

from older patients when assessing the genes with the highest overall variance across the entire 109 
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TNBC cohort (Fig. 1a, Supplementary Table 2). Gene set enrichment analysis (GSEA) of these 110 

highest variance genes yielded pathways associated with immune processes, nearly all of which 111 

were enriched in the older patients; these included antigen presentation and processing 112 

(particularly via MHC-II), inflammation response, and interferon gamma (IFNγ) signaling (Fig. 1b 113 

Supplementary Fig. 1a, Supplementary Table 3). In the younger TNBC cohort, gene sets involved 114 

in cell cycle and oncogenic signaling pathways were significantly enriched (Fig. 1b).  115 

  116 

In the ER+ tumors, assessing the genes with highest overall variance across all ER+ patients 117 

yielded 135 DEGs that were significantly enriched in the older group and 139 in the younger group 118 

(Fig. 1c, Supplementary Table 2). In agreement with a prior report17, ESR1 (encoding the estrogen 119 

receptor 1) was highly enriched in the older cohort (Fig. 1c). GSEA showed that all the 120 

differentially enriched pathways in ER+ were enriched in the younger cohort and included gene 121 

sets related to breast biology, breast cancer molecular subtype, and mitogenic stimuli (Fig. 1d, 122 

Supplementary Fig. 1b, Supplementary Table 3). Unlike TNBC, ER+ breast cancers did not 123 

display age-stratified immune responses, apart from tumor necrosis factor alpha (TNFα) 124 

signaling, which was enriched in the younger cohort (Fig. 1d, Supplementary Table 3). 125 

 126 

These results revealed age-stratified molecular landscapes that are distinct between TNBC and 127 

ER+ breast cancer. Nevertheless, these bulk transcriptomic analyses did not capture the cell-128 

specific context required for obtaining actionable insights. 129 

 130 

Development of a single-cell Age-Specific Program ENrichment (ASPEN) analysis method 131 

To leverage the resolution afforded by single-cell genomics for deeper insights into age-related 132 

breast cancer transcriptomes, we developed a single-cell RNA-seq data analysis platform, termed 133 

Age-Specific Program ENrichment (ASPEN), that identifies gene sets (e.g., MSigDB Pathways) 134 

that correlate with age across individual cell populations. ASPEN incorporates two parallel 135 

methods (Fig. 2). First, for each annotated cell type, expressed genes are ranked by their strength 136 

of correlation with age and then GSEA is performed (Fig. 2a). Second, a signature scoring 137 

algorithm is used to generate a gene set score per cell type per donor followed by correlation of 138 

the average signature score per cell type to age23 (Fig. 2b). Those two measures are visualized 139 

with a bubble plot in which the bubble fill color represents the GSEA normalized enrichment score 140 

(NES), and the bubble size represents the strength of signature correlation (Fig. 2c). Overall, this 141 

method is optimized to highlight the strongest age-associated differences in gene expression 142 

programs for individual cell types.  143 



5 

 144 

Cell-specific Age-Related Programs (ARPs) show global enrichment in TNBC and 145 

reduction in ER+  146 

In order to elucidate cell-specific gene expression programs that correlate with age in breast 147 

cancer, we used the single-cell and spatially resolved human breast cancer atlas24. The dataset 148 

includes 10 TNBC samples (n=42,512 total cells, average age 55.3 years, age range 35-73) and 149 

11 ER+ samples (n=38,241 total cells, average age 60.9 years, age range 42-88). There were 150 

insufficient numbers of cells from HER2+ samples across the age spectrum for these analyses. 151 

 152 

We first examined the abundance of the 8 major cell populations identified in the atlas with age 153 

(“celltype_major”: cancer epithelium, normal epithelium, cancer-associated fibroblasts (CAFs), 154 

myeloid cells, T cells, B cells, endothelium, and perivascular-like (PVL) cells), and their 155 

composition based on 29 annotated functional cell subpopulations also noted in the atlas (i.e., 156 

“celltype_minor” as a proportion of its respective “celltype_major”)24. In TNBC, the proportion of 157 

myeloid cells increased (R2 = 0.67, p = 0.034) and CAFs decreased (R2 = -0.66, p = 0.037) with 158 

age (data not shown), and an age-related decrease in CD4+ T cells as a percentage of all T cells 159 

approached significance (R2 = -0.62, p = 0.054; Supplementary Fig. 2a, b). In the ER+ tumors, 160 

the abundance of major populations did not change with age (data not shown), yet the proportion 161 

of inflammatory CAFs (iCAFs) (R2 = -0.71, p=0.014), and differentiated PVL cells (R2 = -0.59, 162 

p=0.055) had negative relationships with age. Positive correlations with myofibroblast-like CAFs 163 

(myCAFs) (R2 = 0.71, p=0.014) and immature PVL cells (R2 = 0.63, p=0.039) were also identified 164 

(Supplementary Fig. 3a, b). We also noticed a trend toward increased luminal A and decreased 165 

luminal B cell abundance in the ER+ tumors with age, consistent with prior reports of luminal A 166 

predominance in older ER+ breast cancer patients13,25 167 

 168 

We then applied ASPEN to identify age-related programs (ARPs), defined as gene expression 169 

sets (e.g. Hallmark pathways from MsigDB) that correlate with age. Global analysis of normalized 170 

enrichment scores (NES) from each of the 29 minor cell populations revealed that most ARPs 171 

increased with age in TNBC and decreased with age in ER+ breast cancer (Supplementary Fig. 172 

4), consistent with results from the METABRIC analysis (Fig. 1b, d). Enrichment patterns were 173 

unique to each breast cancer subtype (Figure 3), a finding that was conserved when we applied 174 

ASPEN to the 49 most granular annotated cell subtypes (“celltype_subset”, Supplementary Fig. 175 

5)24. Details of the ASPEN results for each breast cancer subtype follow in subsequent sections. 176 

 177 
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To evaluate senescence as a potential driver of age-associated gene expression changes, we 178 

applied ASPEN to published senescence signatures. While some signatures were enriched in 179 

older patients (e.g. CAFs in TNBC), senescence ARPs were not observed in other cell populations 180 

and notably mostly absent from ER+ breast cancer (Supplementary Fig. 6). These initial 181 

observations indicated that although the proportions of most tumor-associated cell types did not 182 

change significantly with age, their respective transcriptional programs did.  183 

 184 

Cell-specific enrichments of epithelial-mesenchymal transition, immune responses, and 185 

stress responses with age in TNBC 186 

We inspected some of the ARPs to gain deeper insights into cell-specific cellular activity within 187 

the tumor microenvironment (TME) with age.  188 

 189 

In TNBC, epithelial-mesenchymal transition (EMT) in cancer epithelial cell subpopulations 190 

represented the strongest overall enrichment with increased age (Fig. 3a, Supplementary Table 191 

4). EMT is a cellular program that confers enhanced tumor-initiating capacity, invasion, and 192 

metastatic potential26,27. In the basal cancer cells, which are a dominant cancer epithelial cell type 193 

in these tumors (Supplemental Fig. 2a), enrichment of EMT was concurrent with increased 194 

immune response, K-Ras signaling, cellular stress responses, and angiogenesis, and decreased 195 

oxidative phosphorylation, myc targets, and E2F targets with age (Fig. 3a-e).  196 

 197 

In agreement with enrichment of immune pathways with increased age from the METABRIC 198 

analysis (Fig. 1b), immune function and inflammation were positively correlated with age in 199 

several cell populations, including CD4+ T cells, CD8+ T cells, iCAFs and myCAFs (Fig. 3b, 200 

Supplementary Table 4). Of the immune programs, the strongest ARPs (i.e., those with the 201 

highest NES) occurred in both subsets of CAFs, whereby interferon (IFNα and IFNγ) response 202 

pathways were increased with age (Fig. 3b, Supplementary Table 4). CD4+ and CD8+ T cells 203 

displayed elevated stress responses and apoptosis with age (Fig. 3d). Despite the increased 204 

numbers of myeloid cells with age, monocyte/macrophage populations displayed no ARPs (Fig. 205 

3a-e).  206 

 207 

These results established ARPs for specific cell types in TNBC. The age-associated changes in 208 

some cell types (T cells, CAFs) were reflected in altered gene expression, whereas other cell 209 

types (myeloid) predominantly show altered abundance. With increasing age, TNBC is dominated 210 
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by cancer cells with an EMT phenotype and an inflamed microenvironment in which T cells and 211 

CAFs display responses to cellular stress and immune stimuli. 212 

 213 

Cell-specific reductions in metabolism, myc targets, and interferon responses with age in 214 

ER+ breast cancer 215 

Unlike TNBC, and consistent with the METABRIC analysis (Fig. 1c, d), the majority of ARPs in 216 

ER+ breast tumors were enriched in the younger cohort (Fig. 3, Supplementary Figs. 4, 5). The 217 

only significant ARPs in the epithelial subpopulations were high interferon responses and myc 218 

targets in the youngest donors (Fig. 3a, b, Supplementary Table 4). There were no estrogen 219 

response ARPs in the tumor epithelial cells (Fig. 3a) despite the shift toward luminal A and high 220 

ESR1 expression observed in the older METABRIC cohort (Fig. 1c and Supplementary Fig. 3).  221 

 222 

Unlike TNBC, metabolic processes were significantly enriched in the youngest ER+ donors, 223 

particularly in the vasculature, plasmablasts, CD4+ and CD8+ T cells (Fig. 3c, Supplementary 224 

Table 4). In other words, these cell populations were less metabolically active in the older ER+ 225 

cohort.  226 

 227 

Unlike the myeloid compartment of TNBC, which exhibited no ARPs, the myeloid cells in ER+ 228 

tumors appeared to be programmed differently with age. Specifically, TNFα signaling significantly 229 

correlated with increasing age, while interferon responses decreased with age (Fig. 3b, 230 

Supplementary Table 4). Monocytes/macrophages were also significantly less metabolically 231 

active with age (Fig. 3c). These results suggested type I inflammatory responses in the younger 232 

cohort and a tumor-promoting inflammatory phenotype28 in the older cohort in ER+ tumors. 233 

 234 

ASPEN revealed significant differences in T cell populations with age in the ER+ tumors, which 235 

were similar for CD4+ and CD8+ T cells. Specifically, TNFα and interleukin-2 (IL2) signaling 236 

increased while IFNα responses, myc targets, and, as already mentioned, metabolism, decreased 237 

with age (Fig. 3 a-c). These findings were consistent when evaluating the specific cell 238 

subpopulations (“celltype_subset”; Supplementary Fig. 5). 239 

 240 

Collectively, the cell-specific ARPs in ER+ tumors indicated enrichment of tumor-supportive 241 

inflammatory activity in myeloid cells, reductions in metabolically active endothelium, and 242 

attenuated interferon responses in cancer cells with age. The ARPs in CD4+ and CD8+ T cells 243 

suggested quiescence, exhaustion, and metabolic dysfunction with increasing age.  244 
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 245 

Age-differential cellular interactomes in TNBC and ER+ 246 

Having identified key cell-specific age-related transcriptional programs, we investigated whether 247 

cell-cell interactions differ with age by employing CellChat. CellChat integrates the expression of 248 

ligands, receptors, cofactors, multimeric receptor-ligand complexes, soluble agonists and 249 

antagonists, and stimulatory and inhibitory membrane-bound coreceptors as well as abundance 250 

of each cell type to infer the likelihood of a specific ligand-receptor pair interaction between 251 

specific cells29. For these analyses, we stratified the single-cell data24 by age (≤55 and >55) for 252 

both breast cancer subtypes. 253 

 254 

In TNBC, the older cohort exhibited a 1.85-fold increase in total cell-cell interactions and a 1.48-255 

fold increase in interaction strength (Fig. 4a, b; Supplementary Table 6). Both younger and older 256 

TNBC cohorts showed strong interactions between cancer epithelial cells and T cells, and among 257 

T cells themselves (Fig. 4a, b). Age impacted the TNBC interactome whereby the older cohort 258 

was dominated by bidirectional myeloid:T cell communication and the younger cohort was 259 

enriched for CAF interactions with T cells and cancer epithelium (Fig. 4c; Supplementary Table 260 

6). These results align with METABRIC and ASPEN analyses, which highlighted immune related 261 

ARPs (Figs. 1a, b, 3b).  262 

 263 

In ER+ breast cancer, the older cohort had a 1.16-fold increase in total interactions but a 1.06-264 

fold decrease in interaction strength (Fig. 4d, e; Supplementary Table 6). Both age groups 265 

displayed strong CAFs:cancer epithelial interactions (Fig. 4d, e). Interactions between cancer 266 

epithelial cells and both myeloid and T cells dominated the older cohort, while interactions within 267 

the vascular compartment (endothelium and PVLs; Fig. 4f) were enriched in the younger cohort, 268 

consistent with increased metabolic activity observed earlier (Fig. 3c).  269 

 270 

To refine our understanding of which cells accounted for the most significant age-related 271 

differences, we examined the 29 minor cell subpopulations. This revealed numerous age-stratified 272 

interactions, and we describe only the most predominant of those.  273 

 274 

In TNBC, cancer basal cells enriched their communication with macrophages, CD4+, and CD8+ 275 

T cells (Fig. 4g, h). Despite the rise in CAF-specific ARPs with age (Fig. 3), CAF interactions were 276 

stronger in younger TNBC patients, particularly through myCAF and iCAF signaling to CD4+ and 277 

CD8+ T cells (Fig. 4g, h, Supplementary Table 6). Macrophages exhibited the most significant 278 
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age-related interaction changes, marked by homotypic interactions and increased communication 279 

with cancer basal cells, monocytes, CD4+ T cells, and CD8+ T cells (Fig. 4g, h), despite their lack 280 

of ARPs (Fig. 3).  281 

 282 

In TNBC, increased macrophage:T cell interactions with age, along with signals of enhanced 283 

MHC-II presentation from the METABRIC bulk analysis (Fig. 1b), led us to examine cell-specific 284 

MHC class II expression. While professional antigen-presenting cells (APCs) accounted for most 285 

MHC-II (HLA) gene expression, age-biased expression was driven by CAFs, vascular cells, and 286 

cancer cells in the older patients (Supplementary Fig. 7a), suggesting IFNγ30 exposure and 287 

aligning with enriched interferon response genes in these cells (Fig. 3b). 288 

 289 

In ER+ breast cancer, ACKR1+ endothelial cells had 15-fold increased homotypic interactions 290 

and significantly more interactions with various cell populations in the younger cohort (Fig. 4i, j, 291 

Supplementary Table 6), aligning with their enhanced protein secretion, and metabolic activity 292 

ARPs in younger patients (Fig. 3b). ACKR1 modulates innate immunity by trafficking 293 

chemokines31; hence, their enhanced interferon response ARPs suggests stronger immune 294 

modulation in the younger cohort. In addition to their increased abundance in the younger cohort 295 

(Supplementary Fig. 3a), iCAFs were a dominant signaling source in the younger cohort, whereas 296 

myCAFs were increased in abundance (Supplementary Fig. 3a) and had stronger interactions 297 

with luminal A cells with age (Fig. 4i, j). Cancer luminal A cells exhibited the most dramatic age-298 

related interaction changes, with significant increases in autocrine and immune cell interactions 299 

with age (Fig. 4i, j, Supplementary Table 6). 300 

 301 

The significant activity of the cancer epithelium in ER+ breast cancer, along with elevated ESR1 302 

with age in METABRIC (Fig. 1c), prompted us to examine cell-specific ESR1 expression. ESR1 303 

was significantly higher in luminal A and luminal B cancer cells in older patients (Supplementary 304 

Fig. 7b), although, as mentioned earlier, estrogen response gene sets did not correlate with age 305 

in these cells (Fig. 3a).  306 

 307 

Collectively, these results revealed distinct intercellular interactions that occur in an age-biased 308 

manner in TNBC and ER+ breast cancer. Although our study is not powered to analyze the spatial 309 

transcriptomic data from these tumors by age, prior analysis24 confirms the co-localization of the 310 

cell types we identified through these analyses. 311 

 312 
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Identifying age-stratified signaling networks in TNBC and ER+ 313 

We next explored the molecular basis for age-biased cell-cell interactions in TNBC and ER+ 314 

breast cancer. Evaluating the 3,234 annotated ligand-receptor pairs in the CellChat database 315 

across each of the 29 minor cell types for each breast cancer subtype risked producing an 316 

overwhelming number of signaling nodes. Therefore, we developed regression-based selection 317 

criteria to identify subsets of cells on which to focus and the most prominent signaling interactions 318 

between them (see Methods). 319 

 320 

Specific ligand-receptor pairs are categorized into general “signaling pathways”29 and we use the 321 

term “signaling interaction” to denote signaling pathways predicted to be activated between 322 

specific cell types and “signaling node” to refer to the specific ligand-receptor pair(s) activated 323 

between cells. Results for each breast cancer subtype are described in the following sections. 324 

 325 

Age-associated signaling network in TNBC 326 

The selection criteria yielded 7 cell types for TNBC: iCAF, myCAF, basal cancer cells, 327 

macrophages, monocytes, CD4+, and CD8+ T cells (7×7=49 possible source/target cell 328 

combinations). We used the CellChat rankNet function to calculate scaled interaction weights 329 

across these 49 combinations, yielding 650 signaling interactions comprising 71 different 330 

signaling pathways (Supplementary Fig. 8). 483 (74%) of these had higher probability values in 331 

the older cohort, 307 signaling interactions were exclusive to the older cohort, and 48 were 332 

exclusive to the younger cohort (Supplementary Fig. 8). Nine signaling pathways, supported by 333 

43 ligand-receptor pairs, were identified as the most dominant across all selected cells in one or 334 

both age cohorts (Supplementary Table 7).  335 

  336 

The monocyte/macrophage-derived galectin 9 (Gal9, LGALS9) signaling interaction showed the 337 

greatest difference between TNBC age groups, being elevated in older patients (Fig. 5a). Gal9 338 

signaling via prolyl 4-hydroxylase beta (P4HB) is linked to EMT promotion and age-related 339 

cancers32. Signaling nodes between CAF- and monocyte/macrophage-derived Gal9 and P4HB 340 

on cancer basal cells were exclusive to the older cohort (Fig. 5a, b; Supplementary Fig. 8). Gal9-341 

CD44 signaling increased with age, which promotes regulatory T cell (Treg) function and CD8+ T 342 

cell death33. CAF- and monocyte/macrophage-derived Gal9 signaling to CD4+ and CD8+ T cells 343 

was higher in the older cohort (Fig. 5a, b). This result aligns with ASPEN analysis that showed 344 

increased T cell apoptosis with age (Fig. 3d).  345 

 346 
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Given that the interaction between macrophages and T cells represented one of the strongest 347 

cell:cell interactions in older patients (Fig. 4c), we manually curated the specific signaling nodes 348 

for these cell types for further investigation. We observed additional immunosuppressive factors 349 

(e.g., PGE2 and MIF) expressed by myeloid cells in the older cohort (Fig. 5b, Supplementary Fig. 350 

8d, e, Supplementary Table 7). 351 

  352 

Plasminogen activator, urokinase (PLAU) and cyclophilin A (PPIA), which promote EMT in tumor 353 

cells and fibrosis in CAFs34–36, were enriched in signaling nodes between myCAFs:cancer cells 354 

and monocyte/macrophages:cancer cells in the older cohort (Fig. 5a, b), supporting the EMT 355 

ARPs previously observed (Fig. 3). In this cohort, CD55 expressed by CAFs, basal cancer cells, 356 

and monocyte/macrophages was predicted to interact with CD97 (ADGRE5) on CD4+ T cells, 357 

which promotes Treg development37. Immune-suppressive signaling nodes38,39 between the class 358 

I molecule, HLA-F, on both CAFs and cancer basal cells with the inhibitory receptor, leukocyte 359 

immunoglobulin like receptor B1 (LILRB1), on monocyte/macrophages were also noted in older 360 

TNBC patients. 361 

  362 

Three signaling interactions were prominent CAFs in the older cohort, involving the nodes THY-363 

1 cell surface antigen (CD90, THY1), lysophosphatidic acid receptor 1 (LPAR1), and 364 

thrombospondins 1 and 2 (THBS1, THBS2) (Fig. 5a, b). LPAR1 signaling via CD97 (ADGRE5) 365 

promotes fibrosis and chemoresistance in TNBC40. THY1-positive CAFs, annotated as iCAFs in 366 

the atlas24 are known to suppress T-cell function41, promote Treg recruitment 42 and were 367 

associated with poor outcome in glioblastoma43. Elevated THBS1 signaling, particularly via 368 

syndecan-1 (SDC1), which was observed in CAFs in the older cohort (Fig. 5a, b), aids cancer cell 369 

motility44 and is associated with reduced survival in breast cancer45. 370 

  371 

Expression of the CD8+ T cell receptor, concomitant with HLA genes associated with MHC-I on 372 

cancer basal cells, was higher in the older cohort (Fig. 5a, b), although peptide presentation could 373 

not be deciphered. Nevertheless, immunosuppressive signaling interactions were also elevated; 374 

for example, immunosuppressive prostaglandin E2 (PGE2), macrophage inhibitory factor (MIF), 375 

and midkine (MK) were elevated between cancer basal cells and CD4 and CD8 T cells in the 376 

older cohort (Fig. 5b, Supplementary Fig. 8c). 377 

  378 

Confirming immune modulatory ARPs in CAFs and cancer cells (Fig. 3b), type 2 interferon (IFN-379 

γ) signaling from CD8+ T cells to iCAFs, myCAFs, and cancer basal cells was exclusive to the 380 
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older cohort (Fig. 5b, Supplementary Fig. 8f). Exploring the potential source(s) of enriched antigen 381 

processing and presentation via MHC-II in the older cohorts from the METABRIC and ASPEN 382 

analyses, signaling nodes related to MHC-II presentation by cancer basal cells, myCAF, and iCAF 383 

to monocytes and macrophages were elevated in the older cohort (Fig. 5b, Supplementary Fig. 384 

8a-e), confirming our earlier observation of various class II molecules on “non-professional” 385 

antigen presenting cells (Supplementary Fig. 7a).  386 

  387 

Only a few of the signaling interactions were exclusive to or higher in the younger TNBC cohort. 388 

For example, a signaling node between monocyte/macrophage-derived Gal9 and the checkpoint 389 

protein TIM3 (HAVCR2) on CD8+ T cells, which suppresses antitumor immunity46 and induces 390 

CD8+ T cell death47, was elevated in the younger cohort (Fig. 5a, b). Macrophage-derived 391 

osteopontin (secreted phosphoprotein 1, SPP1) signaling to various cells exclusively in the 392 

younger cohort (Fig. 5b, Supplementary Fig. 8d) is consistent with promotion of breast cancer 393 

progression and chemoresistance48–51. Enriched fibronectin 1 (FN1) engagement of integrins 394 

α4/β7 on CD8+ T cells suggested regulation of T cell migration and T cell receptor activity in the 395 

younger cohort (Fig. 5a, b). Finally, we noted that CAF signaling to lymphocytes (CD8+ and CD4+) 396 

and myeloid cells (monocytes and macrophages) via MIF occurred exclusively in the younger 397 

cohort (Fig. 5b, Supplementary Fig. 8a, b). Hence, while certain signaling pathways, such as Gal9 398 

and MIF, were activated broadly across the TME in the older cohort, they also played a role in 399 

specific cell-cell interactions in the younger cohort. 400 

  401 

Age-associated signaling network in ER+ breast cancer 402 

For ER+ breast cancer, the selection criteria revealed 8 cell types: iCAF, myCAF, cancer luminal 403 

A, macrophages, ACKR1+ endothelial cells, differentiated PVLs, CD4+ T cells, and CD8+ T cells 404 

(8×8=64 possible source/target cell combinations). Across these 64 combinations, rankNet 405 

analysis yielded 745 signaling interactions comprising 84 signaling pathways (Supplementary Fig. 406 

9). Of those interactions, 411 (55%) were more prevalent in the younger cohort, while 334 were 407 

more prevalent in the older cohort. The younger cohort had 166 unique interactions while 186 408 

were unique to the older cohort (Supplementary Fig. 9). Hence, unlike TNBC, in which the balance 409 

of the strongest age-dependent signaling interactions tipped in favor of the older cohort, 410 

interactions were more evenly balanced between older and younger cohorts in the ER+ breast 411 

cancers.  412 

  413 
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Adhesion proteins and extracellular matrix (ECM) engagement comprised the vast majority of the 414 

strongest signaling interactions across selected cell types in both age cohorts and included the 415 

non-collagenous glycoprotein family members, laminins, fibronectin (FN1), and thrombospondins 416 

(THBS) signaling through various heterodimeric integrin receptors (Fig. 6a, Supplementary Fig. 417 

10, Supplementary Table 7). ECM engagement within the TME modulates cell proliferation, 418 

differentiation, adhesion, and migration, serves as a sink for cytokines, promotes angiogenesis 419 

and inflammation, and governs malignant progression 52. These various adhesion signaling nodes 420 

appeared to be both age-dependent and cell type-specific. For example, nearly all adhesion/ECM 421 

signaling nodes involving either cancer luminal A cells, differentiated PVLs, or macrophages were 422 

enriched in the older cohort, while those involving iCAFs, myCAFs, and ACKR1+ endothelial cells 423 

were mostly enriched in the younger cohort (Fig. 6a). T cells showed no engagement of these 424 

particular adhesion molecules (Supplementary Fig. 10), perhaps owing to the fact that ER+ breast 425 

cancer is often devoid of tumor-infiltrating lymphocytes53.  426 

  427 

Periostin (POSTN) signaling represented the strongest, statistically significant signaling pathway 428 

(p<0.02, frequency = 12) and was highly enriched between CAFs and vascular cells (endothelium 429 

and PVLs) in the older cohort (Fig. 6b, Supplementary Table 7, Supplementary Fig. 9). Periostin 430 

is a matricellular protein that mediates fibrosis, angiogenesis and chemoresistance in cancer54. 431 

  432 

We also observed age-biased expression and predicted interactions featuring various laminin 433 

subunits, which are the major non-collagenous components of the basement membrane52. For 434 

example, the cancer basal cells exclusively used the beta-2 subunit (LAMB2) in the older cohort 435 

(Fig. 6a). Moreover, ACKR1+ endothelial cells preferentially used the laminin subunit alpha-4 436 

(LAMA4) to engage other cells in the older cohort, while using various other laminins to engage 437 

those same cells in the younger cohort (Fig. 6a). There also seemed to be aged-biased usage of 438 

integrin subunits, particularly the use of alpha-3/beta-1 by differentiated PVL cells in the older 439 

cohort (Fig. 6a).  440 

  441 

Like TNBC, MIF signaling between cancer luminal A cells and CD4+ or CD8+ T cells via CD74 442 

complexes was elevated in the older cohort (Fig. 6a, b, Supplementary Fig. 9). Tumor cell-derived 443 

MIF promotes expansion of Tregs (consistent with the IL-2 ARP we observed in CD4+ T cells via 444 

ASPEN; Fig. 3b) and inhibits CD8+ T cell activation55. We also note that osteopontin (SPP1)-445 

expressing macrophages, which promote disease progression, communicated exclusively in the 446 
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older cohort (Supplementary Fig. 9), in agreement with the METABRIC analysis, which revealed 447 

significantly higher expression of SPP1 in the older cohort (Fig. 1c).  448 

  449 

Notch signaling to cancer luminal A cells was enriched in the younger cohort, specifically from 450 

PVL cells and myCAFs (Fig. 6b, Supplementary Fig. 9, Supplementary Table 7). Notch plays a 451 

critical role in maintaining luminal progenitor cell fate in the breast56, thus in agreement with the 452 

luminal and stem cell pathways observed in the younger METABRIC cohort (Fig. 1d). 453 

Overexpression of notch receptors and ligands is correlated with TNBC progression and 454 

therapeutic resistance, but is less well described in ER+ breast cancer56. 455 

 456 

Age-related landscape of TNBC and ER+ breast cancer 457 

Through detailed, manual integration of key cell-specific results from each dataset, we built a 458 

comprehensive age-related landscape of TNBC (Fig. 7a) and ER+ breast cancer (Fig. 7b).  459 

 460 

In the older TNBC cohort, myeloid cells and CAFs interact with cancer basal cells through 461 

LGALS9/P4HB, PPIA/BSG, and PLAU/PLAUR ligand/receptor pairs to promote EMT and cell 462 

motility, as confirmed by the age-related increase in EMT ARPs. The mesenchymal-like cancer 463 

cells in turn impact the TME by: 1. presenting antigen to T cells, which aligns with the enrichment 464 

of inflammatory response and memory T cell ARPs; 2. promoting Treg development; 3. inducing 465 

CD8+ T cell death, consistent with apoptosis ARPs; and 4. generating an immune suppressive 466 

phenotype in monocyte/macrophages (Fig. 7a). Tumor cells in the older cohort also engage with 467 

CAFs to promote fibrosis and ECM remodeling, which is required for mesenchymal-like tumor 468 

cells to detach, leading to enhanced motility, invasion, metastasis, and chemoresistance26. CAFs 469 

were also observed to play a dominant role in modulating immune responses, as indicated by 470 

their inflammatory ARPs and signaling nodes that suppress T cell function and recruit Tregs. The 471 

increased MHC-II presentation by many cells within the older TME, consistent with METABRIC 472 

analysis, suggests exposure to IFNγ30, which is supported by the observed enrichment of 473 

interferon response ARPs, especially in CAFs. Given the dual role of IFN-γ in promoting anti-474 

tumor immunity and mediating immune evasion 57,58, interferon signaling in CAFs warrants further 475 

investigation, particularly in the context of aging.  476 

 477 

The absence of ARPs in monocyte/macrophages in TNBC aligns with our finding that these cells 478 

promote pro-tumorigenic and immunosuppressive phenotypes in both older and younger cohorts, 479 

but via different signaling nodes (Fig. 7a). In the younger TNBC cohorts, we observed basal 480 
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cancer cells that were not enriched for EMT ARPs and CAFs with decreased inflammatory 481 

signaling compared to the older cohorts. Interactome analysis suggested these phenotypes were 482 

driven by macrophage polarization factors (Fig. 7a) that are linked to enhanced TNBC progression 483 

and metastasis59. The immunosuppressive profile of macrophages was shaped by different 484 

factors in younger and older TNBC cohorts (such as SPP1 in younger), indicating that targeting 485 

immune suppressive macrophages may require age-stratified strategies.  486 

 487 

In ER+ breast cancer, cell-specific ARPs indicated increased myeloid inflammatory activity, less 488 

metabolically active endothelium, attenuated cancer cell interferon responses, and CD4+/CD8+ 489 

T cell quiescence and metabolic dysfunction with age (Fig. 7b). These processes, including cell 490 

migration, vascular permeability, and immune trafficking, are influenced by ECM structure and 491 

alignment60. Signaling nodes in both age groups involved adhesion and ECM interactions, with 492 

different nodes active between cohorts, suggesting age-biased tissue remodeling as a key driver 493 

of these cell-specific ARPs in ER+ breast cancer (Fig. 7b).  494 

 495 

In the younger ER+ breast cancers, increased ECM and vascular remodeling occurred via 496 

interactions between CAFs, endothelial ACKR1 cells, and differentiated PVL cells. The fact that 497 

ACKR1+ endothelial cells, which are involved in chemokine trafficking in innate immunity, were 498 

the most metabolically active cells in the younger ER+ cohort, together with their enriched 499 

signaling nodes with PVLs, suggests an important immunomodulatory role within the younger 500 

ER+ tumor microenvironment (Fig 7b). 501 

 502 

The older ER+ breast cancers were enriched with myCAFs. When taken together with their ARPs 503 

and active signaling nodes using ligands, such as periostin, the results suggest CAFs as drivers 504 

of increased desmoplasia, chemoresistance, and promotion of cancer cell invasion with age in 505 

ER+ breast cancer.  506 

 507 

Though ER+ tumors are characterized as immunologically “cold”53, age-related differences in 508 

immunogenicity were noted. Older tumors showed increased MIF activity, potentially attenuating 509 

eradication by cytotoxic T lymphocytes, as observed in lymphoma61. Furthermore, higher CD47 510 

signaling in older T cells, as observed in melanoma models62, suggests reduced T cell cytotoxicity. 511 

Increased TNFα signaling in older tumors might also contribute to reduced immunogenicity 512 

through heightened inflammation. 513 

 514 
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Discussion 515 

We provide the first age-resolved human breast cancer landscape by defining transcriptomes, 516 

interactomes, and signaling pathway activity for TNBC and ER+ breast cancer at cell type-specific 517 

resolution. Our approach combined age-stratified differential gene expression analysis on bulk 518 

RNA-seq data, a new pipeline for identifying age-correlated gene sets from single-cell RNA-seq 519 

data (ASPEN), and cell interaction analysis to explore age-biased signaling in the TME. This 520 

integrated approach revealed molecular and cellular profiles that differentiate tumors from older 521 

and younger breast cancer patients in a subtype-dependent manner with important biological and 522 

clinical implications.  523 

 524 

The approach uncovered novel insights not revealed by bulk transcriptional profiling. For example, 525 

while it is well accepted that systemic inflammation increases with age, the specific contribution 526 

of age-related inflammation in the TME of breast cancer remains unclear. We found distinct 527 

differences in inflammatory drivers between TNBC and ER+ breast cancer. In ER+, the strongest 528 

age-related inflammatory processes rested with myeloid cells, while in TNBC, inflammatory 529 

processes were primarily observed in CAFs. Moreover, in TNBC, SPP1-expressing macrophage 530 

communication was exclusive to younger patients, while in ER+ breast cancer, it was exclusive 531 

to older patients. Hence, inflammatory processes exhibited not only age-dependent but also 532 

subtype-dependent phenotypes.  533 

 534 

The results underscore the risks of generalizing aging effects, reinforcing that aging varies not 535 

only across tissues and cancers63, but also within specific cancer subtypes. For example, 536 

increased EMT with age has been observed in pan-cancer bulk analyses64, and here, we noted 537 

EMT in specific cancer cells in the older TNBC cohort but not in ER+ breast cancer. One likely 538 

explanation is that EMT capacity and other age-related differences that we observed between 539 

subtypes are due to differences in tumor cell of origin and how they age. However, the differences 540 

in stromal and immune populations between subtypes suggest that their variations are influenced 541 

by aging in the context of subtype, not just aging alone.   542 

 543 

The differences in immune responses between age and subtype are striking and warrant further 544 

investigation into the immune-modulatory role of various cells and their potential therapeutic 545 

implications with age. It is not clear why immunotherapies have limited efficacy in TNBC. The 546 

significant enrichment of immunosuppressive pathways in the older TNBC cohort suggests it may 547 

be easier to overcome immunosuppression in younger women than in older women. The 548 
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groundwork we lay here - e.g., the strong immunomodulatory impact of CAFs - suggest novel 549 

ways to investigate intrinsic and acquired therapeutic resistance. In ER+ breast cancer, clinical 550 

data suggest that younger women benefit more than older women from addition of chemotherapy 551 

to endocrine therapy65,66, possibly due to higher immune responses in younger patients17, as we 552 

also observed here. This may indicate a subset of younger ER+ patients who could benefit from 553 

immunotherapy, despite its limited efficacy in this subtype53.  554 

 555 

Tissue remodeling emerged as a key differentiator between age-related TNBC and ER+ breast 556 

cancer. This distinction holds potential for the design of subtype-specific therapies tailored to age-557 

related profiles. For example, laminin-binding integrins, which govern cell morphology, polarity, 558 

differentiation, and migration, showed age-biased subunit variations in ER+ breast cancer, 559 

offering therapeutic targets. Additionally, age-related vascular remodeling, which influences 560 

immune infiltration and drug accessibility, represents another potential therapeutic avenue, 561 

guided by age-associated factors.  562 

 563 

Areas of concordance between the two datasets strengthen the reliability of our results, while 564 

further validation in additional datasets and experimental models is warranted. Our study provides 565 

a robust foundation for such future efforts, offering a valuable resource for generating hypotheses, 566 

supporting orthogonal experimentation, and inspiring deeper investigations into age-associated 567 

changes in the TME that affect progression and drug response. The sample size limitation and 568 

lack of patient-specific outcomes in the single-cell RNA-seq cohort will be resolved as larger 569 

single-cell atlases become public in the future. Furthermore, since menopause is an important 570 

part of aging, it is reasonable to assume that some of our observations, particularly in ER+ breast 571 

cancers, are driven by the menopausal status of the donors. Future investigation into datasets 572 

that include well-annotated menopausal status might distinguish age-related differences driven 573 

by menopause from those driven by other aging processes. Importantly, our study provides a 574 

framework that can be applied to other datasets, not only in breast cancer, but any tumor type 575 

with single-cell RNA-seq data from young and older donors.  576 

 577 

Our study demonstrates that the breast cancer TME differs profoundly with age in a subtype-578 

specific manner. These findings establish a new framework and suggest that efforts to gain 579 

deeper insights into breast cancer pathology and design improved therapies should take age into 580 

consideration in a subtype-specific manner. Ultimately, integrating cell type-resolved methods to 581 
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study the biology of TNBC and ER+ breast cancer across age groups is likely to result in tailored 582 

therapies that target specific tumor vulnerabilities and improve patient outcomes. 583 

 584 

Online methods 585 

Differentially expressed genes in younger and older breast cancer patients 586 

Gene expression from donors from the METABRIC bulk RNA expression database with an age, 587 

three-gene disease subtype, and tumor stage were grouped into ER+ or TNBC and by age as 588 

<45 years and >65 years. For each of these 4 groups, donors were subsetted to include those 589 

whose tumors were Stage I - Stage III at diagnosis. Median age for the >65 TNBC group was 590 

70.6 years (n= 63). The <45 TNBC group had a median age of 39.77 years (n = 50). Median age 591 

for the >65 ER+ group was 72.81 years (n= 386). The <45 ER+ group had a median age of 41.14 592 

years (n = 86). 593 

 594 

Log2-normalized METABRIC gene expression data and associated metadata were downloaded 595 

from cBioPortal. For each breast cancer subtype, genes (n = 24,174 total genes), were first 596 

subsetted to the top 675 genes that had the highest variance by ranking genes by standard 597 

deviation. The data were then transformed by exponentiating by base 2. The limma R package 598 

was used alongside voom normalization to identify differentially expressed genes between donors 599 

<45 years and >65 years in the TNBC and ER+ cohorts. We set the FDR significance threshold 600 

for both cohorts to 0.05. All 675 genes were then plotted in a volcano plot with log2 Fold Change 601 

on the x-axis, and -log10 FDR on the y-axis. 602 

 603 

The total list of 675 genes was ranked by log2FC, starting with highest positive (most enriched in 604 

>65) and ending with lowest negative (most enriched in <45), and then GSEA was performed 605 

using the fgsea package on the C2, C5, and Hallmark pathway gene sets (MSigDB). Pathways 606 

with FDR < 0.05 for TNBC and ER+ were then visualized. 607 

 608 

ASPEN: Hallmark pathway correlation with age at cell type resolution using single-cell 609 

RNA sequencing data 610 

We developed ASPEN (Age-Specific activation Program ENrichment) to assess correlation 611 

between gene set (pathway) expression and age at cell type resolution. Single-cell RNA-seq 612 

counts matrices, barcodes, feature data, and metadata for 10 TNBC and 11 ER+ primary breast 613 

tumors were downloaded from GEO (GSE176078), and additional cohort metadata (including age 614 

annotations) were downloaded from the accompanying manuscript’s supplementary data24. 615 
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Following standard pipelines in Seurat v4, a Seurat object was made for each of the 21 samples 616 

and the 10 TNBC donors’ objects and 11 ER+ donors’ objects were merged into a single TNBC 617 

object and a single ER+ object. From there, the data were log-normalized and parallel adaptations 618 

of traditional gene set enrichment analyses (GSEA) were performed to assess correlation 619 

between donor age and Hallmark Pathway enrichment per cell type. The middle-granularity cell 620 

type annotations provided by the authors of the dataset were used (29 total cell types, 621 

celltype_minor).  622 

 623 

For the first arm of ASPEN, average gene expression per cell type was correlated to donor age 624 

and GSEA was performed on the genes in the Seurat object ranked by correlation coefficient from 625 

most correlated to most anti-correlated. The TNBC or ER+ merged objects were re-subsetted by 626 

donor. Within each of the 10 (TNBC) or 11 (ER+) objects, average gene expression for each of 627 

the 29 cell types was calculated on a per gene basis. Some donors had a cell count of 0 for 628 

specific cell types; these donors were excluded from the next analysis steps. If more than half of 629 

the donors had a given cell type, the average expression values for each gene for that cell type 630 

were then correlated to donor age (a total of 24 unique cell types for TNBC and 25 unique cell 631 

types for ER+). Each gene per cell type was then ranked from highest correlation coefficient (most 632 

correlated) to lowest (most anti-correlated). To avoid erroneous results due to arbitrary gene 633 

ranking, the genes with a correlation coefficient of 0 were omitted, and the remaining ranked 634 

genes were used to perform GSEA for the Hallmark pathways. GSEA was performed using the 635 

fgsea and gage R packages; this portion of the script was adapted from a publicly available GSEA 636 

script developed by Dr. Brian Gudenas (https://bioinformaticsbreakdown.com/how-to-gsea/). 637 

Gene set .gmt files were accessed from the GSEA website. For a given cell type/pathway 638 

combination to be considered a statistically significant enrichment, an adjusted p-value <0.05 in 639 

both package analyses was required. The statistically significant cell type/pathway combinations 640 

were then visualized as bubble color and depth in a bubble plot. 641 

 642 

For the second arm of ASPEN analysis, enrichment for each cell within the dataset was first 643 

performed and then the numeric metric of enrichment was correlated to donor age. For this 644 

analysis, the TNBC or ER+ merged objects were re-subsetted by donor and the AddModuleScore 645 

command within Seurat v4 was used to assign a signature score to each cell for gene expression 646 

concordance with the 50 Hallmark pathways. These gene sets were accessed in R using the 647 

msigdbr R package. Once every cell per donor had a signature score, the average signature score 648 

per cell type was calculated and the resulting average signature score per cell type per donor was 649 



20 

correlated to donor age. The magnitude of these correlation coefficients was then visualized as 650 

bubble size in a bubble plot. 651 

 652 

Cell-cell interaction analysis 653 

For the analysis of cell-cell interactions, we used CellChat (version 2.1.2) 29.The single-cell human 654 

breast cancer atlas data was divided into four groups according to subtype and patient age at 655 

diagnosis (Supplementary Table 5). We created four CellChat objects and associated datasets, 656 

one for ≤55 TNBC donors, one for >55 TNBC donors, one for ≤55 ER+ donors, and one for >55 657 

ER+ donors, from the single-cell RNA-seq data. To consider the proportion of cells in each group 658 

when calculating the cell-cell interaction probability, the population.size argument in the 659 

computeCommunProb function was set to TRUE. In addition, we used liftCellChat when the cell 660 

type populations were different between young and old CellChat objects by subtype, as was the 661 

case in ER+ ≤55 where there were no Naive B cells. Then, for each subtype, we merged the 662 

CellChat objects to run a comparison analysis between young and aged groups. The analysis 663 

allowed us to determine the number and strength of interactions between cell types in the different 664 

cohorts and to visualize them using different tools, such as circle plots (netVisual_circle and 665 

netVisual_diffInteraction), scatter plots (netAnalysis_signalingRole_scatter), bar charts (rankNet), 666 

or bubble blots (netVisual_bubble). Circle plots show overall interaction probabilities between cell 667 

types of interest, either per group or differentially between groups. The scatter plots show changes 668 

in both incoming and outgoing interaction strengths for each cell type individually, where 669 

interaction strength represents the sum of incoming and outgoing probabilities for all cell-cell 670 

interactions. The bar charts describe statistically significant, pathway-specific differences 671 

between a given source and target cell group and determine statistical significance between 672 

donors ≤55 and >55. The bubble plot calculates the communication probability of each ligand-673 

receptor interaction between source and target cells in each age cohort for a given pathway or 674 

pathways. Fold change differences above 1.2 or below -1.2 were of interest. 675 

 676 

Regression-based criteria for curating cells and signaling nodes 677 

Cell types of focus were chosen based on source and/or target signal strengths greater than the 678 

sum of the average source/target interaction strengths of the younger and older cohorts (>0.037 679 

for TNBC and >0.023 for ER+ breast cancer, Supplementary Table 6). The criteria yielded 7 cell 680 

types for TNBC: iCAF, myCAF, basal cancer cells, macrophages, monocytes, CD4+, and CD8+ 681 

T cells. For ER+ breast cancer, these criteria revealed 8 cell types: iCAF, myCAF, cancer luminal 682 

A, macrophages, ACKR1+ endothelial cells, differentiated PVLs, CD4+ T cells, and CD8+ T cells. 683 
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We excluded three cell types despite meeting the criteria: 1) TNBC cancer HER2 cells because 684 

only one patient sample contained appreciable numbers of cancer HER2 cells (Supplementary 685 

Fig. 2a); 2) TNBC cycling cancer epithelial cells because we did not know their intrinsic molecular 686 

subtype; and 3) ER+ breast cancer luminal B cells because the luminal A cells had a 6.7-fold 687 

higher interactome enrichment with age (Supplementary Table 6).  688 

 689 

We then applied the rankNet function to these 7 or 8 cell types as both source cells and target 690 

cells (49 total interactions for TNBC and 64 total interactions for ER+) to identify signaling 691 

pathways through which these cell types were interacting. The rankNet function utilizes inferred 692 

communication probabilities between a given source cell and a target cell for 229 different 693 

signaling pathway categories (totaling 3,234 ligand-receptor pairs) and yields the scaled 694 

communication weight for every inferred signaling pathway. The probabilities of specific ligand-695 

receptor interactions (“signaling nodes”) for each signaling pathway category identified in the 696 

rankNet analysis were extracted for further investigation.  697 

 698 

To select the most relevant pathways for downstream analysis, we then performed a univariate 699 

logistic regression model with the glm function of the stats R package. The logistic regression for 700 

each pathway assessed how well it was associated with the older cohort, with each source-target 701 

combination for both the young and older cohorts serving as a data point. To integrate the data 702 

and identify key signaling pathways, we nominated signaling pathways that were ubiquitous 703 

across the TME as they were age-differential (p < 0.05) and appeared at least 15 times across 704 

the total signaling network by rankNet analysis. We first averaged the probabilities of interaction 705 

for each ligand-receptor pair in each pathway, source cell, and target cell interaction for the >55 706 

or <55 age groups. These average communication probabilities were used as input to the glm 707 

function, where each pathway was the test variable and age group was the response variable. 708 

We then selected pathways that had a p-value <0.05 and appeared at least 15 times in the 49 or 709 

64 interactions analyzed using rankNet. We used the netVisual_bubble function a second time to 710 

compare the up-regulated and down-regulated ligand-receptor pairs between age groups in both 711 

molecular subtypes, setting a p-value threshold <0.01 to highlight the ligand-receptor pair 712 

interactions with the highest confidence. For these, we identified signaling interactions that were 713 

either exclusive to one age group or exhibited fold change differences above 1.2 or below -1.2 714 

between age groups.  715 

 716 
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In some cases where indicated, we nominated additional select signaling nodes by manual 717 

curation of significant rankNet interaction pathways that are: 1. known to modulate cell states and 718 

phenotypes that we observed in the METABRIC dataset or ASPEN analyses, 2. evidence-based 719 

age-related factors, or 3. highly age-biased but restricted to specific cell:cell interactions (i.e., 720 

unable to meet our selection criteria of >15 interactions).  721 

 722 
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Figure 1 | Age-related differentially expressed genes and functional gene set enrichments in TNBC and ER+ 
breast cancer. a, c, Volcano plots showing log2fold change for high variance genes (by standard deviation) in tumors 
from patients with TNBC (a) and ER+ breast cancer (c), comparing the age groups < 45 years and > 65 years from 
METABRIC. Plots show log2fold change difference on the x-axis and -log10FDR on the y-axis. Red colored dots 
represent genes enriched in the >65 age group; blue colored dots are genes enriched in the <45 age group; false 
discovery rate <0.05 (-log10FDR > 0.1.301). n=50 TNBC <45; n=63 TNBC >65; n=86 ER+ <45; n=386 ER+ >65. b, d, 
Results of age-stratified gene set enrichment analysis (GSEA) of highly variable genes ranked by log2fold difference 
from a and c in TNBC (b) and ER+ breast cancer (d). Pathways are grouped by biological similarity. Red fill color 
indicates enrichment in the > 65 age group; blue indicates enrichment in the < 45 age group. Circle size is proportional 
to relative -log10(FDR) for the enrichment, and color depth represents magnitude of normalized enrichment score (NES), 
according to indicated scales.  
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Figure 2 | Development of a single-cell Age-Specific Program ENrichment (ASPEN) analysis pipeline. ASPEN 
relies on adaptations of gene set enrichment analysis (GSEA) in parallel assessments to correlate gene expression-
based enrichment of functional pathways to age. a, The average gene expression per cell type is matched to donor age 
and a correlation coefficient for each gene is calculated. The genes with nonzero coefficients are then ranked by their 
correlation coefficients, and GSEA is performed using select gene sets of choice. b Concurrently, the gene sets are 
used to assign a signature score to every cell in the single-cell dataset using Seurat v4 commands. Following scoring, 
the mean signature score for each gene set is calculated per cell type per donor. These mean values are then correlated 
to donor age. c, The resulting normalized enrichment scores (NES) from a are then plotted as data point color for each 
cell type/pathway combination, with red indicating statistically significant enrichment in older donors, blue indicating 
statistically significant enrichment in younger donors, and white indicating a failure to achieve statistical significance. 
Depth of color is related to magnitude of enrichment. Irrespective of correlation direction (coefficient < 0 or coefficient > 
0) in b, the magnitude of the correlation of signature score to age is visualized as the size of the data point for each cell 
type/pathway combination, with point size being proportional to the magnitude of correlation (larger circle = more 
strongly correlated or anti-correlated). 
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Figure 3

Figure 3 | Cell-specific age-related programs (ARPs) in TNBC and ER+ breast cancer. Results from ASPEN analysis 
of the breast cancer single-cell RNA-seq atlas dataset24 and Hallmark gene sets (Human MSigDB) yielding cell-specific age-
related programs (ARPs) in TNBC (left) ER+ breast cancer (right).24 The 29 minor cell types (color coded by indicated major 
cell type groups) are represented on x-axes and indicated Hallmark pathways on y-axes. ARPs were manually grouped into 
biologically similar processes, including cancer-associated (a), immune-related (b), metabolism (c), cell stress/DNA repair 
(d), and others (e). A given cell type must have been present in >50% of donors for that cell type to be correlated to donor 
age; otherwise, it was excluded from analysis. Donors with a cell count of 0 for a given cell type were excluded from analysis 
of that cell type. Bubble color indicates normalized enrichment score (NES) of age-associated GSEA analysis (Fig. 2a), with 
deeper color indicating greater enrichment. Red indicates statistically significant enrichment (adjusted p < 0.05) in older 
donors; blue indicates statistically significant enrichment (adjusted p < 0.05) in younger donors; white indicates a failure to 
achieve statistical  

 



  

significance; gray indicates cell types that were not assessed because they were present in < 50% of the donors. Bubble 
size indicates magnitude of enrichment score correlation to age (Fig. 2b); larger bubbles indicate stronger correlation or 
anti-correlation. NS = not significant, TNF = tumor necrosis factor, SIG = signaling, IFN = Interferon, RESP = response, 
SIGNAL = Signaling, REJECTN = rejection, OX PHOS = oxidative phosphorylation, METAB = metabolism, TGF = 
transforming growth factor, ESTRGN = estrogen, EMT = epithelial to mesenchymal transition, DN = down, UNFOLD PROT 
RESP = Unfolded Protein Response, CAF = cancer associated fibroblast, PVL = perivascular-like cells. 



 

Figure 4 | Age-related cell-cell interactions in TNBC and ER+ breast cancer. a-f, Circle plot visualizations of the 
predicted homotypic and heterotypic interaction strength between major cell types in TNBC (a-c) and ER+ breast cancer 
(d-e) tumors from the single-cell RNA-seq atlas24 using CellChat v2 analysis. Circle plots are shown for patients ≤55 
(younger, a, d), patients >55 (older, b, e), and the differential between age groups (c, f) for each subtype. TNBC ≤55 years 
(n=6, N=20,591 cells), TNBC >55 years (n=4, N=20,203 cells), ER+ ≤55 years (n=6, N=21,735 cells), ER+ >55 years (n=5, 
N=15,344 cells). Indicated cell types are represented by colored nodes; edge colors in a, b, d, e correspond to the source 
cell type; edge colors in c, f indicate stronger interaction strength in the older cohort (red) or the younger cohort (blue).  

 



  
Line thicknesses are proportional to the strength of interaction between given cells. Boxed insets in a, b, d, e indicate total 
number of interactions (I) and total interaction strength (S) for each cohort. g, i, Scatter plots representing the interaction 
strengths of each of the 29 minor cell types as a signaling source (x axes) and target (y axes) for indicated age cohorts in 
TNBC (g) and ER+ breast cancer (i). Dot sizes represent the number of interactions (count) for each cell type. h, j, Heat 
maps representing differential interaction strengths between each indicated target cell (x axes) and source cell (y axes) for 
TNBC (h) and ER+ breast cancer (j). Color scale is based on the differential interaction strength; shades of red indicate 
stronger interaction in the older cohort; shades of blue are stronger in the younger cohort. Bar plots at top of heat maps 
correspond to the absolute sum of differential incoming interaction strength for each cell type; bar plots at right of the heat 
maps correspond to the absolute sum of outgoing interaction strength for each cell type. Cell type color annotations are 
consistent throughout g-j. 
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Figure 5 | Age-associated signaling network in TNBC. a, Bubble plots representing the communication probability for 
each indicated ligand-receptor pair between indicated source:target cells for each age cohort (See Methods, Supplementary 
Table 7, and Supplementary Fig. 8). Rows depict the ligand-receptor pairs and signaling pathways; columns depict specific 
source-target cell interactions for the ≤55 cohort (blue) or >55 cohort (red). Communication probabilities are represented by 
a color scale, with minimum values colored deep blue, increasing values depicted as green, then yellow, then orange, and 
maximum values as deep red. Each bubble represents a signaling node predicted to be active with FDR value < 0.01 
through CellChat probability calculations29. Colored boxes around bubbles indicate signaling nodes that had probabilities 
detected at p < 0.05 in at least one age group and the difference in that probability was at least 1.2-fold greater in either the 
younger (blue boxes) or older (red boxes) cohort. b, Schematic representation of the signaling nodes in a and additional 
signaling nodes of interest following manual curation of specific cell-cell interactions (Supplementary Fig. 8, Supplementary 
Table 7). For clarity of representation, data were combined for monocytes/macrophages and iCAFs/myCAFs. Blue text 
indicates enrichment in the ≤55 age group; red text indicates enrichment in the >55 age group. 
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Figure 6 | Age-associated signaling network in ER+ breast cancer. a, Bubble plots representing the communication probability 
for each indicated ligand-receptor pair between indicated source:target cells for each age cohort (See Methods, Supplementary 
Table 7, and Supplementary Fig. 9). Rows depict the ligand-receptor pairs and signaling pathways; columns depict specific source-
target cell interactions for the ≤55 cohort (blue) or > 55 cohort (red). Communication probabilities are represented by a color scale, 
with minimum values colored deep blue, increasing values depicted as green, then yellow, then orange, and the maximum values 
as deep red. Each bubble represents a signaling node predicted to be active with FDR value < 0.01 in the CellChat probability 
calculation29. Colored boxes around bubbles indicate signaling nodes that were differentially enriched by at least 1.2- fold, in either 
the younger (blue boxes) or older (red boxes) cohort. b, Schematic representation of the signaling nodes in a and additional 
signaling nodes of interest following manual curation of specific cell-cell interactions (Supplementary Fig. 9, Supplementary Table 
8). For clarity of representation, data were combined for iCAFs/myCAFs and CD8+/CD4+ T cells. Blue text indicates enrichment 
in the ≤55 age group; red text indicates enrichment in the >55 age group. 
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Figure 7 | Working models of the age-related molecular landscapes of TNBC and ER+ breast cancer. a, b, Schematic depicts 
biologically distinct functions with age in the TNBC (a) and ER+ (b) breast tumor microenvironment. Selected cell types within the 
tumor microenvironment are shown with abundance, transcriptional (from METABRIC and ASPEN analyses), and communication 
(from CellChat analysis) differences with age. Arrows between cell types are colored to coincide with the source cell. Arrows within 
a cell type and all text depict enrichment in older (red) or younger (blue) patients.  
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