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Abstract – Autoimmune diseases are characterized by dysregulated immunity against self-antigens. Current treatment
of autoimmune diseases largely relies on suppressing host immunity to prevent excessive inflammation. Other
immunotherapy options, such as cytokine or cell-targeted therapies, have also been used. However, most patients
do not benefit from these therapies as recurrence of the disease usually occurs. Therefore, more effort is needed to find
alternative immune therapeutics. Schistosoma infection has been a significant public health problem in most developing
countries. Schistosoma parasites produce eggs that continuously secrete soluble egg antigen (SEA), which is a known
modulator of host immune responses by enhancing Th2 immunity and alleviating outcomes of Th1 and Th17
responses. Recently, SEA has shown promise in treating autoimmune disorders due to their substantial immune-
regulatory effects. Despite this interest, how these antigens modulate human immunity demonstrates only limited
pieces of evidence, and whether there is potential for Schistosoma antigens in other diseases in the future remains
an unsolved question. This review discusses how SEA modulates human immune responses and its potential for
development as a novel immunotherapeutic for autoimmune diseases. We also discuss the immune modulatory effects
of other non-SEA schistosome antigens at different stages of the parasite’s life cycle.
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Résumé – Les antigènes de Schistosoma : une solution clinique miracle pour les maladies auto-immunes? Les
maladies auto-immunes sont caractérisées par une immunité dysrégulée contre les auto-antigènes Le traitement actuel
des maladies auto-immunes repose en grande partie sur la suppression de l’immunité de l’hôte pour prévenir une
inflammation excessive. D’autres options d’immunothérapie, telles que les thérapies à base de cytokines ou à
cellules ciblées, ont également été utilisées. Cependant, la plupart des patients ne bénéficient pas de ces thérapies
car la maladie récidive généralement. Par conséquent, des efforts supplémentaires doivent être faits pour trouver des
thérapies immunitaires alternatives. L’infection à Schistosoma est un problème de santé publique important dans la
plupart des pays en développement. Les parasites Schistosoma produisent des œufs qui sécrètent en continu des
antigènes solubles d’œufs (ASO), qui sont connus comme des modulateurs des réponses immunitaires de l’hôte en
renforçant l’immunité Th2 et en atténuant les résultats des réponses Th1 et Th17. Récemment, les ASO se sont
révélés prometteurs dans le traitement des troubles auto-immuns en raison de leurs effets immuno-régulateurs
substantiels. Malgré cet intérêt, la façon dont ces antigènes modulent l’immunité humaine ne montre que des
éléments de preuve limités, et la question de savoir si les antigènes de Schistosoma pourraient être utiles dans
d’autres maladies à l’avenir reste sans réponse. Cette revue examine la manière dont les ASO modulent les
réponses immunitaires humaines et leur potentiel pour le développement de nouveaux traitements
immunothérapeutiques contre les maladies auto-immunes. Nous discutons également des effets immunomodulateurs
d’autres antigènes de schistosomes non-ASO à différents stades du cycle de vie du parasite.

Introduction

Although autoimmune diseases may be perceived as rare, it
is estimated that one in ten people suffer from this condition

[22], with significant mortality and morbidity. Autoimmune
diseases can occur at any age, and in any gender or race
[100], and they can range from organ-specific conditions like
diabetes mellitus (DM), in which antibodies and T cells react
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to self-antigens in a specific tissue, to circulatory system disor-
ders like systemic rheumatoid arthritis, in which antibodies
react against antigens throughout the body [18]. Several factors
are responsible for autoimmune diseases. The major attributing
factors include genetic polymorphisms, such as human leuko-
cyte antigens (HLA) alleles, and environmental factors, which
include infections or ultraviolet (UV) irradiation. Nonetheless,
dysregulated immune modulation is the primary reason for
autoimmune diseases [18, 100]. Various immune cells have
been associated with the pathogenesis of autoimmunity, includ-
ing dendritic cells (DCs), macrophages, T cells, and B cells [57,
100]. DCs are antigen-presenting cells capable of differentiating
naïve T cells into helper T (Th) cells and CD4+CD25+ regula-
tory T (Treg) cells [129]. Th cells can be differentiated into dif-
ferent subsets, including Th1, Th2, Th17, Th22, Th9, and Treg.
Th1 cells are involved in cell-mediated inflammation and de-
layed hypersensitivity reactions. These cells are often defined
by their production of IL-2 and interferon-gamma (IFN-c).
While IL-2 is essential for Treg proliferation and lineage sur-
vival [19]. IFN-c is a multifunctional pro-inflammatory cyto-
kine whose functions include activation of macrophage
differentiation, enhancement of toll-like receptor (TLR) expres-
sion on immune cells, and antigen presentation [113]. IFN-c
has also been suggested to be associated with the pathology
of autoimmune diseases [56]. Th2 cells are best known for pro-
ducing IL-4, IL-5, and IL-13 and are associated with host de-
fenses against parasites and involvement in allergies and
atopic diseases such as asthma [136]. IL-4 is a cytokine with
diverse functions essential for lymphocyte survival, plasma cell
differentiation, and antibody class switch [62]. IL-4 has also
been shown to promote the differentiation of macrophages
and T-cell cells [62]. IL-4 has been suggested to be highly ex-
pressed in autoimmune diseases and, therefore, manipulating
the effects of IL-4 offers good outcomes for immune-driven dis-
eases such as allergy and cancer [62].

IL-5 and IL-13 have been found to play critical roles in the
inflammation cascade by inducing B-cell class switching and
IgE antibody production [76]. Both cytokines lead to an influx
of eosinophils into the tissue, driving the pathogenesis of
asthma and other airway inflammatory diseases [76]. While
Th1 and Th2 immune cells counteract each other, an imbalance
of Th1/Th2 has been found to be the cause of many autoim-
mune disorders.

Immunotherapies such as cytokine-targeted therapies, cell-
targeted therapies, kinase-targeted therapies, and chimeric anti-
gen receptor (CAR)-T cell therapy have long been used to fight
against autoimmune diseases. For instance, the inhibition of
IL-6 receptor and Janus kinase (JAK) is effective in treating
patients with anemia and rheumatoid arthritis [89]; antibodies
against IL-17 or IL-17 receptor have been used for psoriasis
treatment [84]; CD19 CAR-T cell therapy, in addition to its
application in B-cell lymphoma, has recently been used for
patients with refractory systemic lupus erythematosus (SLE)
[85]; low-dose IL-2 therapy also resulted in improvement in
patients with SLE or psoriatic arthritis [60]. However, the
proportion of patients achieving long-lasting remission by the
current management is still low [130]. Therefore, more research
is needed to find alternative immune therapeutics.

Schistosomiasis remains a major global health problem,
affecting more than 200 million people worldwide [117]. In
Schistosoma infection, the adult worms continuously lay eggs,
which become trapped in organ tissues. Once trapped in the
organ, schistosome eggs continuously release soluble egg anti-
gen (SEA) that alters host immune response, leading to schisto-
somiasis. However, because of its immune-regulatory
properties, SEA has been purified and used to treat various
immune diseases [87]. In addition, other Schistosoma antigens
such as Sm29, a native protein of the adult worm, also prompt a
regulatory immune response that protects against exaggerated
inflammatory responses [71]. In the current review, we attempt
to provide an update on the immunomodulatory effect of SEA
and other schistosome-related antigens, as well as their potential
as an immunotherapeutic approach for different diseases.

Immunopathology of schistosomiasis

Schistosomiasis is a very important tropical disease. It
affects more than 200 million people worldwide and causes
more than 300,000 deaths annually [117]. The disease is caused
mainly by five species of schistosome, including Schistosoma
mansoni (S. mansoni), Schistosoma haematobium (S. haemato-
bium), Schistosoma japonicum (S. japonicum), Schistosoma
intercalatum (S. intercalatum), and Schistosoma mekongi
(S. mekongi) [80]. Once the cercariae penetrate human skin,
they migrate into the bloodstream, becoming schistosomula,
where further migration occurs at venous circulation to the liver
portal vein, where they mature into adult worms. Male and
female adult worms reside and copulate in the mesenteric
venules. Schistosoma mansoni and S. japonicum are more
frequently found in the inferior and superior mesenteric veins
of the intestine, whereas S. haematobium most often inhabits
the vesicular and pelvic venous plexus of the bladder. The
paired adults then lay eggs that, besides being shed in stools
(S. mansoni or S. japonicum) or urine (S. haematobium), enter
the circulation and become trapped in the liver, intestine, or
other organs. The entrapment of eggs in organ tissues leads
to granulomatous inflammation and subsequently fibrosis.

It is acknowledged that schistosomiasis is not caused by the
worms themselves but by the body’s reaction to the eggs.
Trapped eggs continuously release soluble egg antigen (SEA).
The body’s initial immune response against SEA involves local
secretion of Th1 cytokines such as TNF-a and IL-2 [72], leading
to monocyte, neutrophil, and lymphocyte infiltration. The influx
of these cells results in phagocytosis and granuloma formation.
Omega-1, a glycosylated T2 ribonuclease (RNase) from one of
the many components of SEA, activates dendritic cells (DCs),
which promotes a shift towards a Th2 immune response [37].
This shift from a Th1- to Th2-skewed response significantly
contributes to liver fibrosis in schistosomiasis, characterized
by a decrease in IFN-c (Th1 cytokine) and an increase in
IL-4, IL-5, and IL-13 (Th2 cytokines) profiles [134]. IFN-c
suppresses hepatic stellate cell (HSC) activation [11], while
IL-4 and IL-13 induce its activation [43]. Together, the
imbalance of these cytokines gives rise to the progression
of liver fibrosis. Injection of mice with schistosome eggs and
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IL-12 (a Th1-inducing cytokine) has been shown to inhibit the
Th1 to Th2 shift and ameliorates granuloma formation and
fibrosis, suggesting that a Th2 response may be fundamental
for schistosome-induced fibrogenesis [126]. It has been
demonstrated that the drug praziquantel is effective in treating
schistosomiasis by modulating cytokine responses [109].
Praziquantel increases serum levels of IFN-c and inhibits IL-4
[109]. Although the increase of IFN-c improves schistosomiasis,
several studies have associated its upregulation with several
human autoimmune diseases [45]. Furthermore, studies have
shown that polarization towards either Th1 or Th2 extreme
can also contribute to the pathogenesis of schistosomiasis.
Therefore, striking a balance between a Th1/Th2 immune
response is key in improving the clinical manifestations of
schistosomiasis.

Schistosoma soluble egg antigen (SEA)
as an immunotherapy for autoimmune
diseases

The immunoregulatory effects of soluble egg antigen (SEA)
have led researchers to explore its potential therapeutic use in
treating autoimmune and inflammatory disorders such as dia-
betes, colitis, and multiple sclerosis [20]. A summary of how
SEA influences host immunity and autoimmune diseases is pro-
vided in Table 1.

Immune modulation by SEA

SEA exhibits a powerful immune-modulatory effect
(Fig. 1); therefore, researchers have begun investigating its
immune mechanism. In mice, injection with SEA has been
shown to induce a higher number of Th2 cells, producing
higher levels of IL-4, IL-5, and IL-13. SEA treatment also
decreases IL-17 secretion from CD4+cd+ T cells [74]. This is
positively linked to tissue repair of murine muscle injury, and
negatively linked to fibrogenesis in disease models of the cor-
neal and articular joints [74]. SEA can induce M2 differentia-
tion of macrophages via signal transducer and activator of
transcription (STAT)-6 and phosphatidylinositol 3-kinase
(PI3K)-dependent pathways [116]. SEA treatment also prevents
toll-like receptor (TLR)-dependent activation of DCs, as con-
firmed by the lack of major histocompatibility complex
(MHC) upregulation, CD80/CD86 upregulation, and Th1 and
Th17 cytokine production [20]. When SEA-treated DCs were
injected into mice, they drove the differentiation of naïve
T-cells into Th2 cells and produced higher IL-4, IL-5, and
IL-10 [20]. Notably, the induction of tolerogenic DCs by
SEA depends on CD40, as the absence of CD40 fails to devel-
op Th2 responses in mice induced by SEA-exposed DCs [20].
On a molecular level, the interaction between glycosylated SEA
and DCs results in increased expression of suppressor of cyto-
kine signaling1 (SOCS1) and SH2-containing protein tyrosine
phosphatase-1 (SHP1), two proteins that inhibit TLR4 signaling
[64]. Although it is still unclear how SEA-induced DCs drive
Th2 differentiation, recent literature has suggested that CD40,
CD252, and nuclear factor jB (NFjB) are required in the pro-
cess [20]. SEA has also been found to inhibit inflammatory

reactions by interacting with the B-cell lymphoma-3 (BCL-3)
protein in DCs [64]. In addition to DCs, studies have suggested
that SEA can internalize into regulatory B (Breg) cells and in-
duce significant production of IL-10 and immunoglobulin E
(IgE) [20]. At the same time, the Th2 response has long been
considered an anti-schistosome response, although this response
consequently leads to granuloma formation and fibrogenesis in
natural infection (where the eggs persist in the tissue). It is now
hypothesized that schistosome antigens or their derived prod-
ucts may induce this immune signature to repair autoimmu-
nity-associated damage or reverse the pathogenesis of some
diseases.

Graves hyperthyroidism

Graves hyperthyroidism is an autoimmune disease that
affects the thyroid gland. The disease is characterized by lym-
phocytic (mainly T lymphocytes) infiltration of thyroid parench-
yma [5]. A Th1 immune response promotes the production of
IFN-c and TNF-a, which activates thyrocytes to secrete
CXCL10, aggravating the disease [5]. Further, this leads to
autoantibody production against the thyroid-stimulating
hormone receptor (TSHR), resulting in the overproduction of
thyroid hormones [26]. The consequence is symptoms such as
goiter, irregular heartbeat, and ophthalmopathy [26]. An earlier
report indicated that SEA suppresses the production of Th1-type
anti-TSHR IgG2a autoantibodies and IFN-c during Graves
hyperthyroidism, which decreases the severity of the disease
[88]. However, it has also been shown that despite the induction
of anti-TSHR immune response in mice, SEA was ineffective in
curing the disease [88]. The full extent of the anti-TSHR
immune reactions induced by SEA on Graves hyperthyroidism
is unclear, as it has not been studied extensively. Further
research on the immune effects of SEA on Graves hyperthy-
roidism could provide valuable insight that could aid in develop-
ing new immunotherapies for this common autoimmune disease.

Asthma

Asthma is a prevalent but non-communicable disease affect-
ing 300million individuals worldwide [30]. It poses a significant
economic burden and has high mortality rates. Although asthma
is not classified as an autoimmune disease, it does entail a dys-
regulation of the immune system. The immune signature of
asthma involves eosinophilia, IgE induction of airway smooth
muscle, and increased levels of IL-4, IL-5, and IL-13 [78].
Therefore, targeting the Th2 responses could be an effective
way to combat asthma. Although SEA has been shown to
induce Th2 response, new T-cell epitopes identified on S. japon-
icum protein 40 (Sjp40), one of the components of SEA, have
been shown to enhance Th1 response by increasing IFN-c and
suppressing Th2 responses, thereby alleviating allergic asthma
in a mouse model [97]. Interleukin-4 inducing principle from
S. mansoni eggs (IPSE/alpha-1), a glycoprotein of SEA,
increases IL-10 production from Bregs in mice and humans,
reducing experimental allergic airway inflammation [46].

Interestingly, multiple comparative studies investigating
the relationship between asthma and S. mansoni infection in
endemic settings suggested a significant inverse correlation
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Table 1. A summary of schistosome products with immunomodulatory effect against autoimmune diseases.

Schistosome
product

Diseases Immunomodulatory effect References

Egg Soluble egg antigen (SEA) Graves hyperthyroidism Suppresses Th1-type anti-TSHR IgG2a
autoantibodies and IFN-c secretion

[88]

Asthma Downregulates Th2 response and upregulates
Th1 response, increases IFN-c production

[97]

Type 1 and Type 2 Diabetes Induces Th2 response [115]
Stimulates IL-33 secretion and increases Tregs [48]

Inflammatory bowel diseases Increases FoxP3+ Treg cells and secrets Th2
cytokines

[49]

Skin transplantation Increases CD4+IL-4+ T cells and CD4+Foxp3+

T cells but decreases CD4+IFN-c+ T cells in
the skin transplant

[59]

Autoimmune
encephalomyelitis

Induces Th2-dominant response and reduces
leukocyte infiltration in the CNS

[20]

Interleukin-4 inducing
principle from
Schistosoma mansoni
eggs (IPSE/alpha-1)

Allergic airway inflammation Induces Bregs which activates Tregs [65]

28-kilodalton glutathione
S-transferases (28GST)

Schistosomiasis Induces Th1 response [67]
Colitis Downregulates Th1 and Th17 and activates

M2 macrophages and Th2 responses
[106]

Schistosoma japonicum
HSP60-derived peptide
(SJMHE)

Delayed-type hypersensitivity Induces CD4+CD25+ Tregs with
overexpression of CTLA-4, IL-10, and TGF-
b1

[121]

Inflammatory bowel diseases Increases Th2 and Treg cells, upregulates IL-
10 and reduces Th17 and IL-17

[108]

Allergic rhinitis Upregulates Bregs with IL-10 production [42]
Schistosoma mansoni 14-

kDa fatty acid-binding
protein (Sm14)

Schistosomiasis Activates CD4+ T lymphocytes and
produces higher IFN-c and TNF-a

[8]

Increases production of IgG specific
antibodies, IL-2, TNF-a, and IFN-c

[104]

Omega-1 (x1) Diabetes Regulates an inflammasome-dependent IL-1b
and triggers Tregs production

[55]

Human immunodeficiency
virus infection

Induces CD4+ T cells and stimulates Th2
responses

[86]

Schistosoma mansoni
major egg antigen (Sm-
p40)

Hypertension Reduces Caveolin-1 expression by stimulating
TLR-4/CD14-mediated phosphorylation

[75]

Cercariae Cercarial antigen Arthritis Increases serum levels of IL-10 and IFN-c;
increases Tregs and reduces IL-17

[35]

Colitis Induces macrophage-dependent response [112]
KS-84 (a synthetic peptide

of Sm16)
Liver fibrosis Downregulates TGF-b expression [16]

Schistosoma mansoni
Cathepsin B 1 (SmCB1)

Schistosomiasis Increases production of IL-5 and IL-13 and
decreases IFN-c secretion

[114]

Adult worm Schistosoma mansoni
Kunitz type serine
protease inhibitor
(SmKI-1)

Acetaminophen-induced liver
injury

Reduces neutrophil recruitment and elastase
activity

[83]

Pleural cavity inflammation Lowers leukocyte infiltration [83]

Schistosoma mansoni
protein 29 (Sm29)

Leishmaniasis Increases CD4+CD25 and CD4+CTLA-4+ T
cells and increases IL-10

[71]

Allergic airway inflammation Decreases IgE levels and increases the
numbers of CD4+FoxP3+ T cells

[15]

Human T cell lymphocytic
virus type 1

Induces IL-10 and reduces IFN-c [69]

Schistosoma japonicum
tetraspanin orphan
receptor (SjTOR)

Schistosomiasis Modulates complement pathway; induces
IgG1 and IgG2a antibodies.

[73]

4 M.M. Chaponda and H.Y.P. Lam: Parasite 2024, 31, 68



between asthma and infection by S. mansoni [95]. It has been
demonstrated that S. mansoni may suppress immediate hyper-
sensitivity reactions, leading to a less severe form of asthma.

Type 1 and type 2 diabetes

According to the International Diabetes Federation (IDF),
451 million people were living with diabetes as of 2017 glob-
ally. Unfortunately, this number is expected to rise to 693 mil-
lion by 2045 [4]. Chronic pancreatic islet inflammation is a
defining characteristic of both type 1 and type 2 diabetes.
Research has demonstrated that IL-1b is responsible for type 1
and type 2 diabetes by overstimulating the b-cells of the pancre-
atic islets of Langerhans [32]. Furthermore, it has been described
that IL-1b induces the production of other cytokines and
chemokines, including IL-6, IL-8, IL-33, TNF, and CC-chemo-
kine ligand 2 (CCL2) [32]. These mediators attract various
immune cells into the islets, leading to chronic inflammation
and a harmful cycle of auto-stimulation of IL-1b [32]. Imbal-
ances in Th1, Th17, and Tregs cells have been described to lead
to the pathogenesis of diabetes [7, 138]. Thus, maintaining a bal-
ance between these T cells is essential for controlling both type 1
and type 2 diabetes.

Single cytokine blockage has shown limited effectiveness
as a standalone treatment for diabetes [32], indicating a need
for further research into alternative immune therapies. It was
shown that S. mansoni infection in obese mice led to body
weight reduction, lower insulin resistance, and lower glucose
intolerance [54]. Schistosoma japonicum soluble egg antigen

was previously found to increase Th2 immune response and
Tregs, leading to improved type 2 diabetes in Leprdb/db mice
[115].

SEA-derived omega (x)-1 protein has also been suggested
to improve the metabolic status of obese mice by binding to
CD206 and stimulating the release of IL-33, a Th2 cytokine
inducer [48]. Although the induction of Tregs and Th2 cytokine
responses have been shown to improve diabetes, there is no
direct evidence on whether they are associated with IL-1b.

Inflammatory bowel diseases

Inflammatory bowel disease (IBD) is a chronic inflamma-
tory state of the gastrointestinal tract and is classified into two
main clinical conditions: ulcerative colitis and Crohn’s disease.
IBD is characterized by chronic inflammation and a dysregu-
lated inflammatory immune response. T helper cells play a cru-
cial role in the pathogenesis of IBD as they are known to
differentiate based on their surrounding environment [44]. Mul-
tiple studies have demonstrated that IL-17, a pro-inflammatory
cytokine secreted by Th17 cells, is the primary driver of IBD
[44]. The differentiation of Th17 and Treg cells is related, as
these cells share a common signaling pathway mediated by
TGF-b [137]. The induction of Tregs under the influence of
IL-10 improves clinical symptoms of IBD in an animal model
[133]; therefore, maintaining the Th17/Treg cell balance is cru-
cial in preventing IBD [128].

Previously, SEA has been shown to significantly reduce the
severity of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced

Figure 1. Immune responses induced by SEA. SEA induces M2 differentiation of macrophages and prevents toll-like receptor-dependent
activation of dendritic cells, which is correlated with reduced production of inflammatory cytokines. Dendritic cells also induce the
differentiation of CD4+ T cells into the Th2 subset through a CD40-dependent mechanism. SEA can also activate Th2 CD4+ T cells and
regulatory B cells. Regulatory B cells, once activated, secrete IgE and further stimulate basophil production of IL-4 and IL-13, which then
induce Th2 CD4+ T cells. Th2 CD4+ T cells can release various Th2 cytokines such as IL-4, IL-5, IL-10, and IL-13, shifting the overall
immunity into a Th2-dominant response.
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colitis [51] and dextran sulfate sodium (DSS)-induced colitis
[49] in a mouse model by increasing the number of FoxP3+

Treg cells and secretion of Th2 cytokines, including IL-10 [49].

Organ transplantation

Although Schistosoma-infected patients are not included in
transplant donor acquisition, some studies have suggested that
organ transplantation from donors with schistosomiasis has been
successfully performed without any short-term or long-term
adverse effects [23]. Additionally, evidence indicates that Schis-
tosoma infection does not pose a significant risk for transplanta-
tion, as infected organ recipients do not appear to experience any
harmful consequences [68]. Studies have shown that graft rejec-
tion comprises an infiltration of various inflammatory cells such
as monocytes, DCs, NK cells, eosinophils, and CD8+T cells
[41]. It has been found that a proper balance of Tregs and
Th17 cells is critical for graft tolerance, as Th17 cells contribute
to chronic graft rejection, whereas Tregs promote immune sup-
pression and graft tolerance [52]. SEA has been demonstrated
to suppress skin graft rejection and prolonged survival by reg-
ulating IFN-c and limiting the inflammatory effect of Th1 and
Th17 cells [59]. SEA treatment also led to higher CD4+IL-4+ T
cells and CD4+Foxp3+ T cells and decreased CD4+IFN-c+ T
cells within the skin transplant [59]. These findings suggest that
SEA, through its immune-regulatory effect, could be a viable
treatment in preventing organ transplant rejection.

Multiple sclerosis

Multiple sclerosis (MS) is characterized by the infiltration of
autoreactive immune cells into the central nervous system
(CNS), causing neuronal damage [29]. Several Th cells, such
as Th1, Th17, and Th22, have been associated with MS [118].
Tregs inhibit the infiltration of effector T cells into the CNS in
mice with experimental autoimmune encephalomyelitis (EAE)
[118]. Additionally, Tregs have been shown to inactivate mast
cells, which are reported to worsen the symptoms of MS [118].

While no studies have directly examined the effects of SEA
in MS, studies have been conducted on the potential impacts of
schistosome eggs and cercariae in this disease. To this end,
mice with EAE were treated with schistosome eggs before dis-
ease induction. The results lead to significant protection from
the disease, a shift from Th1-dominant response to Th2-domi-
nant response, and reduced leukocyte infiltration in the CNS
[20]. It was also shown that S. mansoni-infected EAE mice
have a reduced Th1 response and CNS inflammation [20], pro-
viding a fundamental basis for future use of SEA or other schis-
tosome-related products in MS.

Cancers

As host immunity plays a significant role in regulating
tumor cell growth and progression [50], there has been great
interest in immunotherapies in treating cancers. Although
immunotherapies for treating cancers and autoimmune diseases
seek opposite effects on the immune system (one to enhance
anti-tumor immunity and the other to reduce immune activation
and suppress inflammation), they may involve the same

immune pathways [1]. For example, interferon regulatory factor
4 (IRF4), a member of the IRF family of transcription factors,
plays a crucial role in immune cell differentiation and function,
including B-cells, T-cells, and DCs [127]. IRF4 has been found
to facilitate the infiltration of CD8+ T cells, advancing both tu-
mors and autoimmune diseases [127]. Therefore, eliminating
IRF4 has been shown to impede tumor growth, enhance treat-
ment for autoimmune disease, and promote organ graft toler-
ance [127]. This suggests that immunotherapies designed for
autoimmune diseases could also be adapted to cancer treatment.

However, there are still challenges in applying immunother-
apy to cancers. Certain non-immunogenic cancers, such as pan-
creatic cancer, hormone receptor-positive breast cancers, and
glioblastoma, have been incredibly resistant to this approach.
Failure of immunotherapy may even occur in immunogenic
cancers, such as non-small cell lung cancer (NSCLC) [6] and
multiple myeloma [98].

Currently, no research has yet investigated the effectiveness
of SEA in preventing or treating cancer. However, SEA may
serve as a therapeutic approach in cancer, especially when cer-
carial antigens have already been suggested to be able to treat
colon cancers [34]. Despite SEA holding potential as a cancer
treatment, further research is needed to comprehend its mecha-
nisms and effects. Schistosoma infection and the secretions of
S. haematobium-related egg antigens, such as IPSE/alpha-1,
have been shown to stimulate continuous inflammatory
responses that lead to bladder carcinogenesis [79, 105]. It has
been suggested that the chronic inflammatory response caused
by S. japonicum and S. mansoni infection provides a suitable
environment for the occurrence of genomic instability, trigger-
ing the development of colorectal cancer [102].

On the contrary, it has also been shown that treating mice
with S. mansoni antigens reduced the tumor number and tumor
size of 1,2-dimethylhydrazine-induced colorectal cancer [34].
The link between schistosomiasis and cancer is not a simple
cause-and-effect relationship because many other factors are
also involved. For example, the co-occurrence of schistosomia-
sis and hepatitis B virus (HBV) infection plays a role in the
development of hepatocellular carcinoma [63]. Currently, there
is no sufficient evidence to associate other schistosome species
apart from S. haematobium with cancer. Therefore, by using
specific antigens from the egg, cancer therapy can be precisely
timed and controlled for better outcomes.

Immune modulatory effects of specific
components within SEA

Although the term SEA is used as an acronym for soluble
egg antigen, it is in fact not just a single antigen. SEA is a crude
extract of schistosome eggs, involving disruption of the egg
with a homogenizer using an extracting buffer (such as phos-
phate-buffered saline or other lysis buffers). The homogenate
comprises complex components, not only proteins but also gly-
coproteins, polysaccharides, and glycolipids [24]. The compo-
nents of SEA are therefore derived from the eggshell, the
miracidium within the egg, and egg-secretory proteins [77].

While SEA has been found to possess immune regulatory
properties in different diseases, it has also been shown to
activate the NLRP3 inflammasome in hepatic stellate cells

6 M.M. Chaponda and H.Y.P. Lam: Parasite 2024, 31, 68



(HSCs) [81]. This activation enhances the secretion of IL-1b in
the liver which may be an early mechanism to turn on inflam-
matory responses that lead to fibrosis; not to mention that IL-1b
is a primary driver of many inflammatory diseases [81].

Therefore, there is a need for further research on SEA as a
therapeutic agent by dissecting and analyzing different SEA
components. Some of the thoroughly researched egg secretory
proteins include but are not limited to interleukin-4 inducing
principle from S. mansoni eggs (IPSE/alpha-1), 28-kilodalton
glutathione S-transferases (28GST), S. japonicum HSP60-
derived peptide, S. mansoni 14-kDa fatty acid-binding protein
(Sm14), omega-1 (x1), S. mansoni large subunit calpain (Sm-
p80), S. mansoni protein 40 (Sm-p40) and micro-exon gene
proteins (MEGs). Proteomics analysis has provided us insights
into the biological characteristics of these egg antigens and has
revealed potential vaccine candidates for schistosomiasis [17].
For example, impartial phage display screening has identified
Sm-p80 and MEG proteins as potential S. mansoni vaccine can-
didates in the rhesus macaques Macaca mulatta [123]. There-
fore, further understanding of the immunoregulatory effects of
each SEA component may enable us to clarify the therapeutic
or pathogenic mechanism. Below, we will review the specific
components of SEA and their immune modulatory effects.
Table 1 describes the immune modulatory effect of these partic-
ular components of SEA on diseases.

Interleukin-4 inducing principle from
Schistosoma mansoni eggs (IPSE/alpha-1)

Interleukin-4 inducing principle from S. mansoni eggs
(IPSE/alpha-1) is a major glycoprotein secreted by the eggshell
of S. mansoni egg [61]. IPSE/alpha-1 is an immunoglobulin-
binding protein that interacts with IgE, leading to basophil
activation [61]. It has also been reported that the IPSE/
alpha-1-activated basophils secret IL-4 and IL-13, two of the
main drivers of Th2 response [65]. The production of IL-4
and IL-13 from basophils downregulates inflammatory
responses in schistosomiasis as these cytokines result in the dif-
ferentiation of monocytes to alternatively activated macrophages
[65]. IPSE/alpha-1 stimulates IL-10 secretion from naïve B cells
and induces differentiation of Breg cells [20]. Breg cells have
been demonstrated to improve the outcome of autoimmune dis-
eases such as EAE, collagen-induced arthritis, and autoimmune
myocarditis (AEM) in animal models [124]. Breg cell induced
by IPSE/alpha-1 also stimulates Treg cell development and
alleviates experimental allergic airway inflammation [46].
However, IPSE/alpha-1 can potentially be associated with blad-
der cancer [79], and therefore, further research on this antigen is
recommended.

28-kilodalton glutathione S-transferases (28GST)

28-kilodalton glutathione S-transferases (28GST) is an
enzyme that neutralizes endogenous and exogenous free radi-
cals and is present in all stages of the schistosome, except in
intra-uterine immature egg [93]. In one study, 28GST was
shown to induce a Th1 immune response, thereby protecting
the host from S. mansoni infection [67]. However, in another
study, 28GST downregulates Th1 and Th17 responses and
induces activation of M2 macrophages and Th2 responses,

thereby improving intestinal inflammation in mice with
TNBS-induced colitis [106]. Similar results can be observed
in colitic rats treated with 28GST, which improved their colitis
symptoms by inducing Th2 immune responses and eosinophil
infiltration [33]. Notably, 28GST used in these colitis studies
was purified from S. haematobium. Although S. haematobium
and S. mansoni differ in their parasitic location, they induced
a very similar immune response in the host. Therefore, it is pos-
sible that antigens derived from S. haematobium or S. mansoni
may show very similar immunomodulatory effects.

In a phase IIa clinical trial, the Anti-CROHN Enzymatic
Molecule (ACROHNEM) program (ClinicalTrials.gov Identi-
fier: NCT02281916), 28GST was applied in patients with
Crohn’s disease. Among all ten patients recruited, eight
received three subcutaneous injections of recombinant 28GST
within three months, followed by a nine-month course investi-
gation [13]. Injection of 28GST reduced disease activity scores
in these patients by 30% with no adverse effects. Analysis of
the patients’ fecal microbiota composition showed an increase
in Bifidobacterium, a bacterium that exerts positive health ben-
efits on its host, and a decrease in Veillonellaceae, bacteria
associated with inflammatory events [40]. However, the major
limitation of this study remains the small sample size, which
may lead to possible biased interpretation; therefore, validation
with a larger sample size could be done in the future. Neverthe-
less, these studies suggest that 28GST may be a beneficial ther-
apeutic weapon for inflammatory bowel disease in the future.

Schistosoma japonicum HSP60-derived peptide
(SJMHE)

Schistosoma japonicum HSP60-derived peptide (SJMHE)
is a peptide molecule of the heat shock protein family D
(HSP60) member 1 (HSPD1) found in the SEA of S. japon-
icum. SJMHE1 inhibits delayed-type hypersensitivity in mice
through induction of CD4+CD25+ Tregs with overexpression
of CTLA-4, IL-10, and TGF-b1 [121]. By inhibiting the activ-
ity of Th1 and Th17 cells, SJMHE1 can lessen the severity of
DSS-induced acute and chronic colitis in mice [108]. This
improvement in IBD was accompanied by enhanced Th2 re-
sponse, reduced IL-17 expression, and increased IL-10 expres-
sion [108]. Treatment of mice with SJMHE1 also resolved
allergic rhinitis by upregulating IL-10-producing Breg cells
[42].

Schistosoma mansoni 14-kDa fatty acid-binding
protein (Sm14)

Schistosomes do not process oxygen-dependent pathways
to manufacture fatty acids and sterols; therefore, the parasite
employs fatty acid-binding proteins, mainly by a 14-kDa
polypeptide (Sm14), to internalize host fatty acids [3]. Sm14
is found in the egg and adult worm [9]. Immunization with
recombinant Sm14 (rSm14) has been shown to protect against
schistosomiasis in mice and rabbits, highlighting the potential
of Sm14 as a vaccine candidate [3]. A study in Brazil, a country
considered endemic for schistosomiasis, suggested that Sm14
protects uninfected individuals against schistosomiasis by
stimulating CD4+ T cells and producing higher IFN-c and
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TNF-a [8]. Previously, our study demonstrated that mice
immunized with heat-killed Cutibacterium acnes-adjuvanted
rSm14 increased humoral immune responses against S. man-
soni and reduced S. mansoni-associated liver fibrosis in infected
mice [66]. Our findings emphasize the critical role of using
Sm14 with an adjuvant to induce a robust immune response
against schistosomiasis. Additionally, a phase I clinical trial
using Sm14 as a vaccine candidate in endemic areas has shown
promising results in preventing schistosome infections. This
clinical trial also showed that Sm14 elicited increased schisto-
some-specific IgG antibodies and a robust cytokine response
of TNF-a, IFN-c, and IL-2 in vaccinated individuals [104].

Other schistosome-soluble egg antigens

Omega-1 (x1) is a glycosylated secretory antigen of SEA.
It is a hepatotoxic glycoprotein with ribonuclease (RNase) T2
activity. Omega-1 binds to the mannose receptor on DCs,
thereby activating DCs [107]. The activation of DCs leads to
the induction of Th2 immune responses. Both the RNase T2
activity and Th2 polarization contribute to granuloma formation
[55]. It has been shown that knocking out the x1 gene from
schistosome eggs exhibited failure in Th2 polarization and
reduced granuloma size [55]. Omega-1 also modulates the
infection capacity of the human immunodeficiency virus
(HIV) in vitro by stimulating DCs, inducing CD4+ T cells
and stimulating Th2 response [86]. Omega-1 reduces the devel-
opment of diabetes in NOD mice by regulating an inflamma-
some-dependent IL-1b release and triggering Tregs
production [55].

Schistosoma mansoni large subunit calpain (Sm-p80) is a
protein responsible for biogenesis and renewal of the surface
membrane of schistosome [82]. The protein is present in all
intra-mammalian parasite stages and is found on the surface
of the parasite syncytium, making it a good candidate for schis-
tosome vaccine. The protein is highly antigenic and is able to
induce host immune responses. Several studies have reported
that Sm-p80 vaccination protects against infection of different
schistosomes species. Vaccination of Sm-p80 also improves
hepatic, intestinal, and urogenital schistosomiasis [82].

Schistosoma mansoni major egg antigen (Sm-p40) is
another major egg component of S. mansoni; it elicits a strong
Th1 immune response in mice, suggesting its potential in treat-
ing autoimmune diseases [90]. In vitro, Sm-p40 stimulates
TLR4/CD14-mediated transient phosphorylation of Caveolin-
1 (Cav-1) at Tyr14 in human lung microvascular endothelial
cells (HMVEC-L), leading to a reduction of Cav-1 expression
[75]. Cav-1 has been implicated in the development of hyper-
tension [120], suggesting the potential of Sm-p40 in treating
hypertension.

Micro-exon gene proteins (MEGs) are a large family of
S. mansoni proteins encoded by genes of various symmetrical
micro-exons. MEG-2 and MEG-3 are upregulated and highly
expressed in mature liver-entrapped eggs in S. mansoni-infected
mice [91]. MEG-24 and MEG-27 are identified as a-helical
membrane-active peptides located in the parasite sub-
tegumental cells that could interact with the host immunity
similar to other a-helical membrane-active peptides [38]. In

addition, MEGs have gene expression patterns similar to
omega-1 and IPSE/alpha-1, suggesting their possible
mechanism in establishing immune modulation [91]. Using a
microarray approach with more than 170,000 unique peptide
sequences, MEG-12 was found to be a sensitive and specific
immunogenic linear peptide that could be used as a diagnostic
marker or to be included in a multi-epitope vaccine construct
[119].

Immune modulatory effect of other
non-SEA Schistosoma antigens

In addition to egg-related antigens, studies also demon-
strated the use of other Schistosoma antigens in treating autoim-
mune diseases. Here, we will discuss non-SEA Schistosoma
antigens that can potentially regulate host immunity and their
impact on diseases. Table 1 indicates the immune modulatory
effects of the crude and specific antigens on different diseases.

Immune modulation by Schistosoma cercarial
antigens

Although the immune modulatory effect of SEA during
schistosomiasis has been extensively researched, the immune
regulatory effects of secretory cercarial antigens remain under-
studied. Current evidence supports the notion that infective
cercariae employ several immunomodulatory mechanisms to
penetrate host skin [58]. Cercariae alter host DCs, mast cells,
and macrophages, leading to increased IL-10 production. Trans-
formed cercarial antigens have been shown to activate bone
marrow-derived DCs by increasing MHC-II, CD40, and
CD86 expression and inducing IL-6 and IL-12p40 [58]. LewisX

immune-modulating molecules isolated from schistosome eggs
are also present in cercariae and have been reported to cause a
suppressive immune response [58]. Heat-killed S. mansoni
cercarial antigen improved arthritis in rats by maintaining the
balance of pro-inflammatory and anti-inflammatory responses
through increasing serum levels of IL-10 and IFN-c, increasing
Foxp3+ Tregs, and reducing IL-17 levels [35]. Mice infected
with cercariae have also been shown to reduce DSS-induced
colitis in a macrophage-dependent manner [112]. In the follow-
ing, we will review specific cercarial antigens.

Schistosoma mansoni protein antigen 16 (Sm16)

Sm16, a 16 kDa protein secreted by S. mansoni cercariae, is
a major component of cercarial secretory antigens [25]. Sm16
modulates host skin immune response to aid successful cercar-
ial penetration. Sm16 inhibits IFN-c stimulation of monocytes
in vitro in a TLR2-independent manner [103]. In vitro, recom-
binant Sm16 has been shown to induce pro-inflammatory
macrophage response and decrease the production of
lipopolysaccharide (LPS)-induced inflammatory cytokines
[110]. Sm16 also increases the anti-inflammatory cytokine,
interleukin-1 receptor antagonist (IL-1Ra), in keratinocytes
[2]. Furthermore, Sm16 suppresses cutaneous inflammation
by reducing neutrophil infiltration in mice [25].
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KS-84, a synthetic peptide deriving from Sm16, has been
shown to downregulate TGF-b1 gene expression in LX-2 cells,
reducing liver fibrosis [16]. These studies suggest the immune
modulatory effect of Sm16 and propose its potential use for
immunotherapy.

Schistosoma mansoni cercarial elastase (SmCE)

Schistosoma mansoni cercarial elastase (SmCE) is a prote-
olytic enzyme responsible for cercariae to degrade the skin
barrier when invading host skin [47]. SmCE induces dermal
DCs to express high levels of programmed death ligand
(PD-L) and IL-10 to aid parasite invasion of host skin [122].
Therefore, immune responses targeting this enzyme are thought
to protect against cercariae penetration [47]. Although SmCE is
poorly immunogenic, multiple immunizations with this enzyme
still protected the mice from S. mansoni infection. Furthermore,
it has been found that immunizing the mice with recombinant
SmCE (rSmCE), an inactive enzyme, induces specific IgG1
responses [36]. Mice vaccinated with rSmCE had lower worm
and egg burden. Therefore, SmCE could be utilized as a
vaccine candidate for schistosomiasis [36].

Schistosoma mansoni/japonicum Cathepsin B
(SmCB1; SjCB2)

Another enzyme employed by cercariae in evading host
dermal immune responses is cathepsin B, which is a cysteine
protease secreted by cercariae of S. mansoni (SmCB1) and
S. japonicum (SjCB2). The enzyme is present in the acetabular
glands and ducts of the cercariae [135]. SjCB2 has been shown
to inhibit host immune responses by degrading dermal antibodies
including IgA, IgM, and IgG [135]. SmCB1 elicits a Th2 immune
response, stimulating CD4+ T cells and IL-4, and induces an
IgE-specific antibody response [28]. Hamsters immunized with
SmCB1 had 75% protection against S. mansoni, characterized
by an increase in IL-5 and IL-13 and a decrease in IFN-c, indi-
cating a typical Th2 immune response [114]. Although the
mechanism of immune modulation by SmCB1 or SjCB2
remains unclear, it offers promising aspects for future vaccine
development for schistosomiasis and autoimmune diseases.

Immune modulatory effects of Schistosoma
adult worm antigen

The tegument of the adult worm is enriched with immune
modulatory factors, and it can rapidly rejuvenate following
damage, a phenomenon aided by somatic stem cells [21]. The
adult worm spends up to decades in the host as a foreign body.
Therefore, the adult worm incorporates various mechanisms to
escape host immune surveillance. One of the mechanisms the
adult worm uses is to employ self-made elements, such as
cystatin and integrin, which can inactivate macrophages and
alter cytokine release in T-cells [12]. Another molecule is schix-
ator, produced by S. japonicum, which has been shown to have
an anti-thrombotic effect and can lead to lower bleeding risk in
mice [31], suggesting its potential use as novel drug therapy
against thrombotic diseases. Below is a review of different adult
worm antigens and their immune regulatory effects.

Schistosoma mansoni Kunitz type serine
protease inhibitor (SmKI-1)

SmKI-1 is found in both larva and adult S. mansoni and
comprises a Kunitz-type serine protease inhibitor motif (KD)
and a C-terminus domain. The KD domain has been suggested
to inhibit trypsin, chymotrypsin, and neutrophil elastase (NE),
inhibiting neutrophil influx and reducing inflammation [83,
96]. In an acetaminophen-induced liver injury model, SmKI-1
significantly reduced neutrophil recruitment and elastase activ-
ity in the liver, resulting in lesser liver histopathology [83].
SmKI-1 treatment also reduces joint destruction in the monoso-
dium urate-induced gout arthritis model by reducing leukocyte
infiltration and synovial membrane hyperplasia [83]. Similar
anti-inflammatory effects were observed in carrageenan-
induced pleural cavity inflammation models [83].

Schistosoma mansoni protein 29 (Sm29)

Schistosoma mansoni protein 29 (Sm29), located in the
tegument of adult worms, have been shown to induce a tolero-
genic profile on DCs [71], as indicated by increased expression
of HLA-DR, CD83, CD80, CD86, IL-10, and IL-10 receptors.
Sm29 also stimulates the differentiation of naïve T-cells into
Treg cells, which is opposite from the Th2 inducing effect of
crude SEA [71]. High levels of Sm29-specific IgG1 and IgG2a
antibodies with a polarized Th1 immune profile have been asso-
ciated with resistance to Schistosoma infection in endemic
areas, emphasizing the potential of Sm29 as a vaccine candidate
[14].

Evidence has supported the ability of Sm29 to suppress
inflammatory responses in different diseases [15, 69, 71].
Sm29 improved airway inflammation by decreasing ovalbu-
min-specific IgE levels and increasing the numbers of
CD4+FoxP3+ T cells [15]. Sm29 has been demonstrated to sup-
press inflammatory responses in leishmaniasis by increasing the
numbers of CD4+CD25 and CD4+CTLA-4+ T cells, leading to
increased levels of IL-10 [71]. In vitro, Sm29 has been shown
to downregulate the inflammatory response induced by human
T cell lymphocytic virus type 1 (HTVL-1) by stimulating IL-10
and suppressing IFN-c [69]. These findings support using
Sm29 as an immunotherapeutic agent for treating inflammatory
diseases.

Schistosoma mansoni Cyclophilin A (SmCyp)

Schistosoma mansoni cyclophilin A (SmCyp) is a 17–19
kDa proteome secreted by adult S. mansoni worms [39].
SmCyp has been shown to modulate immune responses by
altering the pro-inflammatory cytokines of LPS-activated DCs
and also increasing the expression of Tregs in vitro [39]. It
has been demonstrated that SmCyp immunization increased
SmCyp-specific antibodies and reduced worm burden follow-
ing Schistosoma infection [27]. In addition, a study has
shown that SmCyp immunization does not activate IgE
responses, whereas many vaccines that trigger IgE induction
are possibly linked to hypersensitivity reactions [53]. Hence,
it is inferred that SmCyp exhibits excellent safety as a vaccine
candidate.
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Schistosoma japonicum tetraspanin orphan
receptor (SjTOR)

Schistosoma japonicum tetraspanin orphan receptor
(SjTOR) is present in cercariae, schistosomula, and adult worm
[73]. SjTOR has been shown to bind to complement C2 and
modulate complement-mediated hemolysis in a dose-dependent
manner, thereby escaping from bloodstream coagulation [73].
This antigen also induces specific IgG1 and IgG2a antibodies,
reducing worm burden in mice [73]. Although further research
is required, SjTOR has attributes for vaccine development for
schistosomiasis and therapeutics for thrombotic diseases.

Immune modulatory effects of Schistosoma
miracidia antigens

A favorable miracidia infection depends on snail immune
response against schistosome [92]. Snail-schistosome compati-
bility is species-specific; for example, S. japonicum infects
Oncomelania snails, S. haematobium infects Bulinus snails,
and S. mansoni infects Biomphalaria snails. Most of the knowl-
edge on gastropod immunity to schistosomes has been based on
the Biomphalaria glabrata (B. glabrata)-S. mansoni model,
which has been studied extensively [92]. Miracidia employs
three strategies to aid host immune evasion: molecular mimicry,
polymorphic mucins, and larva transformation products (LTPs).
A mass spectrometry analysis of the LTPs discovered various
factors involved in immune modulation, including but not lim-
ited to proteases, protease inhibitors, ion-binding proteins,
antioxidative enzymes, and venom allergen-like proteins
[125]. These LTPs alter plasma and hemocytic function, affect-
ing hemocyte-attracting chemokines and the production of reac-
tive oxygen species [132]. Below we will discuss how LTPs
and other secretory products modulate immune responses.

Schistosoma mansoni venom allergen-like 9
(SmVAL9)

Schistosoma mansoni venom allergen-like 9 (SmVAL9)
belongs to a group of SmVAL molecules comprising 29 mem-
bers [131]. SmVAL9 is essential for parasite development and
host interactions. Although it is found in both miracidia and
sporocysts, it is present in higher concentrations in miracidia
than in developing sporocysts [131].

While matrix metalloproteinases (MMPs) are metacin-like
proteases that regulate tissue hemostasis and immunity [70], mam-
malian RTV-1 (a homolog of SmVAL9) has been shown to upreg-
ulate MMP-2 activity in glioma cells and control the growth,
survival, and invasion of glioma cells [101]. SmVAL9 stimulates
MMPs and tissue inhibitors of metalloproteinases (TIMPs) in mur-
ine bone marrow-derived macrophages [131], suggesting a pivotal
role played by SmVAL9 in tissue organization during miracidia
and sporocyst migration and invasion [131].

Schistosoma mansoni polymorphic mucins
(SmPoMucs)

Schistosoma mansoni polymorphic mucins (SmPoMucs)
are a group of highly polymorphic and glycosylated proteins
produced by miracidia and sporocysts that aid parasite survival

[99]. SmPoMucs have been found to be associated with differ-
ent somatic immune-modifying molecules, such as fibrinogen-
related proteins (FREPs) and B. glabrata thioester-containing
protein (BgTEP), which are capable of neutralizing SmPoMucs
[47]. However, their high polymorphism is a superpower in
establishing infection and escaping host immune surveillance,
such as forming the humoral immune complex of FREPS/
BgTEP [47]. SmPoMuc interaction and immune modulation
of FREPs are major determinants of the incompatibility/com-
patibility status in the S. mansoni-B. glabratamodel [94]. How-
ever, whether these proteins process any immune modulatory
effects in humans remains unclear.

Conclusion

Different developmental stages of the schistosome exhibit
different immune modulatory effects on the host. Current stud-
ies suggest the potential role of schistosome-derived products
for schistosomiasis vaccine and drug development for autoim-
mune diseases. Presently, studies have focused on enhancing
our understanding of using SEA to combat immune-related dis-
eases; SEA comprises all soluble components of the schisto-
some eggs, from hundreds to thousands of proteins, of which
only a few have been identified and characterized. Although
the exact mechanism has yet to be clarified, using SEA and
other schistosome-derived antigens may revolutionize treatment
of autoimmune or other immune-related diseases. However, it
is important to note that some schistosome species, although
the association is not reasonably sufficient and conflicting (ex-
cept S. haematobium, which has already been found to correlate
positively with bladder cancer [79]), might have a possible
association with other types of cancer, such as liver cancer
[111] and intestinal cancer [10]. Therefore, using Schistosoma
antigens as an immunotherapeutic drug may require a deeper
understanding of its mechanism. Yet, as may have been
expected, the immune-regulatory characteristics of Schistosoma
antigens are desirable for pre-clinical and clinical trials.
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