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Luiz Armando De Marco ,1,4 Débora Marques de Miranda ,1,4

and Marco Aurélio Romano-Silva 1,4

1Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
2Escola Bahiana de Medicina e Saúde Pública, Salvador, Brazil
3Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Faculdade Ciências Médicas de Minas Gerais (FCMMG),
Belo Horizonte, Brazil
4INCT em Neurotecnologia Responsável (INCT-NeurotecR), Belo Horizonte, Brazil
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Objective: Genetic variability signifcantly impacts metabolism, weight gain, and feeding behaviors, predisposing individuals to
obesity. Tis study explored how variations in key genes related to obesity—FOXO3A (forkhead box O3), AMPK (protein kinase
AMP-activated), and POMC (proopiomelanocortin)—are associated with extreme obesity (EOB).
Methods: We conducted a case–control study with 251 EOB patients and 212 healthy controls with a body mass index (BMI) of
less than 25 kg/m2. We genotyped 10 single nucleotide variants (SNVs) using TaqMan-based assays.
Results: Four SNVs—rs1536057 in FOXO3A, rs103685 in AMPK, rs934778, and rs6545975 in POMC—were associated with an
increased risk of EOB. Te strongest association was observed with rs934778 (POMC), which had a maximum odds ratio (OR) of
5.26 (95% CI: 2.86–9.09). While these genetic variations are closely linked to EOB, they do not afect serum glucose, triglycerides,
HDL, LDL, BMI, or waist circumference.
Conclusions: Tese fndings indicate that factors beyond traditional metabolic pathways, potentially related to feeding behavior
or hormonal regulation, may also link these genetic variations to obesity. Further research in a larger sample is essential to validate
these fndings and explore their potential to guide clinical interventions and public health strategies.
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1. Introduction

In recent years, the prevalence of overweight and obesity has
increased dramatically worldwide [1], with theWorld Health
Organization (WHO) estimating that 38% of the global
population is currently either overweight or obese [2]. Tis
rapid rise has made obesity a critical public health issue [3].

Extreme obesity (EOB), characterized by a body mass index
(BMI) of 40 kg/m2 or higher, has a more severe impact on
health compared to general obesity and overweight. It results
in higher healthcare costs, increased prevalence of comor-
bidities (such as cardiovascular diseases, type 2 diabetes, and
sleep apnea), and a greater number of years lived with
disability [4–7].
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While environmental factors such as malnutrition and
low physical activity are well-known contributors to obesity,
the signifcant fat accumulation seen in EOB seems to be
driven by specifc genetic factors [8–10]. Nevertheless, the
genetic basis of EOB remains largely unidentifed, indicating
a substantial gap in our knowledge compared with what is
known about common obesity.

Potential genetic contributors to EOB include FOXO3A
(forkhead box O3a), AMPK (5′ adenosine monophosphate-
activated protein kinase), and POMC (proopiomelano-
cortin). Each of these genes plays a signifcant role in reg-
ulating metabolic pathways related to obesity. FOXO3A,
a key transcription factor in the forkhead box O (FOXO)
family, is essential for maintaining metabolic balance [11]. It
regulates energy balance by modulating genes crucial for
energy production, especially under conditions of glucose
restriction [12, 13]. In addition, FOXO3A has been associ-
ated with lipid accumulation and adipocyte infammation by
regulating autophagy [14]. It also suppresses the tran-
scription of neuropeptide W (NPW), which is involved in
the hypothalamic control of feeding behavior [15].

Te AMPK gene is another crucial regulator of metabolic
pathways linked to obesity. AMPK functions as a key reg-
ulator of metabolism by enhancing glucose and fatty acid
uptake [16], promoting fatty acid oxidation to reduce fat
accumulation, and modulating hypothalamic pathways that
control appetite and energy use [17]. Moreover, AMPK
activation reduces infammation in adipose tissue, thereby
mitigating obesity-related chronic infammation [18].

POMC neurons in the hypothalamus produce mela-
nocortin peptides that regulate energy expenditure and
reduce food intake, playing a vital role in body weight
management [19]. Proper excitation of POMC neurons is
essential for efective melanocortin release and the regula-
tion of leptin signaling, which directly impacts energy ho-
meostasis [20]. Dysfunction of the POMC gene causes severe
early-onset obesity [21, 22].

Given the involvement of these genes in crucial meta-
bolic and behavioral pathways, investigating single nucle-
otide variants (SNVs) within FOXO3A, AMPK, and POMC
can ofer valuable insights into the molecular mechanisms
driving obesity. SNVs in these genes may result in altered
transcriptional activity, disrupting pathways essential for
adipogenesis, energy homeostasis, and feed behavior, thus
exacerbating the metabolic imbalances associated with
obesity. In this study, we examined four SNPs in FOXO3A
(rs1536057, rs2802292, rs3813498, and rs1935952), four in
AMPK (rs1442760, rs1036851, rs1348316, and rs11584787),
and two in POMC (rs934778 and rs6545975) to explore their
potential roles in obesity-related traits, aiming to elucidate
the genetic factors underlying EOB.

2. Methods

2.1. Study Design and Subjects. Te sample size was de-
termined through a statistical power analysis conducted
before the study, aimed at detecting a minimum efect size of
0.15. Tis analysis was performed using G ∗ Power 3.1 [23]
with an alpha level of 0.05 (two-tailed), a power (1-β) of 0.90,

and one degree of freedom (df� 1) for the 2× 2 contingency
table. Te results indicated that a minimum of 234 partic-
ipants per group would be needed. Our fnal sample in-
cluded 251 patients with EOB who were eligible for bariatric
surgery and 212 healthy controls with a BMI of less than
25 kg/m2. Te case group consisted of 251 patients meeting
the National Institutes of Health (NIH) criteria for bariatric
surgery, defned as having a BMI greater than 40 kg/m2 or
a BMI greater than 35 kg/m2 with obesity-related comor-
bidities such as hypertension and diabetes mellitus. Tese
patients had previously attempted to lose weight through
dietary changes and structured physical activity, including
low-calorie diets, but did not achieve signifcant weight loss.
Te patients were randomly selected over the past 5 years
(Table 1) from Hospital Feĺıcio Rocho and Hospital Santa
Casa de Misericórdia in Belo Horizonte, Brazil. Te control
group included 212 healthy volunteers (unrelated to the case
group) with a BMI of less than 25 kg/m2. All participants
provided written informed consent, and the study was ap-
proved by the Ethics Committee of the Universidade Federal
de Minas Gerais (protocol 269/06).

2.2. Biochemical Analysis. Metabolic parameters, including
fasting glucose, triglyceride, high-density lipoprotein
(HDL), and low-density lipoprotein (LDL) levels, were
measured from venous blood samples collected after an
overnight fast of at least 8 h. Tese measurements were
performed using enzymatic colorimetric methods on fully
automated equipment following the manufacturer’s in-
structions (Doles Reagentes, Brazil).

2.3. Sample Collection and Genotyping. Genomic DNA was
extracted from peripheral blood using a nonenzymatic
salting-out method [24]. Genotyping was performed using
TaqMan Assays. In brief, 50 ng of DNA was used for real-
time polymerase chain reaction (PCR) genotyping of
tagSNVs, which were selected from the HapMap database
(Table 2). TagSNVs were selected based on a minimum allele
frequency of 0.25 in Caucasian populations. Te specifc
probes for each SNV are detailed in Supporting Table S1.
PCR genotyping was carried out on a Stratagene Mx3005P
system (La Jolla, CA, USA) with the following protocol:
initial denaturation at 95°C for 10min, followed by 50 cycles
of 15 s at 95°C for denaturation and 1min at 60°C for
annealing and extension. Fluorescence was measured after
each PCR cycle. To ensure the accuracy of the genotyping
data, quality control measures included retyping at least 10%
of the samples.

2.4. StatisticalAnalysis. Quantitative data such as BMI, waist
circumference, and levels of glucose, triglycerides, HDL, and
LDL were analyzed using Student’s t-test in GraphPad
Prism. Genetic frequencies were compared using
UNPHASED [25]. HAPLOVIEW was employed to evaluate
pairwise linkage disequilibrium (LD) matrices among SNVs,
assess LD block structure, and test for deviations from
Hardy–Weinberg equilibrium (HWE) [26]. Te D′ value,
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indicating the strength of the LD, was calculated according
to the parameters established previously [27]. To detect
gene–gene interactions, we applied multifactor di-
mensionality reduction (MDR) software (v. 3.0.2), a method
that is particularly efective for identifying interactions in
small populations [28]. Te most accurate models were
identifed based on 10-fold cross-validation consistency
(CVC) and testing balance accuracy (TBA), which refects
the proportion of subjects correctly classifed as patients or
controls. All the statistical tests were two-tailed, with a sig-
nifcance threshold set at p< 0.05.

3. Results

Our study included 251 EOB patients, of which 13.7% were
male, averaging 37.4± 13.2 years of age, and 86.3% were
female, averaging 42.2± 11.7 years. Te control group
consisted of 212 healthy individuals, 33.2% of whom were
male with an average age of 59.2± 12.9 years. Te remaining
66.8% were female, with an average age of 58.2± 14.1 years.
In the EOB group, we observed deviations in clinical and
biochemical parameters. Specifcally, average BMI exceeded
40 kg/m2, and fasting glucose levels were above 100mg/dL
(Table 1).

Te allele frequencies in healthy individuals were con-
sistent with those found in Caucasian populations, except for

the AMPK rs11584787 and POMC rs934778 SNVs. All other
SNVs were consistent with the HWE (Table 2).

Although none of the FOXO3A, AMPK, or POMC SNVs
were directly linked to the clinical characteristics of EOB
patients, at least one SNV from each gene showed diferent
distributions between groups, suggesting their potential as
biomarkers for EOB (Table 3).

For FOXO3A, only the rs1536057 variant was signif-
cantly associated with EOB (Table 3). Te “TC” genotype
was more prevalent among the EOB group (51.8%) than
among the control group (31.4%; p � 3.4 × 10−6), with an
odds ratio (OR) of 2.43 (95% CI� 1.59–3.70). Conversely,
the “CC” genotype was less common in EOB patients
(40.6%) than that in healthy controls (59.7%; p � 0.0001).
Consequently, the nonancestral “T” allele was more com-
mon in the EOB group, with a frequency of 33.5%
(p � 0.0053). All these associations remained statistically
signifcant after performing 1000 permutation tests. Hap-
lotype analysis was conducted to identify recombination
patterns, revealing strong LD between rs1536057 and
rs2802292 (D′ �1.0) in both groups. Te most frequent
haplotype observed was C–T in both EOB patients (49.9%)
and healthy controls (51.3%). However, EOB subjects pre-
sented a greater prevalence of the “T–G” haplotype (33.5%;
X2 � 6.13; p � 0.013) and a lower prevalence of the “C–G”
haplotype (16.6%; X2� 5.68; p � 0.017) than controls did

Table 1: Characteristics of extremely obese and healthy individuals included in this study.

Reference values Extreme obese (n= 251) Healthy subjects (n= 212) p value
Male/fem (%) — 13.7/86.3 33.2/66.8 —
Age (years) — 43.3 58.51 —
BMI (kg/m2) < 25.0 47.8± 6.8 24.13± 2.82 < 0.0001
Waist circumference (cm)
Male 102 136.15± 13.48 88.40± 9.68 < 0.0001
Female 88 122.97± 13.23 87.19± 9.63 < 0.0001

Glucose (mg/dL) ≤ 100 106.89± 39.42 79.83± 11.84 < 0.0001
Triglycerides (mg/dL) ≤ 150 134.02± 74.72 141.4± 58.89 0.462
HDL (mg/dL) ≥ 40 44.44± 8.53 42.42± 13.74 0.346
LDL (mg/dL) ≤ 130 125.01± 30.24 118.63± 28.62 0.176
Notes: Reference values according to the Brazilian College of Cardiology. Signifcant p values (t-tests) are in bold.
Abbreviations: BMI, body mass index; HDL, high-density lipoprotein; LDL, low-density lipoprotein.

Table 2: Position and Hardy–Weinberg equilibrium (HWEpval) of the studied genes.

SNVs Chromosome position Gene location Nucleotide change HWEpval
FOXO3A
rs1536057 chr.6 108564420 Intron 1 C>T 0.502
rs2802292 chr.6 108587315 Intron 1 G>T 1
rs3813498 chr.6 108622962 Intron 1 T>C 0.426
rs1935952 chr.6 108677702 Intron 2 C>G 0.518

AMPK
rs1442760 chr.1 147156828 UTRa T>C 0.244
rs1036851 chr.1 147162171 Intron T>C 1
rs1348316 chr.1 147171976 Intron G>A 0.119
rs11584787 chr.1 147156900 UTRa C>G <0.001

POMC
rs934778 chr.2 25166355 Intron A>G <0.001
rs6545975 chr.2 25162616 Intron T>C 0.001

aUTR: untranslated region. Signifcant p values (X2) are in bold. HWpval (Hardy‒Weinberg equilibrium p value) was calculated in the total sample.
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Table 3: FOXO3A, AMPK, and POMC SNVs in extremely obese (EOB) and healthy individuals.

SNV Controls (Freq %) EOB (Freq %) OR (95% IC) χ2 pa p1000
b

FOXO3A rs1536057
CC 101 (59.7) 102 (40.6) 1.0

17.15 0.0001c 0.00099TC 53 (31.4) 130 (51.8) 2.43 (1.59–3.70)
TT 15 (8.9) 19 (7.6) 1.25 (0.60–2.60)
C∗ 255 (75.4) 334 (66.5) 1.0 7.76 0.005 d 0.00199T 83 (24.6) 168 (33.5) 1.54 (1.13–2.11)

FOXO3A rs2802292
GG 50 (26.1) 58 (23.3) 1.0

2.29 0.3188c —TG 88 (45.8) 132 (53.0) 1.29 (0.81–2.06)
TT 54 (28.1) 59 (23.7) 0.94 (0.55–1.6)
G∗ 188 (49.0) 248 (49.8) 1.0 0.061 0.8044d —T 196 (51.0) 250 (50.2) 0.97 (0.74–1.26)

FOXO3A rs3813498
TT 100 (51.8) 122 (48.6) 1.0

0.91 0.6332c —TC 73 (37.8) 106 (42.2) 1.19 (0.8–1.77)
CC 20 (10.4) 23 (9.2) 0.94 (0.49–1.81)
T∗ 273 (70.7) 350 (69.7) 1.0 0.10 0.7457d —C 113 (29.3) 152 (30.3) 1.05 (0.78–1.40)

FOXO3A rs1935952
CC 66 (37.3) 73 (29.2) 1.0

3.46 0.1768c —GC 81 (45.8) 135 (54.0) 1.51(0.98–2.32)
GG 30 (16.9) 42 (16.8) 1.27 (0.71–2.25)
C∗ 213 (60.2) 281 (56.2) 1.0 1.34 0.2467d —G 141 (39.8) 219 (43.8) 1.18 (0.89–1.55)

AMPK rs1442760
TT 63 (30.7) 85 (35.3) 1.0

1.22 0.5419c —TC 93 (45.4) 100 (41.5) 0.79 (0.51–1.21)
CC 49 (23.9) 56 (23.2) 0.83 (0.50–1.37)
T∗ 219 (53.4) 270 (56.0) 1.0 0.74 0.3885 —C 191 (46.6) 212 (44.0) 0.89 (0.68–1.15)

AMPK rs1036851
TT 26 (13.9) 82 (35.4) 1.0

25.64 <0.0001c 0.0009CT 111 (59.4) 98 (42.2) 0.29 (0.17–0.48)
CC 50 (26.7) 52 (22.4) 0.34 (0.19–0.61)
T∗ 163 (43.6) 262 (56.5) 1.0 13.16 0.0002d 0.0009C 211 (56.4) 202 (43.5) 0.60 (0.46–0.79)

AMPK rs1348316
GG 58 (28.4) 71 (29.5) 1.0

2.18 0.3363c —AG 101 (49.5) 104 (43.1) 0.83 (0.53–1.29)
AA 45 (22.1) 66 (27.4) 1.17 (0.70–1.96)
G∗ 217 (53.2) 246 (51.0) 1.0 0.31 0.5758d —A 191 (46.8) 236 (49.0) 1.08 (0.83–1.40)

AMPK rs11584787
CC 83 (43.9) 109 (45.2) 1.0

1.11 0.5722c —CG 48 (25.4) 68 (28.2) 1.09 (0.68–1.74)
GG 58 (30.7) 64 (26.6) 0.84 (0.53–1.32)
C∗ 214 (56.6) 286 (59.3) 1.0 0.68 0.4089d —G 164 (43.4) 196 (40.7) 0.89 (0.68–1.17)

POMC rs934778
AA 76 (36.2) 122 (51.9) 1.0

36.27 <0.0001c 0.0009AG 70 (33.3) 93 (39.6) 0.83 (0.54–1.26)
GG 64 (30.5) 20 (8.5) 0.19 (0.11–0.35)
A∗ 222 (52.9) 337 (71.7) 1.0 33.31 <0.0001d 0.0009G 198 (47.1) 133 (28.3) 0.45 (0.34–0.59)
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(25.8% for “T-G” and 23.0% for C-G in controls). In ad-
dition, the LD between rs3813498 and rs1935952 was greater
in EOB patients (D′ � 0.97) than that in healthy individuals
(D′ � 0.90), leading to the formation of a haplotype block
specifcally in EOB patients (Figure 1(a)).

In the comparison between the two groups, we observed
a heterogeneous distribution of AMPK SNVs, with one out
of four showing a signifcant diference (Table 3). Te “TT”
genotype of rs1036851 was signifcantly more prevalent in
EOB patients (35.4%) than that in healthy subjects (13.9%;
p � 6 × 10−7). Conversely, the frequency of the heterozygous
“CT” genotype was signifcantly lower in EOB patients
(42.2%) than that in controls (59.4%) (p< 0.0001). As
a result, the major allele “T” was more common in the EOB
group (56.5%), whereas the “C” allele was more common in
healthy subjects (56.4%). Te signifcant diference in allele
frequency between the groups suggests that carriers of the
“C” allele may be less susceptible to EOB, as indicated by OR
analysis (OR� 0.60; 95% CI� 0.46–0.79). In addition, we
found notable diferences in the LD patterns of AMPK
between the groups. EOB patients exhibited a strong LD
block of 14 kb, encompassing rs1442760, rs1036851, and
rs1348316 (D′ �1.0), which was not present in healthy
subjects (Figure 1(b)). Te most common haplotypes within
this block were “T–T–A” (43.8%) and “C–C–G” (43.6%) in
EOB patients. Tese p values remained signifcant after 1000
permutation tests, similar to the results observed with
FOXO3A.

Te POMC SNVs investigated demonstrated an asso-
ciation with EOB (Table 3). Among these, rs934778 had
a signifcantly lower frequency of the nonancestral “GG”
genotype in the EOB group (8.5%) than that in the control
group (30.5%; p � 3.4 × 10−9), leading to a greater distri-
bution of the “A” allele in EOB subjects (71.7%) than in
controls (52.9%; p � 6.4 × 10−9). Tese fndings suggest that
carriers of the “A” allele may have an increased risk of
developing EOB (OR� 2.26; 95% CI� 1.71–2.98). Moreover,
the rs6545975 SNV had a notably lower frequency of the
homozygous “CC” genotype in EOB patients (18.3%)
compared to that of controls (28.7%) (p � 0.0318; OR� 0.53;
95% CI� 0.32–0.88). Tis fnding indicates that carriers of
the “C” allele may have a reduced risk of developing EOB
(OR� 0.71; 95% CI� 0.54–0.93), as the EOB group pre-
sented a lower frequency of the mutant “C” allele (39.6%

compared with 47.7% in controls; p � 0.0128). All signif-
cant p values were sustained after 1000 permutation tests.
However, unlike the other markers, no signifcant LD
pattern was observed between these POMC SNVs
(Figure 1(c)).

To explore potential interactions between individual
markers in EOB, we conducted a gene–gene analysis fo-
cusing on two- and three-way combinations. According to
the MDR output, the most efective two-marker model
involved an interaction between rs1036851 and rs1536057
(Model A) (Figure 2(a)), with a TBA of 0.619 (Figure 2(b))
and a CVC of 10/10.Temost efective three-marker models
were rs1036851, rs1935952, and rs934778 (Model D), which
increased the TBA to 0.677 with a CVC of 10/10. Among
these models, only Model D was statistically signifcant
(X2 � 4.315; p � 0.0378), with an OR of 4.40 (95%
CI� 2.80–6.94).

4. Discussion

Extensive research on the genetic basis of obesity has
identifed specifc loci that may either increase or decrease
the risk of developing the condition [29, 30]. In this study,
we investigated whether certain variations in the FOXO3A,
AMPK, and POMC genes contribute to the risk of EOB. Our
fndings identifed signifcant links between EOB and all
three genes, with SNVs rs1536057 (FOXO3A), rs1036851
(AMPK), and rs934778 and rs6545975 (POMC) exhibiting
particularly strong efects. Notably, these SNVs have not
been previously linked to EOB.

Of the four FOXO3A SNVs analyzed, only rs1536057
showed signifcant diferences in genetic frequency. In-
terestingly, this SNV has been previously associated with
bipolar disorder [31] and tuberculosis [32]. Our analysis
suggested that individuals with the TC genotype have a 2.4-
fold greater susceptibility to developing EOB. For AMPK,
the allelic frequency of rs1036851 in EOB patients shows an
inverse distribution compared with that in healthy in-
dividuals; while “C” is the major allele in healthy subjects,
“T” is more frequent in EOB patients. Specifcally, the
frequency of the “TT” genotype is 2.5 times greater in EOB
patients than in controls, suggesting that individuals with
this genotype are more susceptible to EOB than those with
the “CC” genotype. Te POMC SNVs (rs934778 and

Table 3: Continued.

SNV Controls (Freq %) EOB (Freq %) OR (95% IC) χ2 pa p1000
b

POMC rs6545975
TT 65 (33.3) 94 (39.2) 1.0

6.89 0.0 18c 0.0 99TC 74 (38.0) 102 (42.5) 0.94 (0.61–1.45)
CC 56 (28.7) 44 (18.3) 0.53 (0.32–0.88)
T∗ 204 (52.3) 290 (60.4) 1.0 6.19 0.0128d 0.0279C 186 (47.7) 190 (39.6) 0.71 (0.54–0.93)

∗Ancestral alleles, which were used as a reference for odds ratio (OR) analyses;
ap value before 1000 permutations;
bp value after 1000 permutations only performed when p< 0.05 (highlighted in bold);
cgenotype association;
dallele association.
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rs6545975) exhibited distinct distributions between the EOB
and healthy groups. For rs934778, the nonancestral “T” allele
was more prevalent in EOB patients, leading to a higher
frequency of the “TT” genotype in this group. Tis fnding is
particularly signifcant, as individuals with the “TT” geno-
type have the highest risk for EOB (OR� 5.26; 95%
CI� 2.88–9.16). Conversely, the nonancestral “C” allele of
rs6545975 is associated with a lower likelihood of developing
EOB, with ORs of 0.71 (95% CI� 0.55–0.94) under the allelic
model and 0.53 (95% CI� 0.33–0.9) under the genotype
(“CC”) model.

Te signifcance of these polymorphisms is uncertain
because the four SNVs associated with EOB are located in
noncoding intronic regions. Tese SNVs might act as
markers for other variants in regulatory regions of the ge-
nome that exhibit high LD. For example, the haplotype block
(D′ �1) formed exclusively by rs1442760, rs1036851, and
rs1348316 in the EOB group spans a genomic region of
approximately 15.1 kb, including the last six exons and the 3′
untranslated region (UTR) of the AMPK gene. Our hap-
lotype analysis also revealed that the common FOXO3A
haplotype block rs3813498–rs2802292 was distributed dif-
ferently between EOB patients and controls. However, the
observed ORs (1.33–1.88) were not signifcantly diferent
from those obtained from the individual marker analyses
(0.94–1.29).

FOXO3A, AMPK, and POMC are involved in regulating
glucose and lipid metabolism [33–37]. For example, a pre-
vious study showed that individuals with the minor “G”
allele of rs2802292 in FOXO3A exhibited increased insulin
sensitivity [38]. However, we did not observe any signifcant
efects of the studied variations on serum glucose, tri-
glyceride, HDL, or LDL levels between the case and control
groups. A similar trend was observed for BMI and waist
circumference. However, we acknowledge that our results
may have been afected by the lack of adjustment for
ancestry [39].

Since these polymorphisms do not appear to afect the
metabolic profle, it is plausible that they increase the risk

of EOB by infuencing feeding behavior or infammation.
For example, the expression of a constitutively nuclear
mutant FOXO1 in the hypothalamus of rodents has been
shown to impair leptin’s ability to reduce food intake
[40]. Similarly, FOXO3 mediates decreases in hypotha-
lamic α-melanocyte-stimulating hormone (α-MSH)
levels [41]. In addition, POMC knockout (KO) mice
exhibit greater food intake than their wild-type litter-
mates do [42]. Unfortunately, we did not collect data on
food intake in our sample, which could have provided
insights into whether these genetic variations infuence
postprandial inhibitory signaling or the amount of food
consumed.

We also emphasize that the POMC gene not only
infuences feeding behavior but also may play a role in
obesity-related hypothalamic infammation. Prolonged
obesogenic diets trigger infammatory responses in the
hypothalamus, which are associated with a reduced
number of appetite-suppressing POMC neurons. For
example, hypercaloric diet-induced obese mice accumu-
late activated microglia within the hypothalamus, leading
to local hypersecretion of the proinfammatory cytokine
TNF-α, altered POMC neuron excitability, and increased
food intake [43]. Similar hypothalamic damage, associ-
ated with infammatory markers, has also been observed
in humans [44, 45]. In light of our fndings, further studies
are needed to investigate whether the POMC variations
associated with EOB are linked to broader systemic or
hypothalamic infammation that contributes to the de-
velopment of EOB.

Te present study did not identify any signifcant epi-
static interactions among the three genes contributing to
EOB. Two- and three-way interaction models were con-
structed using all the SNVs. Nevertheless, the most efective
model (Model D: rs1036851–rs1935952–rs934778) did not
show a signifcantly greater efect than the individual marker
rs934778 alone. Tis outcome underscores the independent
efects of FOXO3A, AMPK, and POMC SNVs in infuencing
the genetic predisposition to EOB.
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Figure 1: Linkage disequilibrium (LD) analysis. Each square at the top panels (with D′ values written within the box) represents a pairwise
LD relationship between two SNVs of the (a) FOXO3A, (b) AMPK, or (c) POMC genes. LD values for controls are at the left side of each
square, whereas those from EOB are at the right and highlighted in bold. At the bottom, there are the intermarker distance and haplotype
blocks. Te dashed and solid lines represent haplotype blocks of controls and EOB, respectively.
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Te results of this study should be interpreted with
caution. First, other obesity-infuencing factors such as
environmental infuences (e.g., physical activity, alcohol
consumption, and smoking) and epigenetics were not
considered despite their potential impact on EOB genetic
risk. Moreover, our study did not cover all possible genetic
variations within the targeted genes. Collecting a more
comprehensive sample from EOB patients presents signif-
icant challenges due to the complexity of the disease.
However, it is important to note that positive results were
upheld after 1000 permutation tests, indicating a low like-
lihood of type I errors.

Moreover, the EOB and control groups in our study were
not matched for age or sex, which could introduce con-
founding factors afecting the genetic associations observed.

Despite this, the age mismatch between the groups may not
signifcantly impact our fndings, as the onset of EOB often
occurs earlier in life [46]. Finally, we chose to include all
SNVs in our analysis, regardless of their HWE p value, to
capture potentially meaningful biological phenomena that
might otherwise be overlooked.

In summary, the results of this study support our initial
hypothesis that genetic variations in FOXO3A, AMPK, and
POMC may contribute to susceptibility to EOB. Notably,
these polymorphisms did not seem to afect serum levels of
glucose, triglycerides, HDL, or LDL in EOB patients. Further
investigations are necessary to fully understand the bi-
ological signifcance of these genetic variations. In addition,
we recommend replicating these fndings in a larger and
more diverse sample that accounts for environmental factors

Models SNP combination CVC OR (95% CI) p–value

A rs1036851–rs1536057 10/10 2.75 (1.77 – 4.29) 0.1509

B rs1036851–rs934778 10/10 2.66 (1.71 – 4.13) 0.1642

C rs1536057–rs934778 10/10 2.28 (1.46 – 3.55) 0.2474

D rs1036851–rs1935952–rs934778 10/10 4.40 (2.80 – 6.94) 0.0378

E rs1036851–rs2802292–rs934778 10/10 3.88 (2.48 – 6.08) 0.0556

F rs1036851–rs3813498–rs934778 10/10 3.98 (2.49 – 6.34) 0.0601
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Figure 2: Gene–gene interactions. (a)Te best two-and three-marker models (A–F; three of each) were selected by theMDR analyses. CVC:
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to better elucidate the impact of these genetic variants on
EOB [47–50].
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