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Abstract
This narrative review describes the settlement of the neonatal microbiome during the perinatal period and its importance 
on human health in the long term. Delivery methods, maternal diet, antibiotic exposure, feeding practices, and early infant 
contact significantly shape microbial colonization, influencing the infant’s immune system, metabolism, and neurodevel-
opment. By summarizing two decades of research, this review highlights the microbiome’s role in disease predisposition 
and explores interventions like maternal vaginal seeding and probiotic and prebiotic supplementation that may influence 
microbiome development.
Conclusion: The perinatal period is a pivotal phase for the formation and growth of the neonatal microbiome, profoundly 
impacting long-term health outcomes.

What is Known::
• The perinatal period is a critical phase for the development of the neonatal microbiome, with factors such as mode of delivery, maternal diet, 

antibiotic exposure, and feeding practices influencing its composition and diversity, which has significant implications for long-term health.
• The neonatal microbiome plays a vital role in shaping the immune system, metabolism, and neurodevelopment of infants.
What is New:
• Recent studies have highlighted the potential of targeted interventions, such as probiotic and prebiotic supplementation, and innovative 

practices like maternal vaginal seeding, to optimize microbiome development during the perinatal period.
• Emerging evidence suggests that specific bacterial genera and species within the neonatal microbiome are associated with reduced risks of 

developing chronic conditions, indicating new avenues for promoting long-term health starting from early life.
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Introduction

The perinatal period, spanning from the 22nd week of gesta-
tion to the 7th day postpartum, represents a critical window 
in the development of a neonate [1]. This is a critical phase 
that lays the groundwork for lifelong health and well-being. 
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The establishment and maturation of the neonatal microbi-
ome—the community of microorganisms that inhabitates our 
body—during this vital period play a pivotal role in influenc-
ing several physiological and immunological pathways [2, 
3]. In this period, newborns are highly vulnerable to environ-
mental exposures, making the initial microbial colonization a 
process of key importance in shaping the neonate’s immune 
system [4], metabolism, and even neurodevelopment [5, 6]. 
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Mother-related factors, including diet [7], general health con-
dition [8], and use of antibiotics [9], play a significant role 
in shaping the microbiome of newborns. Also, the mode of 
delivery—vaginal or cesarean—has been identified as a crucial 
determinant of microbial composition, with each mode impart-
ing a distinct microbial profile to the neonate [9]. Breastfeeding 
further enriches the infant’s microbiome, providing a source of 
beneficial bacteria along with the prebiotic components neces-
sary for their growth [10]. Finally, environmental exposures, 
including the immediate surroundings and broader ecological 
context, also contribute to the microbial diversity essential for 
immune calibration. Early interactions with siblings, pets, and 
a variety of microorganisms present in the home environment 
are instrumental in this process [11]. Additionally, prenatal 
exposures, such as maternal stress and antibiotic usage, have 
been recently identified as potential influencers of the in utero 
environment, affecting the microbiome even before birth [12]. 
Understanding the role of the microbiome in predisposition to 
diseases and exploring potential interventions aimed at opti-
mizing microbiome development during this crucial period are 
essential for human health, and intervention strategies aimed at 
optimizing microbial profiles during these initial stages of life 
are needed. This review aims to underscore the significance of 
the microbiome during the perinatal period and elucidate how 
various factors, including the mode of delivery, maternal diet, 
antibiotic exposure, gestational age, impact its composition 
and consequently infant health outcomes.

Overview of microbiome development 
during pregnancy and birth

Microbiome and its relevance in human health 

The gut microbiome represents the complex ecosystem of 
microorganisms, such as bacteria, viruses, fungi, and proto-
zoa, inhabiting the human gastrointestinal tract. It is incredibly 
diverse, hosting hundreds to thousands of different microbial 
species [13]. Every person’s microbiome is distinct, influenced 
by factors such as genetics, diet, lifestyle, and the surrounding 
environment [14]. Despite these differences, there are common 
patterns in the microbial composition among healthy individu-
als. The gut microbiome is primarily composed of bacteria, 
with the phyla Firmicutes and Bacteroidetes constituting the 
bulk of the microbial community. Additional important phyla 
are Actinobacteria, Proteobacteria, and Verrucomicrobia [11]. 
The diversity within the microbiome is essential for its func-
tion, as each microorganism contributes to health and homeo-
stasis in specific ways. The diversity of the gut microbiome is 
not static; it evolves throughout an individual’s life, starting 
from birth [15]. The gut microbiome plays several critical roles 
in human health: first, it is integral to the development and 

function of the host’s immune system. It educates the immune 
system to distinguish between pathogens and non-harmful 
antigens and can modulate immune responses to reduce the 
risk of allergic and autoimmune conditions [16]. Microbial 
components and metabolites interact with immune cells, 
influencing their function and promoting a balanced immune 
response [17]. The gut microbiota assists in the digestion of 
complex carbohydrates, fibers, and proteins that the host can-
not digest. It also produces essential vitamins and nutrients, 
including vitamin K, B vitamins, and short-chain fatty acids 
(SCFAs), which are critical for gut health, energy production, 
and regulation/downgrading of intestinal inflammation [18]. 
Eventually, the gut microbiome competes with pathogenic bac-
teria for nutrients and attachment sites on the gut wall, a phe-
nomenon known as colonization resistance. It also produces 
antimicrobial substances and modulates the gut environment 
to prevent pathogen colonization and infection [19].

The importance of the gut microbiome 
in the perinatal period: the native core microbiome

A foundational set of microbial species, known as the native 
core microbiota, resides within the vast and complex ecosys-
tem of the human gut [20]. This essential group of microor-
ganisms begins to colonize the gut in early life, setting the 
stage for an individual’s microbiome composition [20]. The 
native core microbiota plays a critical role in establishing 
the microbiome’s stability and resilience [21]. Although the 
microbiome differs among individuals, the existence of a core 
composition common to all underscores its fundamental role 
in performing essential functions necessary for human health 
[22]. The perinatal period serves as a critical window for 
both immune and metabolic programming, and the native 
core microbiota plays a central role in this developmental 
phase. The establishment of the core microbiota in newborns 
is influenced by a multitude of factors, including but not lim-
ited to maternal microbiota, mode of delivery, and diet [23]. 
Fouhy et al. underscore the significance of these perinatal 
factors, revealing that these can shape the gut microbiota up 
to 4 years post-birth, emphasizing the lasting impact of early 
microbial colonization. Children born full-term exhibited 
higher microbiota diversity compared to preterm infants, 
indicating the profound influence of birth circumstances [24]. 
Fascinatingly, this research suggests that, although breast-
feeding and exposure to antibiotics in the first year have ini-
tial impacts, these effects might be eclipsed by dietary and 
environmental factors encountered later on. The significance 
of nurturing a healthy core microbiota during this period can-
not be overstated, as it influences the development of the 
infant’s immune system, aiding in the differentiation between 
harmful and benign substances and thus reducing future risks 
of allergies and autoimmune diseases [25]. Additionally, 
the core microbiota is involved in metabolic programming, 
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influencing energy balance and metabolic functions that can 
affect the individual’s susceptibility to metabolic disorders 
like obesity and diabetes later in life [26]. Moreover, a robust 
core microbiota is crucial for maintaining the integrity of 
the gut barrier, which prevents harmful pathogens and sub-
stances from entering the bloodstream, thereby safeguarding 
against infections and systemic inflammation [27]. The peri-
natal period is marked by a heightened vulnerability in the 
establishment of the native core microbiota, with potential 
disruptions posing long-term health implications [28].

Changes in microbiota during the perinatal period

The development and transformation of the microbiome 
during the perinatal period are complex processes that are 
vital for both maternal and neonatal health. This period 
encompasses microbiological shifts starting from preg-
nancy through to the postnatal phase, each carrying signif-
icant implications for the physiological and immunological 
outcomes of both the mother and the offspring [29].

Microbiome changes during pregnancy

During pregnancy, the maternal microbiome undergoes spe-
cific alterations to accommodate and support the developing 
fetus and to prepare the body for childbirth. Early research 
indicates a gestation-related microbiome adaptation, initially 
characterized by an increase in microbial diversity [30]. 
This diversity is thought to enhance the maternal immune 
system’s capacity to protect both mother and fetus [31]. As 
pregnancy progresses, a notable shift towards a microbiota 
with reduced diversity and increased representation of pro-
inflammatory taxa occurs [32]. This adaptation appears to 
facilitate efficient energy harvest from the diet, an essential 
factor for fetal growth and development [31]. In exploring 
the complexities of the microbiome during pregnancy, several 
studies illuminate its profound alterations and implications for 
maternal and fetal health. Mallott et al. investigated the role 
of hormonal mediation in microbiome changes, particularly 
the significant impact of progestagens on microbial diversity 
during pregnancy and lactation. Their findings in Phayre’s 
leaf monkeys highlight a species-specific effect, suggesting 
that these hormonal influences might be critical for micro-
biome adaptations in various species [33]. Complementing 
this species-specific view, Gorczyca et al. provide a broader 
overview of the human maternal gut microbiome’s evolution 
during pregnancy [34]; they observe an increase in protec-
tive bacteria like Akkermansia and Bifidobacterium, which 
contribute to immunological and metabolic health, illustrat-
ing the beneficial shifts that occur within the human maternal 
microbiome [34]. Further extending the discussion, Zakaria 
et al. highlight the microbiome’s integral role in maintaining 

pregnancy health through its influence on immunological, 
endocrinological, and metabolic pathways [35]: the microbi-
ome helps modulate the mother’s immune system to prevent 
excessive inflammation and protect against infections. This is 
crucial for avoiding complications such as preterm birth and 
preeclampsia. The microbiome supports the hormonal envi-
ronment necessary for placental function, which is vital for 
the fetus’s nutrient supply; certain bacteria like Bifidobacteria 
grow in response to the higher progesterone levels, support-
ing overall health. Metabolically, the microbiome aids in the 
digestion and effective use of nutrients, crucial for fetal devel-
opment. It also helps regulate insulin sensitivity, which can 
prevent gestational diabetes [35]. In line with this, Giannella 
et al. explicitly linked microbiota alterations with pregnancy 
complications such as hypertensive disorders and gestational 
diabetes [36]. This suggests that shifts in the microbiome 
could serve as indicators or contributors to these conditions, 
underlining the potential for microbiome analysis to inform 
about pregnancy health risks. Simultaneously, the fetal envi-
ronment, once thought to be sterile, is now understood to 
potentially harbor its own unique microbiota, with implica-
tions for the immune and metabolic programming of the fetus 
[37]. Studies have proposed that the placenta, amniotic fluid, 
and umbilical cord blood might contain microbial communi-
ties that could influence the developing fetal immune system, 
setting the stage for postnatal microbial colonization[37–39].

The transition at birth

The delivery is a critical moment for microbial transfer and 
colonization in the newborn. Birth through vaginal delivery 
allows the infant to come into contact with the mother’s vagi-
nal and fecal microbiota, promoting the transfer of beneficial 
microorganisms like Lactobacillus and Bifidobacterium spe-
cies to the newborn’s gut [40]. This early microbial seeding 
plays a pivotal role in shaping the infant’s microbiome and 
immune system development. Conversely, babies delivered by 
cesarean section initially acquire microbes from the skin and 
hospital surroundings, potentially resulting in a different ini-
tial composition of the microbiome, with higher abundance of 
Enterobacteriaceae and Enterococcaceae families, along with 
depletion of Bacteroides genus and a delay in the maturation 
of gut microbiota in early life [41]. This difference in early 
microbiome establishment is associated with varied health 
outcomes, including increased risks for certain immune and 
metabolic disorders in cesarean-delivered infants.

Postnatal microbiome development

After birth, the infant’s microbiome undergoes rapid diversi-
fication. The TEDDY study [42] has identified three distinct 
phases of the gut microbiome’s evolution: The development 
phase (3–14 months) is characterized by rapid changes in 
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the microbiome composition, heavily influenced by factors 
such as mode of birth and breastfeeding. In the transitional 
phase (15–20 months), during this period, the microbiome 
begins to show signs of settling but is still undergoing signif-
icant shifts in its composition. Dietary changes, such as the 
introduction of solid foods, play a crucial role in this phase. 
Finally, in the stable phase (31–46 months), the microbiome 
reaches a more stable and mature state, resembling that of 
an adult’s microbiome. However, it can still be influenced 
by the child’s diet and environment. The development of the 
infant’s microbiome in the first years of life is critical for 
immune system maturation, with evidence suggesting that 
early microbial exposures are key to training immune cells to 
distinguish between harmful and non-harmful antigens [43].

Preterm infants

Preterm infants are at heightened risk for complications such 
as necrotizing enterocolitis (NEC), sepsis, and mortality 
due to their immature gut microbiota and underdeveloped 
immune systems [44]. Unlike term infants, preterm babies 
often experience delayed microbial colonization, lower bac-
terial diversity, and a higher presence of pathogenic bac-
teria, which leads to a greater susceptibility to these life-
threatening conditions. Probiotics, particularly strains from 
Bifidobacterium and Lactobacillus, have shown promising 
results in helping preterm infants establish a healthier gut 
microbiome, enhancing gut barrier function and modulating 
immune responses [45]. Several meta-analyses have demon-
strated the efficacy of probiotics in reducing NEC, sepsis, 
and mortality in preterm infants. A network meta-analysis 
identified the combination of Bifidobacterium longum, B. 
bifidum, B. infantis, and Lactobacillus acidophilus as sig-
nificantly reducing NEC (RR 0.31), sepsis (RR 0.47), and 
mortality (RR 0.26) [46]. Another study emphasized that 
Bifidobacterium lactis was particularly effective in reduc-
ing NEC, especially in infants exclusively fed with human 
milk, as compared to formula-fed infants. The human milk 
provides oligosaccharides that function as prebiotics, likely 
enhancing the effects of probiotics in promoting a healthy 
gut environment and preventing NEC more effectively than 
formula feeding [47]. The Connection trial represents a sig-
nificant advancement in this field, as it is the first large-scale, 
multicenter study to evaluate the use of pharmaceutical-
grade probiotics for NEC prevention in preterm infants. This 
Phase 3 randomized, double-blind, placebo-controlled trial 
is investigating the efficacy and safety of the probiotic strain 
IBP-9414 in preterm infants weighing 500 to 1500 g. The 
trial, involving over 2000 infants, is a milestone in probiotic 
research because it uses probiotics that are industrially pro-
duced with pharmaceutical-level quality standards, ensuring 
consistent dosing and safety. While the full results are yet 

to be published, the trial’s completion will provide valuable 
insights into the role of probiotics, specifically IBP-9414, 
in preventing NEC and other negative outcomes related to 
prematurity, such as sepsis and mortality. This represents 
a crucial step forward in translating probiotic research into 
clinical practice with the potential to improve outcomes for 
preterm infants worldwide [48].

Moreover, recent evidence from a Bayesian network 
meta-analysis further supports the beneficial effects of pro-
biotic combinations, such as B. lactis, B. longum, and L. 
acidophilus, in reducing NEC and mortality. These findings 
highlight the critical importance of early probiotic admin-
istration to promote healthy microbiome development, par-
ticularly in very low birth weight (VLBW) infants in low- 
and middle-income countries [49].

Factors influencing early microbiome 
colonization

The early colonization and development of the human microbi-
ome are influenced by a complex interplay of factors that begin 
at birth and continue through infancy [50]. Additionally, the 
environment, including the use of antibiotics in infancy and 
exposure to siblings or pets, plays a significant role in diver-
sifying and shaping the microbial community [6]. Figure 1 
offers an in-depth visual summary of these diverse factors, 
demonstrating how they intricately interact and impact the 
foundational development of microbial communities.

Maternal diet

The intricate relationship between maternal diet and the 
development of the infant gut microbiota underscores the 
profound impact maternal nutrition has on infant health dur-
ing pregnancy and lactation. Higher maternal consumption 
of fruits and vegetables is associated with a more diverse 
and beneficial microbial composition in the infant gut, espe-
cially in those who are delivered vaginally and exclusively 
breastfed [51, 52]. This dietary pattern is linked to increased 
counts of beneficial bacteria such as Cutibacterium, Para-
bacteroides, and Lactococcus, along with reduced counts of 
potentially pro-inflammatory bacteria [53].

Mothers with a high intake of fibers and plant proteins 
tend to have breast milk enriched with beneficial bacteria 
like Bifidobacterium [54].

The broader relationship between diet quality during 
pregnancy—including the intake of fiber, fat, and vitamins—
and the shaping of both maternal and infant gut microbiomes 
is further corroborated by various studies [51, 55]. Although 
specific dietary components like salmon may not directly 
impact the gut microbiota of mothers and infants, factors 
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such as maternal weight gain during pregnancy and the 
mode of infant feeding are significant [56]. Obesity in moth-
ers, often associated with poor dietary patterns, correlates 
with shorter breastfeeding durations and potentially impacts 
the infant’s microbiome development and health [57].

The systematic review by Maher et al. [55] consolidates 
these observations, highlighting the association between 
maternal diet—particularly the consumption of high-fat diets 
and fiber—and the gut microbiota composition in both moth-
ers and infants.

Placental microbiota

Studies utilizing advanced molecular techniques have identi-
fied the presence of a low-biomass but diverse microbial com-
munity in the placenta [39]. This microbiota resembles the 
oral microbiome more closely than those of the gut or vagina, 
suggesting hematogenous spread from the oral cavity to the 
placenta [38]. Microorganisms detected in the placenta include 
a variety of bacteria, such as Firmicutes, Tenericutes, Proteo-
bacteria, Bacteroidetes, and Fusobacteria [58]. The presence of 

these microbes in the placenta challenges the sterile womb par-
adigm and suggests a mechanism for early microbial coloniza-
tion of the fetus. The discovery of the placental microbiota has 
led to speculation about its role in shaping the fetal immune 
system and microbiome [59]. It has been hypothesized that 
the placental microbes could prime the fetal immune system, 
introducing the fetus to non-pathogenic antigens and helping to 
develop tolerance. This early microbial exposure is crucial for 
the proper maturation of the fetal immune system, potentially 
influencing the child’s susceptibility to allergies, autoimmune 
diseases, and other immune-related conditions later in life [60].

Furthermore, the placental microbiota might contribute 
to the initial seeding of the fetal gut microbiome [39]. 
Microbes from the placenta could be swallowed by the 
fetus, colonizing the gut and setting the stage for further 
microbial colonization after birth. This early colonization 
is essential for the development of a healthy gut micro-
biome, which plays a critical role in nutrient absorption, 
metabolism, and protection against pathogens [38]. The 
existence and role of the placental microbiota have sig-
nificant implications for fetal microbiome development. 

Fig. 1  Factors influencing early microbiome colonization
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It suggests that the foundations for the gut microbiome, 
and by extension the immune system, are laid before birth. 
This understanding underscores the importance of mater-
nal health and diet, as these factors could influence the 
composition of the placental microbiota [39].

Antibiotic exposure

The administration of antibiotics to both mothers during 
pregnancy or labor and to infants shortly after birth has 
been identified as a significant factor that can alter the 
neonatal gut microbiota [61].

Maternal antibiotic exposure

When antibiotics are administered during pregnancy, they 
can cross the placental barrier and reach the fetal environ-
ment [62]. Antibiotics are designed to kill or inhibit the 
growth of bacteria, and they do not discriminate between 
harmful pathogens and beneficial microbial communi-
ties. Thus, maternal antibiotic use can disrupt the maternal 
microbiota, which in turn can affect the microbial popula-
tions available for vertical transmission to the fetus [62]. 
This disruption can lead to a reduction in microbial diversity 
and a delay in the colonization of beneficial microbes in the 
neonate [61].

The alteration of the maternal microbiota and its effects 
on the fetal microbiome may have implications for the devel-
opment of the fetal immune system [63]. A diverse microbi-
ome is essential for the proper training of the immune sys-
tem, teaching it to differentiate between harmful pathogens 
and benign antigens. Disruptions in early microbial exposure 
due to antibiotic use can increase the risk of developing con-
ditions such as allergies, asthma, and autoimmune diseases 
in later life [64].

Neonatal antibiotic exposure

Antibiotics administered directly to infants can have a pro-
found impact on their nascent microbiota [65]. The early 
postnatal period is a critical time for microbial colonization 
and the establishment of a stable gut microbiome. Antibi-
otics during this period can cause significant disruptions, 
including decreased microbial diversity, delayed coloniza-
tion by beneficial microbes, and an increased abundance of 
antibiotic-resistant bacteria [66]. These early disruptions in 
the gut microbiota have been associated with an increased 
risk of diseases in both infancy and later life [67]. Condi-
tions such as necrotizing enterocolitis (NEC) in preterm 
infants, obesity, type 1 diabetes, and inflammatory bowel 
disease (IBD) have been linked to alterations in the early-life 
microbiome [68]. The use of antibiotics can also impact the 

development of the gut-brain axis, potentially influencing 
neurodevelopment and behavior[69].

Mode of delivery

The delivery method significantly influences the early col-
onization of the neonatal microbiome, displaying notable 
disparities between infants delivered through cesarean sec-
tion (C-section) and those born vaginally [70]. This initial 
establishment of the microbiome is vital in determining the 
infant’s health and development in the future [71].

Microbiome colonization in vaginal delivery

Infants born through vaginal delivery are exposed to their 
mother’s vaginal and fecal microbiota. This exposure is a 
critical process that initiates the colonization of the infant’s 
gut with microbes, including Lactobacillus, Prevotella, and 
Bacteroides [72]. These bacteria are essential for the devel-
opment of the infant’s immune system and metabolic pro-
cesses. The early colonization by these microbes helps in the 
maturation of the immune system, training it to distinguish 
between harmful and benign antigens and reducing the risk of 
allergies, autoimmune diseases, and metabolic disorders [73].

Microbiome colonization in cesarean section

In contrast, infants born via C-section are exposed to a dif-
ferent microbial environment, primarily consisting of skin-
associated bacteria such as Staphylococcus, Corynebacte-
rium, and Propionibacterium [74]. This difference in early 
microbial exposure can lead to a delay in the colonization 
of the gut by the beneficial microbes typically acquired 
through vaginal delivery [41]. The altered microbiome com-
position in C-section-delivered infants is associated with a 
higher risk of developing a range of health issues, including 
allergies, obesity, asthma, celiac disease, and type 1 diabe-
tes [75–78]. The lack of exposure to maternal vaginal and 
fecal microbes is thought to impact the development of the 
infant’s immune system, potentially leading to an increased 
susceptibility to these conditions [3]. A systematic review 
by Princisval et al. indicated that CD-born infants exhibit 
lower abundance of Bifidobacterium and Bacteroides spe-
cies up to 18 months of age, regardless of whether the CD 
was performed before or after labor onset, challenging the 
notion that the absence of Bacteroides is solely due to lack 
of exposure to the vaginal canal [79, 80]. Studies also sug-
gest that breastfeeding can mitigate these effects, contribut-
ing to the construction and stabilization of gut microbiota in 
CD-delivered infants [81, 82]. Liu et al. [83] further dem-
onstrated that exclusive breastfeeding partially restores the 
perturbed gut microbiota in C-section infants, underscoring 
the importance of feeding patterns in these cases.
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Feeding practices

Feeding practices play a critical role in the colonization and 
development of the infant’s microbiome, with breastfeeding 
and formula feeding having distinct impacts [84]. These dif-
ferences in early nutrition can influence the infant’s health 
both in the short term and throughout their life.

Breastfeeding and the infant microbiome

Breastfeeding is recognized for its unparalleled benefits in 
supporting the development of a healthy infant microbiome 
[85]. Human breast milk is not only a source of essential 
nutrients but also contains a variety of bioactive compo-
nents, including antibodies, oligosaccharides, and a complex 
ecosystem known as the human milk microbiome (HMM), 
which contains beneficial bacteria, viruses, fungi, and other 
microorganisms [86, 87]. These components play a cru-
cial role in shaping the infant’s gut microbiome. Breastfed 
infants typically have a gut microbiome dominated by ben-
eficial bacteria such as Bifidobacterium and Lactobacillus 
[88, 89]. These bacteria are adept at fermenting the human 
milk oligosaccharides (HMOs) found in breast milk, produc-
ing SCFAs that have a critical role in maintaining gut health, 
modulating the immune system, and protecting against path-
ogen colonization [43]. The dynamic nature of breast milk 
also allows for the vertical transmission of microbiota from 
mother to infant through breastfeeding, seeding the infant’s 
gut and oral microbiota with pioneer bacteria that aid in 
immune system maturation [87]. Moreover, this microbial 
diversity is influenced by maternal factors such as diet, mode 
of delivery, and geographic location, which may affect the 
composition and richness of the milk’s microbiome. The 
interaction between the beneficial microbes and the immu-
nological components in breast milk is critical in training the 
infant’s immune system to recognize harmful versus benign 
antigens, potentially reducing the risk of allergies and auto-
immune diseases later in life [90].

Formula feeding and the infant microbiome

Formula feeding, while providing a vital alternative when 
breastfeeding is not possible, results in a different microbi-
ome composition compared to breastfed infants. Formula-
fed infants tend to have a more diverse microbiome earlier 
on, with higher proportions of bacteria such as Clostrid-
ium and Bacteroides [91]. The diversity and composition 
of the microbiome in formula-fed infants can resemble a 
more mature microbiome but may lack the specific benefi-
cial bacteria that are fostered by the unique components of 
breast milk [92]. The absence of HMOs and other bioac-
tive molecules in formula can lead to a different pattern of 
microbial colonization and metabolic activity in the gut 

[93]. The differences in microbiome development between 
breastfed and formula-fed infants have been linked to vari-
ations in health outcomes. Formula-fed infants may have 
an increased risk of developing conditions such as obesity, 
type 2 diabetes, and gastrointestinal infections [94–96]. 
The altered microbial exposure and the absence of breast 
milk’s immunological protection can influence the infant’s 
immune system development and metabolic programming. 
Efforts to bridge the gap between breast milk and formula 
have led to the development of enriched formulas contain-
ing HMOs, probiotics, prebiotics, and postbiotics, aiming 
to emulate the gut microbiome of breastfed infants and sup-
port healthy immune development [95, 97]. Several studies 
have demonstrated that the gut microbiota composition of 
infants consuming modern formulas enriched with prebi-
otics resembled more closely that of breastfed infants [98, 
99], with increased relative abundances of Bifidobacterium 
and decreased relative abundances of Enterobacteriaceae 
and Peptostreptococcaceae [100]. Despite these advance-
ments, breastfeeding remains unparalleled in its role in early 
microbial acquisition and community succession in infants.

Established links between perinatal 
microbiome and health

An increasing body of evidence underscores the pivotal 
role of early microbiome composition in the development 
of some diseases, highlighting a complex interplay between 
genetic predisposition, environmental factors, and microbial 
ecology. Figure 2 provides a detailed visual representation 
of the diseases associated with altered microbiota, as well 
as the factors that influence these alterations.

Cardiometabolic disorders

Recent research suggests a connection between the perina-
tal microbiome and the risk of developing cardiometabolic 
disorders, including obesity, diabetes, and other metabolic 
conditions [101]. This body of evidence highlights the pro-
found impact of early microbial exposures on the metabolic 
programming of the infant, with long-term implications for 
health and disease [102, 103].

Obesity

The relationship between the early-life microbiome and 
obesity is one of the most compelling areas of study 
within the realm of cardiometabolic health. Infants with a 
reduced diversity of gut microbiota or specific imbalances 
in their microbial composition are at an increased risk 
of becoming overweight or obese later in life [104, 105]. 
Specific maternal dietary patterns have been associated 
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with shaping the neonatal gut microbiota, predisposing 
infants to overweight during the first 18 months of life. 
For instance, early dominance of certain bacterial spe-
cies, such as Eubacterium rectale from the Firmicutes 
phylum, over others like Bacteroides thetaiotaomicron, 
belonging to the phylum of Bacteroidetes, has been linked 
to increased energy harvest from the diet, contributing to 
weight gain and adiposity [106, 107]. Factors like cesarean 
section [108], formula feeding [108, 109], early-life anti-
biotics [108, 110, 111], and maternal overweight/obesity 
[112–115] influence the development of an “obese-type” 
microbiota [116], characterized by an abundance of pro-
inflammatory Lachnospiraceae, including Coprococcus, 
Ruminococcus, and Blautia [117] and a decrease in pro-
tective Bifidobacteria and Bacteroidetes, with Bacteroides 
fragilis being a prime example [108]. Breastfeeding has 
been associated with protective effects against child-
hood overweight and obesity, as well as type 2 diabetes, 
via the gut microbiota. A meta-analysis also revealed a 
dose–response relationship, indicating that an increased 
duration of breastfeeding is associated with a lower risk 
of becoming overweight [105].

Other metabolic conditions

The early-life microbiome also appears to play a role in other 
metabolic conditions, such as metabolic syndrome and insulin 
resistance, which are precursors to more severe diseases like 
type 2 diabetes and cardiovascular disease [118]. Maternal obe-
sity may introduce microbiota aberrations relevant for metabolic 
health through direct vertical microbiota transfer and priority 
effects, leading to intergenerational effects and the development 
of metabolic disorders [119]. The mechanisms underlying these 

associations involve the microbiome’s influence on inflamma-
tion, energy metabolism, and insulin sensitivity [120]. For exam-
ple, specific microbial metabolites, such as SCFAs, have been 
shown to exert beneficial effects on host metabolism, including 
enhancing insulin sensitivity and regulating appetite and energy 
expenditure [121]. Disruptions in the production of these metab-
olites due to an imbalanced microbiome can contribute to the 
pathophysiology of metabolic disorders [122].

Allergies

The intricate relationship between the early microbiome com-
position and the susceptibility to allergic conditions has gar-
nered substantial attention in recent research, underscoring 
the pivotal role of microbial exposures in infancy in shaping 
immune responses to allergens. This body of research eluci-
dates how variations in the diversity and specific compositions 
of the microbiome during the perinatal period significantly 
influence the risk of developing allergies, such as eczema, 
asthma, and food allergies [123]. Central to this discussion is 
the concept that the early microbial environment is fundamental 
in guiding the immune system towards a path of immune toler-
ance, essentially teaching it to differentiate between benign sub-
stances and genuine pathogens, thereby reducing inappropriate 
immune reactions that manifest as allergies [124].

Studies consistently demonstrate a correlation between 
reduced microbial diversity and decreased microbiota matu-
ration in the gut microbiome of infants within their first months 
of life and an elevated risk of allergy development [125, 126]. 
This appears to limit the immune system’s capacity to establish 
tolerance. Furthermore, research has pinpointed specific bac-
terial genera, including Faecalibacterium, Akkermansia, and 
Bifidobacterium, whose presence or abundance is inversely 

Fig. 2  Established links 
between perinatal microbiome 
and health
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related to allergy risk [127, 128]. In contrast, a heightened 
presence of bacteria such as Clostridium or Staphylococcus is 
associated with an increased allergy risk, suggesting that the 
composition of the early-life microbiome is a critical determi-
nant of allergic disease susceptibility [127].

The intricate relationship between the early microbiome 
composition and the susceptibility to allergic conditions 
has garnered substantial attention in recent research, under-
scoring the pivotal role of microbial exposures in infancy 
in shaping immune responses to allergens. This body of 
research elucidates how variations in the diversity and spe-
cific compositions of the microbiome during the perinatal 
period significantly influence the risk of developing aller-
gies, such as eczema, asthma, and food allergies [117]. The 
early microbial environment is fundamental in guiding the 
immune system towards a path of immune tolerance, essen-
tially teaching it to differentiate between benign substances 
and genuine pathogens, thereby reducing inappropriate 
immune reactions that present as allergies [118].

Studies consistently demonstrate a correlation between 
reduced microbial diversity and decreased microbiota mat-
uration in the gut microbiome of infants within their first 
months of life and an elevated risk of allergy development, 
limiting the immune system’s capacity to establish tolerance 
[119, 120]. Furthermore, research has pinpointed specific 
bacterial genera, including Akkermansia, and Bifidobacte-
rium, whose presence or abundance is inversely related to 
allergy risk [121, 122]. In contrast, a heightened presence of 
bacteria such as Clostridium or Staphylococcus is associated 
with an increased allergy risk, suggesting that the composi-
tion of the early-life microbiome is a critical determinant of 
allergic disease susceptibility [121].

Recent studies, such as those by De Filippis et al. [129], 
further expand our understanding by identifying specific 
microbiome features associated with pediatric allergies and 
their potential impact on immune tolerance mechanisms. 
Allergic children exhibit a distinct gut microbiome marked 
by an increased abundance of Ruminococcus gnavus and 
Faecalibacterium prausnitzii and a decreased presence of 
Bifidobacterium longum and fiber-degrading taxa like Bac-
teroides dorei and Bacteroides vulgatus. These microbial 
signatures not only correlate with higher pro-inflammatory 
potential—evidenced by enriched genes related to bacterial 
lipopolysaccharides and urease—but also predict the acqui-
sition of immune tolerance, underscoring their role in aller-
gic disease progression and resolution.

Vaginally delivered and breastfed infants typically exhibit 
a microbiome composition that is associated with a lower risk 
of allergies, highlighting the critical impact of these early-life 
factors on the maturation of the immune system [130, 131]. 
Additionally, the use of antibiotics during infancy has been 
shown to disrupt the gut microbiome, reducing microbial 
diversity and altering the balance of microbial communities 

[132]. This disruption is linked to an increased incidence of 
allergic diseases, further emphasizing the importance of pre-
serving microbial diversity for immune system development. 
The mechanisms by which the early-life microbiome influ-
ences allergy development are multifaceted, involving the reg-
ulation of immune function through microbial metabolites like 
SCFAs [133]. These metabolites are instrumental in promoting 
the development of regulatory T cells, crucial for maintaining 
immune tolerance. Moreover, the early microbiome plays a 
significant role in reinforcing the gut barrier, preventing the 
translocation of allergens, and fostering a healthy immune 
response to dietary antigens [16].

Gastrointestinal disorders

The early microbiome plays a pivotal role in the development 
and maturation of the gastrointestinal (GI) tract, influencing 
immune responses and the integrity of the gut barrier [134]. 
Disturbances in the early microbiome are increasingly recog-
nized for their potential to predispose individuals to a range of 
gastrointestinal disorders, including infant colic, celiac disease, 
and inflammatory bowel disease (IBD) [135]. These conditions 
highlight the critical importance of microbial exposures in the 
perinatal period for long-term gastrointestinal health.

Infant colic

Infant colic, characterized by excessive crying and discom-
fort in otherwise healthy infants, has been linked to altera-
tions in the gut microbiota [136]. Studies have shown dif-
ferences in the microbiome composition of colicky infants 
compared to their non-colicky peers, including lower diver-
sity and variations in the abundance of specific bacterial 
groups [137]. For instance, colicky infants often have fewer 
Lactobacilli and an increased presence of gas-producing 
bacteria, which might contribute to gastrointestinal discom-
fort and the symptoms of colic [138]. These findings suggest 
that interventions aimed at modulating the gut microbiota, 
such as the use of probiotics, could offer potential benefits 
in managing colic symptoms [139].

Celiac disease

Celiac disease is an autoimmune disorder triggered by the 
ingestion of gluten in genetically susceptible individuals [140]. 
Emerging evidence suggests that early-life microbial exposures 
can influence the risk of developing celiac disease [141]. Factors 
such as mode of delivery and antibiotic use have been asso-
ciated with alterations in the gut microbiome that may affect 
immune tolerance to dietary gluten [142]. This does not hold 
true for breastfeeding for which a prospective study indicated 
that breastfeeding does not serve as a protective factor against 
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the development of celiac disease [143]. Additionally, the tim-
ing of gluten introduction and the composition of the infant’s 
microbiome at this critical period might interact to influence 
the development of celiac disease [144]. Research indicates that 
a balanced and diverse microbiome may play a protective role, 
potentially reducing the risk or delaying the onset of the disease.

Inflammatory bowel disease (IBD)

IBD, that include Crohn’s disease and ulcerative colitis, are 
characterized by chronic inflammation of the gastrointestinal 
tract [145]. The pathogenesis of IBD is multifactorial, involv-
ing genetic susceptibility, environmental factors, and dys-
regulation of the immune system, with the gut microbiome 
playing a central role [145]. Early microbiome disturbances, 
such as reduced microbial diversity or imbalances in specific 
microbial communities, have been implicated in the develop-
ment of IBD [146]. These disturbances can impact immune 
system development, gut barrier function, and the balance of 
pro-inflammatory and anti-inflammatory signals in the gut 
[147]. The result is an increased susceptibility to inappropri-
ate immune responses against the gut microbiota, contribut-
ing to the chronic inflammation observed in IBD [148].

Neuropsychiatric diseases

The emerging research on the gut-brain axis during the peri-
natal period is shedding light on potential of early micro-
biome composition to influence neuropsychiatric outcomes 
from infancy into later life [149]. The concept of the gut-
brain axis encompasses the intricate communication network 
that links the gastrointestinal tract and the brain [150]. Dur-
ing the perinatal period, this axis is particularly influential, 
as it is a time when both the gut microbiota and the cen-
tral nervous system are undergoing rapid development and 
maturation. The initial colonization of the gut microbiome, 
influenced by factors such as mode of delivery, maternal diet, 
and early feeding practices, plays a crucial role in this pro-
cess [151]. These early microbial communities can produce 
various compounds, including neurotransmitters and inflam-
matory mediators, that can cross the placental barrier and 
potentially influence fetal brain development [152].

Early microbiome composition and neuropsychiatric 
disorders

Research has begun to explore the association between 
disruptions in the early microbiome and the risk of neu-
ropsychiatric disorders such as autism spectrum disorder 
(ASD). Imbalances in the perinatal microbiome could 
impact neurodevelopmental processes, affecting neural 
circuitry and leading to long-term changes in behavior and 
cognitive function [153]. Alterations in both the salivary 

and gut microbiomes in children with ASD suggest a unique 
microbial composition, which could be implicated in the 
disorder’s pathogenesis through immune and inflammatory 
responses [154, 155]. They are characterized by an increased 
abundance of genera such as Faecalibacterium, Rothia, Bac-
teroides, Oribacterium, Lachnoanaerobaculum, and Meg-
asphaera, as well as families including Micrococcaceae, 
Ruminococcaceae, Bacteroidaceae, and Lachnospiraceae. 
Conversely, there is a decreased abundance of genera like 
Pseudomonas and Abiotrophia, families such as Pseu-
domonadaceae and Aerococcaceae, the order Pseudomon-
adales, and the species Pseudomonas graminis in children 
with ASD [154, 155]. This microbial profile is correlated 
with neurodevelopmental outcomes, indicating a direct link 
between specific microbial profiles and the manifestation of 
ASD. Later, other early-life shifts in gut microbiota compo-
sition in infants at elevated risk of ASD have been identified 
[156]. These infants exhibited a lower abundance of Bifi-
dobacterium and a higher presence of Clostridium-related 
species, along with a decrease in gamma-aminobutyric acid 
(GABA) in fecal samples [157]. Such microbial differences 
were associated with developmental changes in language 
skills, underscoring the significant role of gut microbiota in 
neuro-immune modulation from an early age [158]. Another 
study indicates that maternal diet high in inflammatory com-
ponents can prime the neurodevelopmental trajectory of the 
offspring towards disorders like ASD [159], highlighting 
the role of maternal immune activation and neuroinflamma-
tion, which are significantly influenced by maternal dietary 
patterns [160]. These inflammatory responses may lead to 
altered neurodevelopmental outcomes in the offspring, echo-
ing the patterns observed in the microbial alterations associ-
ated with ASD and language development [159]

Potential for therapy

Vaginal seeding

As already discussed, the infant gut microbiome is significantly 
influenced by the mode of delivery [70]. To mitigate this influ-
ence, strategies such as maternal vaginal seeding have been 
recently explored. Maternal vaginal seeding involves swabbing 
cesarean-born infants with maternal vaginal fluids to potentially 
lessen the differences in microbiota development between vagi-
nally born infants and those born by cesarean section [161]. In a 
recent randomized controlled trial, vaginally seeding neonates 
delivered by cesarean section resulted in a partial restoration 
of their microbiota, similar to that of their vaginally delivered 
counterparts, with increased transmission of microbiota from 
mother to child and compositional changes in the microbiota 
of their skin and stool [162]. However, a different study cast 
doubt on the contribution of the mother’s vaginal microbiota to 
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the microbiota that is seeded in the baby’s mouth and nose and 
proposed the possibility that other sources, such breast milk, 
may play a role in this process [163]. Despite the perceived ben-
efits, a recent study raised concerns about the unproven benefits 
and potential risks to neonatal health associated with vaginal 
seeding, advocating for the confinement of the procedure to 
carefully monitored clinical trials [164].

In conclusion, while the concept of vaginal seeding is 
intriguing, current evidence remains inconclusive, and it 
cannot be recommended as a standard practice until more 
conclusive research is conducted.

Prebiotics and probiotics

Probiotic supplementation during pregnancy, particularly with 
Lactobacillus rhamnosus GG, has been shown to positively 
impact the maternal vaginal microbiota [165]. This interven-
tion significantly reduced the presence of pathogenic micro-
organisms, thereby laying the groundwork for a healthier 
microbial environment for the infant. However, there is limited 
evidence that this intervention influences the overall diversity 
of the infant microbiome or determines sustained colonization 
[166, 167]. Initial neonatal supplementation with Lactobacil-
lus rhamnosus GG can increase the abundance of beneficial 
Bifidobacteria in the infant’s gut, a hallmark of a healthy gut 
microbiome [168], while further research has not shown a clear 
link between probiotic administration and higher concentra-
tions of Bifidobacterium in the feces [169, 170].

Among prebiotics, human milk oligosaccharides (HMOs) 
are a cornerstone in nurturing a healthy infant gut microbiome. 
The advantages of breast milk have been mimicked in baby 
formulas by adding these oligosaccharides such as lacto-N-
neotetraose and 2′-fucosyllactose [171]. HMOs are instru-
mental in promoting the growth of beneficial bifidobacteria, 
such as Bifidobacterium longum, B. bifidum, and B. longum 

subspecies infantis. These specific strains are known for their 
immunogenic effects that are crucial in the early stages of 
life [172]. These formula adaptations have shown promising 
results, enhancing the production of lactate and SCFAs.

Conclusions

In conclusion, the perinatal period represents a critical phase 
in the establishment and development of the neonatal micro-
biome, with deep implications for long-term health. Factors 
such as mode of delivery, maternal diet, antibiotic exposure, 
and feeding practices significantly influence the composi-
tion and diversity of the infant gut microbiota. These early 
microbial communities are instrumental in shaping the neo-
nate’s immune system, metabolism, and neurodevelopment. 
Table 1 summarizes the most important bacterial genera and 
species along with their associated functions and implica-
tions for health. This overview highlights the critical roles 
these microorganisms play during the perinatal period. The 
emerging evidence underscores the potential of targeted 
interventions, including dietary modifications, probiotic 
and prebiotic supplementation, and innovative practices 
like maternal vaginal seeding, to optimize microbiome 
development. However, further research is essential to fully 
understand the complex interactions between the perinatal 
microbiome and health outcomes and to develop effective 
strategies for promoting lifelong health starting from this 
pivotal period.
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Table 1  Taxonomic classification of the main bacterial phyla, families, genera, and species involved in perianal period

Phylum Family Genus Species Function/association

Firmicutes Lachnospiraceae Coprococcus / “Obese-type” microbiota
Ruminococcus R. gnavus “Obese-type” microbiota; increased in allergies

Lactobacillaceae Lactobacillus / Decreased in infants with colics; associated with breastfeeding
Eubacteriaceae Eubacterium E. rectale Involved in energy harvest, linked to obesity
Clostridiaceae Clostridium / Increase allergy risk; increased in formula-fed infant
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decrease the risk of allergy
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B. fragilis Decreased in obese children
Verrucomicrobia Akkermansiaceae Akkermansia A. muciniphila May decrease the risk of allergy
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