Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1985 Nov 1;231(3):641–649. doi: 10.1042/bj2310641

Redistribution and characterization of (H+ + K+)-ATPase membranes from resting and stimulated gastric parietal cells.

B H Hirst, J G Forte
PMCID: PMC1152797  PMID: 3000356

Abstract

When isolated from resting parietal cells, the majority of the (H+ + K+)-ATPase activity was recovered in the microsomal fraction. These microsomal vesicles demonstrated a low K+ permeability, such that the addition of valinomycin resulted in marked stimulation of (H+ + K+)-ATPase activity, and proton accumulation. When isolated from stimulated parietal cells, the (H+ + K+)-ATPase was redistributed to larger, denser vesicles: stimulation-associated (s.a.) vesicles. S.a. vesicles showed an increased K+ permeability, such that maximal (H+ + K+)-ATPase and proton accumulation activities were observed in low K+ concentrations and no enhancement of activities occurred on the addition of valinomycin. The change in subcellular distribution of (H+ + K+)-ATPase correlated with morphological changes observed with stimulation of parietal cells, the microsomes and s.a. vesicles derived from the intracellular tubulovesicles and the apical plasma membrane, respectively. Total (H+ + K+)-ATPase activity recoverable from stimulated gastric mucosa was 64% of that from resting tissue. Therefore, we tested for latent activity in s.a. vesicles. Permeabilization of s.a. vesicles with octyl glucoside increased (H+ + K+)-ATPase activity by greater than 2-fold. Latent (H+ + K+)-ATPase activity was resistant to highly tryptic conditions (which inactivated all activity in gastric microsomes). About 20% of the non-latent (H+ + K+)-ATPase activity was also resistant to trypsin digestion. We interpret these results as indicating that, of the s.a. vesicles, approx. 55% have a right-side-out orientation and are impermeable to ATP, 10% right-side-out and permeable to ATP, and 35% have an inside-out orientation.

Full text

PDF
641

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Beesley R. C., Forte J. G. Glycoproteins and glycolipids of oxyntic cell microsomes. I. Glycoproteins: carbohydrate composition, analytical and preparative fractionation. Biochim Biophys Acta. 1973 May 11;307(2):372–385. doi: 10.1016/0005-2736(73)90103-x. [DOI] [PubMed] [Google Scholar]
  2. Berglindh T., Dibona D. R., Pace C. S., Sachs G. ATP dependence of H+ secretion. J Cell Biol. 1980 May;85(2):392–401. doi: 10.1083/jcb.85.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  4. Culp D. J., Forte J. G. An enriched preparation of basal-lateral plasma membranes from gastric glandular cells. J Membr Biol. 1981 Apr 15;59(2):135–142. doi: 10.1007/BF01875711. [DOI] [PubMed] [Google Scholar]
  5. Forte J. G., Black J. A., Forte T. M., Machen T. E., Wolosin J. M. Ultrastructural changes related to functional activity in gastric oxyntic cells. Am J Physiol. 1981 Nov;241(5):G349–G358. doi: 10.1152/ajpgi.1981.241.5.G349. [DOI] [PubMed] [Google Scholar]
  6. Forte J. G., Ganser A., Beesley R., Forte T. M. Unique enzymes of purified microsomes from pig fundic mucosa. K+-stimulated adenosine triphosphatase and K+-stimulated pNPPase. Gastroenterology. 1975 Jul;69(1):175–189. [PubMed] [Google Scholar]
  7. Forte J. G., Lee H. C. Gastric adenosine triphosphatases: a review of their possible role in HCl secretion. Gastroenterology. 1977 Oct;73(4 Pt 2):921–926. [PubMed] [Google Scholar]
  8. Forte T. M., Machen T. E., Forte J. G. Ultrastructural changes in oxyntic cells associated with secretory function: a membrane-recycling hypothesis. Gastroenterology. 1977 Oct;73(4 Pt 2):941–955. [PubMed] [Google Scholar]
  9. Ganser A. L., Forte J. G. K + -stimulated ATPase in purified microsomes of bullfrog oxyntic cells. Biochim Biophys Acta. 1973 Apr 25;307(1):169–180. doi: 10.1016/0005-2736(73)90035-7. [DOI] [PubMed] [Google Scholar]
  10. Im W. B., Blakeman D. P., Fieldhouse J. M., Rabon E. C. Effect of carbachol or histamine stimulation on rat gastric membranes enriched in (H+-K+)-ATPase. Biochim Biophys Acta. 1984 May 16;772(2):167–175. doi: 10.1016/0005-2736(84)90040-3. [DOI] [PubMed] [Google Scholar]
  11. Lee H. C., Breitbart H., Berman M., Forte J. G. Potassium-stimulated ATPase activity and hydrogen transport in gastric microsomal vesicles. Biochim Biophys Acta. 1979 May 3;553(1):107–131. doi: 10.1016/0005-2736(79)90034-8. [DOI] [PubMed] [Google Scholar]
  12. Lee H. C., Forte J. G. A study of H+ transport in gastric microsomal vesicles using fluorescent probes. Biochim Biophys Acta. 1978 Apr 4;508(2):339–356. doi: 10.1016/0005-2736(78)90336-x. [DOI] [PubMed] [Google Scholar]
  13. Lee J., Simpson G., Scholes P. An ATPase from dog gastric mucosa: changes of outer pH in suspensions of membrane vesicles accompanying ATP hydrolysis. Biochem Biophys Res Commun. 1974 Sep 23;60(2):825–832. doi: 10.1016/0006-291x(74)90315-5. [DOI] [PubMed] [Google Scholar]
  14. Munro H. N. The determination of nucleic acids. Methods Biochem Anal. 1966;14:113–176. doi: 10.1002/9780470110324.ch5. [DOI] [PubMed] [Google Scholar]
  15. SMITH L. Spectrophotometric assay of cytochrome c oxidase. Methods Biochem Anal. 1955;2:427–434. doi: 10.1002/9780470110188.ch13. [DOI] [PubMed] [Google Scholar]
  16. Saccomani G., Stewart H. B., Shaw D., Lewin M., Sachs G. Characterization of gastric mucosal membranes. IX. Fractionation and purification of K+-ATPase-containing vesicles by zonal centrifugation and free-flow electrophoresis technique. Biochim Biophys Acta. 1977 Mar 1;465(2):311–330. doi: 10.1016/0005-2736(77)90081-5. [DOI] [PubMed] [Google Scholar]
  17. Sachs G., Chang H. H., Rabon E., Schackman R., Lewin M., Saccomani G. A nonelectrogenic H+ pump in plasma membranes of hog stomach. J Biol Chem. 1976 Dec 10;251(23):7690–7698. [PubMed] [Google Scholar]
  18. Sanui H. Measurement of inorganic orthophosphate in biological materials: extraction properties of butyl acetate. Anal Biochem. 1974 Aug;60(2):489–504. doi: 10.1016/0003-2697(74)90259-0. [DOI] [PubMed] [Google Scholar]
  19. Smolka A., Helander H. F., Sachs G. Monoclonal antibodies against gastric H+ + K+ ATPase. Am J Physiol. 1983 Oct;245(4):G589–G596. doi: 10.1152/ajpgi.1983.245.4.G589. [DOI] [PubMed] [Google Scholar]
  20. Wolosin J. M., Forte J. G. Changes in the membrane environment of the (K+ + H+)-ATPase following stimulation of the gastric oxyntic cell. J Biol Chem. 1981 Apr 10;256(7):3149–3152. [PubMed] [Google Scholar]
  21. Wolosin J. M., Forte J. G. Functional differences between K+-ATPase rich membranes isolated from resting or stimulated rabbit fundic mucosa. FEBS Lett. 1981 Mar 23;125(2):208–212. doi: 10.1016/0014-5793(81)80720-x. [DOI] [PubMed] [Google Scholar]
  22. Wolosin J. M., Forte J. G. Stimulation of oxyntic cell triggers K+ and Cl- conductances in apical H+-K+-ATPase membrane. Am J Physiol. 1984 May;246(5 Pt 1):C537–C545. doi: 10.1152/ajpcell.1984.246.5.C537. [DOI] [PubMed] [Google Scholar]
  23. Wolosin J. M., Okamoto C., Forte T. M., Forte J. G. Actin and associated proteins in gastric epithelial cells. Biochim Biophys Acta. 1983 Dec 13;761(2):171–182. doi: 10.1016/0304-4165(83)90226-x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES