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intRoduction
Pancreatic ductal adenocarcinoma (PDAC) is a devastating 

disease. Most patients present with advanced cancer and die 
within 12 months of diagnosis due to limited therapeutic op-
tions and poor responses to standard-of-care chemotherapy 
(1, 2). KRAS is the dominant oncogene in PDAC and is altered 
in more than 90% of tumors, with G12D, G12V, and G12R 
substitutions being most frequently observed (3, 4). Onco-
genic KRAS mutations typically increase the steady-state lev-
els of the protein in the active GTP-bound form, which drives 
protumorigenic signaling through downstream effector path-
ways, such as the mitogen-activated protein kinase (MAPK) 
and phosphatidylinositol 3-kinase (PI3K) pathways. Prior 
studies have demonstrated that genetic ablation of KRAS ex-
pression leads to cell cycle arrest and death in cell lines and 

potent tumor regressions in animal models of PDAC (5–7). 
Thus, KRAS is a well-validated, high-priority therapeutic tar-
get for PDAC.

Recent advances in medicinal chemistry have enabled the 
development of direct small-molecule inhibitors of KRAS, 
including covalent inhibitors of the KRASG12C protein that 
impair oncogenic signaling and cause tumor regressions in 
preclinical models (8–10). Clinical trials of multiple KRASG12C 
inhibitors have shown promising efficacy in advanced, previ-
ously treated non–small cell lung cancer (NSCLC), leading 
to United States Food and Drug Administration (FDA) ac-
celerated approval of two of these therapies (adagrasib and 
sotorasib) and many others being investigated in this setting 
(9–17). We and others have recently described mechanisms  
of acquired resistance in patients with lung and colorectal 

KRAS inhibitors demonstrate clinical efficacy in pancreatic ductal adenocarci-
noma (PDAC); however, resistance is common. Among patients with KRASG12C- 

mutant PDAC treated with adagrasib or sotorasib, mutations in PIK3CA and KRAS, and amplifica-
tions of KRASG12C, MYC, MET, EGFR, and CDK6 emerged at acquired resistance. In PDAC cell lines 
and organoid models treated with the KRASG12D inhibitor MRTX1133, epithelial-to-mesenchymal 
transition and PI3K-AKT-mTOR signaling associate with resistance to therapy. MRTX1133 treat-
ment of the KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre (KPC) mouse model yielded deep tumor regres-
sions, but drug resistance ultimately emerged, accompanied by amplifications of Kras, Yap1, Myc, 
Cdk6, and Abcb1a/b, and co-evolution of drug-resistant transcriptional programs. Moreover, in 
KPC and PDX models, mesenchymal and basal-like cell states displayed increased response to 
KRAS inhibition compared to the classical state. Combination treatment with KRASG12D inhibi-
tion and chemotherapy significantly improved tumor control in PDAC mouse models. Collectively, 
these data elucidate co-evolving resistance mechanisms to KRAS inhibition and support multiple 
combination therapy strategies.

SIgnIfICAnCe: Acquired resistance may limit the impact of KRAS inhibition in patients with PDAC. 
Using clinical samples and multiple preclinical models, we define heterogeneous genetic and non- 
genetic mechanisms of resistance to KRAS inhibition that may guide combination therapy approaches 
to improve the efficacy and durability of these promising therapies for patients.
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cancer (CRC) treated with KRASG12C inhibitors, including 
mutations in KRAS or other RTK–RAS–MAPK pathway effec-
tors, adaptive signaling alterations, and histologic transfor-
mation to drug-resistant cell states (14, 18–24). Circulating 
tumor DNA (ctDNA) samples from patients in these studies 
revealed a complex landscape of acquired resistance, with 
emergence of multiple putative genetic drivers of resistance 
within subsets of patients. Despite these early findings, there 
remains a critical need for an improved understanding of 
mechanisms of response and resistance to KRAS inhibitors 
in each relevant cancer type to guide the effective use of these 
therapies and improve clinical outcomes for patients.

KRASG12C mutations are rare in PDAC (∼1.5% of patients; 
ref. 25); however, early clinical results using KRASG12C inhibi-
tors in patients with PDAC are promising. The CodeBreaK100 
(NCT03600883) clinical trial evaluated the safety and efficacy 
of sotorasib in advanced KRASG12C-mutant cancers, including 
38 patients with metastatic, previously chemotherapy-treated 
PDAC. In these patients, a 21% objective response rate (ORR), 
a median progression-free survival (PFS) of 4.0 months,  
and a median overall survival (OS) of 6.9 months were ob-
served (26). The KRYSTAL-1 (NCT03785249) study included 
21 advanced, previously treated patients with KRASG12C- 
mutant PDAC who received adagrasib monotherapy. In this 
cohort, an ORR of 33.3%, a PFS of 5.4 months, and an OS 
of 8.0 months were observed (27). Although these early clin-
ical trial results need to be confirmed in larger studies, the 
efficacy of sotorasib and adagrasib in advanced, chemother-
apy-treated disease compares favorably to historical data on 
second-line chemotherapy efficacy in PDAC, where response 
rates are consistently less than 10% and median PFS is less 
than 3 months (28, 29). While these results suggest that di-
rect KRAS inhibition can confer substantial clinical benefit, 
responses are of limited duration, and essentially all patients 
with PDAC treated with KRASG12C inhibitors have developed 
progressive disease (PD) on therapy, with mechanisms of re-
sistance not yet fully elucidated.

KRASG12D mutations occur in nearly 40% of PDAC (25) 
and the recent development of selective inhibitors of the 
KRASG12D mutant protein may have substantial clinical 
impact on the treatment of patients with PDAC (30, 31). 
MRTX1133 is a potent, selective, and non-covalent KRASG12D 
inhibitor that has been shown to preferentially target the in-
active, GDP-bound form of the mutant protein with >1,000-
fold selectivity over wild-type (WT) KRAS. Recent preclinical 
work with MRTX1133 has demonstrated excellent responses 
in cell line and xenograft models of PDAC (30, 32). Moreover, 
MRTX1133 has been shown to confer robust short-term re-
sponses in genetically engineered mouse models (GEMM) of 
PDAC (33) and displayed increased efficacy when combined 
with immune checkpoint blockade (32). Additional investiga-
tions of combination therapy strategies with MRTX1133 in 
preclinical models of PDAC have suggested that co-targeting 
of EGFR may have enhanced efficacy over monotherapy (30, 
34). Given the strong preclinical data, MRTX1133 is currently 
being examined in a multicenter, first-in-human phase 1/2 
clinical trial (NCT05737706).

Mechanisms of acquired or primary resistance to KRAS 
inhibitors in PDAC remain poorly understood. Prior studies 
using inducible suppression of KRAS via RNA interference or 

genetically engineered inducible KrasG12D alleles (i.e., “iKras” 
model) have suggested that amplification of YAP1 or induc-
tion of an epithelial-to-mesenchymal transition (EMT) can 
confer a state of RAS independence and overcome KRASG12D 
suppression (35–38). Furthermore, studies of the iKras mouse 
model have highlighted myriad mechanisms to enable bypass 
of oncogenic KRAS addiction, including the adoption of a 
KRAS-independent cell state dependent on oxidative phos-
phorylation (5), induction of SMARCB–MYC-network-driven 
mesenchymal reprogramming (38), activation of the TGFβ- 
SMAD3/4 axis via TME remodeling (39), and USP21- 
mediated upregulation of macropinocytosis (40). While these 
studies of the iKras mouse model have identified important 
potential mechanisms of resistance to oncogenic KRAS ex-
tinction, the advent of mutant-selective inhibitors of KRAS 
now affords an unprecedented opportunity to fully interrogate 
the molecular basis for response and resistance to this class 
of therapeutics in a wide array of preclinical PDAC model 
systems, in addition to patient samples from early phase clin-
ical trials.

Here, we present a multimodal characterization of re-
sponse and resistance to mutant-selective KRAS inhibition 
in patients with PDAC treated with the KRASG12C inhibi-
tors adagrasib or sotorasib, as well as in multiple in vitro and  
in vivo models using the KRASG12D inhibitor MRTX1133. We 
identified multiple putative genetic mechanisms of resistance 
in patients as well as heterogeneous genetic and non-genetic 
resistance mechanisms in preclinical models. These studies 
define key aspects of the biology of response and resistance to 
KRAS inhibition in PDAC and may guide the development of 
combination therapy strategies.

Results
genetic Mechanisms of Resistance to KRASg12C 
Inhibition in Patients with PDAC

To understand mechanisms of resistance to mutant-selective  
KRAS inhibition in PDAC, we sequenced ctDNA from pre-
treatment (PT) and post-progression [end of therapy (EOT)] 
plasma samples obtained from a rare cohort of patients with 
KRASG12C-mutant PDAC treated with KRASG12C inhibitors, 
including patients who demonstrated resistance to adagra-
sib monotherapy on the KRYSTAL-1 trial (patients 1–8) or to 
sotorasib monotherapy on the CodeBreaK100 trial (patients 
9–22; Fig. 1; Supplementary Fig. S1; Supplementary Table S1; 
“Methods”). Partial response (PR) or stable disease (SD) was 
observed in 18/22 (81%) patients with PDAC from this co-
hort, all of whom developed acquired resistance to therapy. 
Primary resistance with PD was observed in 4/22 patients  
(patients 1, 9, 10, 11). The KRASG12C allele was detectable in 
most PT (21/22) and EOT (20/22) samples sequenced using 
an NGS panel and/or via droplet digital PCR (ddPCR) assay 
(Fig. 1A and C; Supplementary Fig. S1A). Putative genetic 
mechanisms of primary or acquired resistance were iden-
tified in 9/22 (41%) patients (Fig. 1A–C). In 3/4 patients 
displaying PD, putative mechanisms of resistance included 
high-level amplifications of MYC (patient 1), concomi-
tant gains/amplification of KRASG12C, BRAF, ERBB2, CDK4  
(patient 9), and an increased variant allele frequency (VAF) 
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Figure 1.  Genetic alterations associated with acquired resistance to KRASG12C inhibition in patients with PDAC. A, Variant allele frequencies (VAF) 
for the indicated genomic variants in pretreatment (PT) and end of therapy (EOT) ctDNA samples across patients with PDAC treated with adagrasib 
monotherapy on the KRYSTAL-1 trial (patients 4, 6) or sotorasib monotherapy on the CodeBreaK100 trial (patients 11, 13, 21, 22). B, Paired genome-wide 
copy number profiles from low-pass whole genome sequencing (organized by chromosome and genomic coordinates) from PT and EOT ctDNA samples for 
patient 4 treated with adagrasib. Gene labels indicate amplified putative drivers of acquired resistance or tumor suppressor genes. C, Co-mutation plot 
displaying pathogenic and likely pathogenic treatment-emergent variants and genomic amplification of putative drivers of resistance detected in ctDNA 
samples from PDAC patients with acquired resistance to adagrasib (patients 1–8) or sotorasib (patients 9–22). The best radiographic treatment response 
is indicated as measured by RECIST criteria. D, Aggregated classification of mechanisms of resistance to KRASG12C inhibition across cancer types. Data 
include patients from this study and previously published studies (Supplementary Table S2; Supplementary Fig. S1G).
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of a preexisting, subclonal KRASG12R variant (patient 11).  
Treatment-emergent alterations at the time of acquired resis-
tance were observed in several patients, including amplifica-
tions/gains of KRASG12C (patients 6, 9, 13, 22), amplification/
gain of EGFR (patients 2, 13), activating PIK3CA mutations 
(patients 13, 22), and an oncogenic NFE2L2D29H variant  
(patient 21; Fig. 1C; Supplementary Fig. S1A and S1B). In pa-
tient 4, we detected multiple treatment-emergent alterations 
in the EOT sample via low-pass whole genome sequencing 
(WGS) of cell-free DNA, including high-level amplifications 
of ERBB2, MET, CDK6, MYC, and ABCB1 (Fig. 1B and C). 
While drug-binding site mutations have been previously re-
ported to occur in subsets of patients with NSCLC or CRC 
experiencing progression on KRASG12C inhibitors (14, 18), 
we did not observe any in our PDAC cohort. However, we 
identified a single treatment–emergent KRASA146P mutation 
at EOT (patient 21; Fig. 1A and C). This mutation was pre-
viously identified to confer resistance to both sotorasib and 
an analog of adagrasib when occurring in cis with the G12C 
mutation (18).

In patients 4 and 8, we performed serial collection of plasma 
throughout the patients’ clinical course of response and resis-
tance to adagrasib. During the early phase of treatment, we 
observed a reduction in the circulating tumor marker CA19-9 
and a corresponding reduction of radiographic tumor burden 
in both patients, as measured by the sum of longest diameters 
(SLD) of the target lesions [Supplementary Fig. S1C (top)]. 
At acquired resistance and progression, we detected a rise in 
CA19-9 accompanied an increase in SLD. We additionally con-
ducted transcriptome analysis of plasma extracellular vesicle 
RNA (evRNA; ref. 41) as a pharmacodynamic biomarker in one 
patient who initially responded to therapy (patient 4), and we 
observed reduced KRAS pathway activity at the transcriptional 
level during response and a corresponding increase at the time 
of progression, suggesting pathway reactivation at resistance in 
this patient [Supplementary Fig. 1C (bottom)].

To better define the landscape of putative genetic mecha-
nisms of acquired resistance to KRASG12C inhibition across 
different cancer types, we integrated data from the 22 patients 
with PDAC in our cohort (Fig. 1A–C), along with four addi-
tional new paired PT and EOT ctDNA profiles from patients 
with other GI malignancies (Supplementary Fig. S1D–S1F), 
and previously published results from ctDNA profiling of ac-
quired resistance to adagrasib, sotorasib, or divarasib across 
multiple tumor types (Supplementary Fig. S1G; Supplemen-
tary Table S2; “Methods”; refs. 14, 18, 19). In this aggregate 
cohort of patients, putative genetic mechanisms of resistance 
were identified by ctDNA in 51% of NSCLC, 52% of CRC, 46% 
of PDAC, and 75% of other GI cancers (Fig. 1D). Treatment- 
emergent KRAS alterations, including point mutations and 
copy number amplifications, were observed in 41% of patients 
with CRC; however, they were less frequent in NSCLC (21%) 
and PDAC (29%). Importantly, in large subsets of patients 
with PDAC (54%), NSCLC (49%), or CRC (48%), a putative 
genetic mechanism of resistance could not be identified, sug-
gesting either incomplete detection of treatment-emergent 
genetic drivers of resistance by ctDNA-based approaches, 
and/or a strong contribution of non-genetic mechanisms in 
mediating acquired resistance to KRASG12C inhibition across 
cancer types.

Biomarkers of Response and Resistance to KRASg12D 
Inhibition in PDAC

The KRASG12C mutation is rare in PDAC and very few 
KRASG12C-mutant patient-derived PDAC models have been 
developed. Therefore, we sought to define potential biomark-
ers of response and resistance to mutant-selective KRAS in-
hibition more broadly by investigating in vitro sensitivity to 
the KRASG12D inhibitor MRTX1133 via a PRISM multiplex 
pooled screening assay across 877 human cancer cell lines from 
different genetic and histological backgrounds (“Methods”;  
refs. 42, 43). We observed significant and selective antiprolif-
erative activity of MRTX1133 for KRASG12D-mutated cell lines 
in comparison to KRASWT cell lines or those harboring other 
KRAS alterations (Fig. 2A; Supplementary Table S3). While 
we did not observe lineage-specific sensitivity to MRTX1133 
across KRASG12D mutated cell lines in the PRISM cohort  
(n = 46; Supplementary Fig. S2A), we observed a bimodal 
distribution of cell lines within this group, as measured by 
the area under the dose-response curve (AUC), irrespective of 
the lineage. We then classified cell lines as “sensitive” (n = 22)  
or “resistant” (n = 24) based on their AUC for MRTX1133 
(Fig. 2B; Supplementary Fig. S2A, “Methods”).

We next examined biomarkers associated with either sensi-
tivity or resistance to MRTX1133 across KRASG12D-mutated 
PDAC cell lines (n = 16; Fig. 2B). Notably, we did not ob-
serve significant variation in response to MRTX1133 based 
on the presence of alterations in frequently co-mutated tu-
mor suppressor genes (i.e., TP53, CDKN2A, SMAD4, ARID1A; 
Supplementary Fig. S2B). We next interrogated gene copy 
number (CN), bulk RNA sequencing (RNA-seq), and reverse 
phase protein array (RPPA) datasets for feature distinctions 
between sensitive and resistant PDAC cell lines (Fig. 2C; 
Supplementary Tables S4A and S4B). In the resistant lines 
compared with the sensitive subset, we observed relative CN 
elevations of RTK–RAS pathway genes (EGFR, MET, BRAF, 
ETV1), as well as EMT regulators (ZEB1, TWIST1; Fig. 2D; 
Supplementary Fig. S2C). At the transcriptional level, gene 
set enrichment analysis (GSEA) identified upregulation of 
signatures related to EMT, cell-cycle progression, and MYC 
activity in MRTX1133-resistant cell lines compared with 
the sensitive subset (Fig. 2E; Supplementary Fig. S2D). We 
did not observe stratification of the response to MRTX1133 
based on cell state identity along the basal-like/classical axis 
using in vitro PDAC cell line models (Supplementary Fig. 
S2E). Notably, cell line models in standard two-dimensional 
culture conditions have previously been shown to demon-
strate baseline bias toward the basal-like state, thus making 
basal-like versus classical comparisons of MRTX1133 sen-
sitivity challenging (44). Moreover, sensitive cell lines were 
characterized by a relative upregulation of KRAS activity 
at the transcriptional level (Fig. 2E). At the protein level, 
RPPA data showed higher levels of effector proteins from 
the PI3K–AKT–mTOR signaling pathway (including PI3K-
p85α and p110α subunits, mTOR, Rictor, pS6 S235/S236), 
elevated expression of translation regulators (elF4G, eEf2K), 
and increased total and phosphorylated (pS445) BRAF pro-
tein levels in resistant lines, along with higher expression of 
E-Cadherin and β-catenin in MRTX1133-sensitive cell lines 
(Fig. 2F).
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Figure 2.  Multiomic analysis identifies baseline features of response and resistance to KRASG12D inhibition. A, Boxplot representing the response to 
MRTX1133 plotted as the area under the dose-response curve (AUC) for 877 cell lines evaluated in the PRISM multiplex cell line screening assay. Cell 
lines are grouped by KRAS genotypes. AUCs were compared between each KRAS genotype relative to KRASG12D. Significance was determined via Kruskal–
Wallis test followed by Dunn’s test and adjusted with Benjamini–Hochberg correction. The adjusted P value for each comparison is displayed on top of each 
group. B, Boxplot depicting the difference in response to MRTX1133 between subsets of resistant and sensitive KRASG12D cell lines. PDAC cell lines are 
colored in purple. Significance for the AUC comparison between resistant and sensitive subsets was determined by a two-sided Wilcoxon rank-sum test. 
C, Heatmap depicting differentially expressed features (gene copy number, gene expression, and protein levels) between MRTX1133-resistant and -sen-
sitive KRASG12D PDAC cell lines. Each column represents a feature that is Z-scored across cell lines (rows). D, Volcano plot depicting differential gene copy 
number analysis between resistant and sensitive KRASG12D PDAC cell lines. The X-axis depicts the mean difference of Log2 copy number ratio calls of each 
protein-coding gene (relative to ploidy), between resistant and sensitive cell lines. Significance determined by two-sided Student t test. e, Hallmark transcrip-
tional gene sets significantly enriched or depleted between resistant and sensitive KRASG12D PDAC cell lines. The normalized enrichment score from GSEA is 
shown on the x-axis. f, Volcano plot depicting differentially expressed proteins or phosphorylated proteins between resistant and sensitive KRASG12D PDAC 
cell lines. RPPA data were obtained from the Cancer Dependency Map. Significance determined by two-sided Student t test. g, MRTX1133 dose-response 
curves for a 6-day cell-titer-glo 3D assays with KRASG12D-mutant PDAC PDOs. PDO labels are in order of sensitivity, with lower AUC being more sensitive. 
Points are the mean ± SEM (n = 3 biological replicates per PDO). H, Co-mutation plot of KRASG12D-mutant PDAC PDOs displaying recurrently altered genes and 
selected putative drivers of baseline resistance to MRTX1133 across the cohort.
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We next performed immunoblotting to validate biomark-
ers of RAS pathway signaling in epithelial and mesenchymal 
cell lines with differential sensitivity to MRTX1133 (Supple-
mentary Fig. S2F). While phosphorylated ERK (pERK) levels 
were variably suppressed upon MRTX1133 treatment across 
both mesenchymal, resistant cell lines (PANC-1 and KP-4) and 
epithelial, sensitive cell lines (HPAC and Panc 05.04), mesen-
chymal cell lines displayed greater PI3K-AKT-mTOR pathway 
activation at baseline and upon MRTX1133 treatment com-
pared to epithelial cell lines, as indicated by increased levels of 
phosphorylated-S6 (pS6 S235/S236). Thus, differential PI3K-
AKT-mTOR pathway activation may drive baseline resistance 
to KRAS inhibition in vitro in cells displaying features of EMT 
(Supplementary Fig. S2F).

Response and Resistance to KRASg12D Inhibition in 
Patient-Derived Organoid Models

We further characterized the response to MRTX1133 in  
a panel of early passage patient-derived organoids (PDOs,  
n = 20) developed from KRASG12D-mutant advanced PDAC 
tumors representing a range of genotypes and clinical fea-
tures. We observed a spectrum of responses to MRTX1133 
among PDAC PDOs from both treatment-naïve and previ-
ously treated cancers, ranging from clear dose-dependent sen-
sitivity in some models to near-complete resistance in others  
(Fig. 2G; Supplementary Tables S5A and S5B). As previously 
observed in the PRISM cell line data, response to MRTX1133 
in PDOs did not stratify by the presence of alterations in major 
tumor suppressor genes (Supplementary Fig. S2G). However, 
we noted multiple other potential resistance mechanisms in 
the most insensitive PDOs, such as a co-occurring amplifi-
cation of EGFR (Supplementary Fig. S2H) and an oncogenic 
NFE2L2D29H mutation, known to disrupt KEAP1 binding and 
previously shown to lead to resistance to MAPK-targeted 
therapies (Fig. 2H; ref. 45). The second most resistant PDO to 
MRTX1133 (PF0069_T1) harbors a PIK3CAG118D mutation, a 
known oncogenic alteration leading to enhanced PIK3CA ac-
tivity and signaling (46, 47). Conversely, the PDO exhibiting  
the greatest sensitivity to MRTX1133 (PF0108_T1) was no-
table for a CTNNB1T41A mutation, a known stabilizing mu-
tation that drives Wnt/β-catenin signaling (Fig. 2H; ref. 48).  
As previously observed in cell lines, we did not identify a sig-
nificant stratification of the response to MRTX1133 based 
on basal-like/classical transcriptional identity in PDO mod-
els, although the basal-like cell state is not well represented 
in PDOs, as previously demonstrated (Supplementary Fig. 
S2I; ref. 44). Based on the observation in cell lines and PDOs 
that EGFR and other RTK signaling may drive resistance to 
KRAS inhibition (Fig. 2D; Supplementary Fig. S2C), we eval-
uated whether exogenous RTK stimulation could modulate 
response to MRTX1133 in PDAC PDOs. Removal of EGF 
and FGF from the standard organoid culture media led to a 
consistent sensitization of all models examined, further con-
firming the role of RTK-RAS pathway stimulation in driving 
baseline resistance to KRASG12D inhibition (Supplementary 
Fig. S2J). Collectively, results from PDOs align with data from 
the PRISM cell line screen and support that activation of 
RTK-RAS-MAPK and PI3K pathways may drive resistance to 
mutant-selective KRAS inhibition in PDAC.

Isogenic Cell Culture Models Reveal Diverse 
Mechanisms of Acquired Resistance

To model acquired resistance to MRTX1133 in vitro, we 
exposed sensitive murine (n = 3) and human (n = 2) cell line 
models to dose escalation of MRTX1133 and derived resistant 
models exhibiting significantly reduced in vitro sensitivity to 
KRASG12D inhibition when compared to their respective pa-
rental cell lines (Fig. 3A and B; Supplementary Fig. S3A–S3C). 
The resistant lines also showed decreased sensitivity to the 
MEK inhibitor trametinib but not to gemcitabine, suggesting 
cross-resistance to other RTK-RAS-MAPK pathway inhibitors 
but not to chemotherapy. Resistant mouse cell lines, when 
implanted subcutaneously into C57BL/6 mice, also showed 
in vivo resistance to MRTX1133 (Fig. 3C). We then compre-
hensively characterized parental and resistant models at the 
genomic and transcriptional level (n = 5 pairs). Using whole 
exome sequencing (WES), we did not observe any acquired 
point mutations in KRAS or other RTK-RAS-MAPK pathway 
genes in any of the cell lines characterized (Supplementary 
Table S6). Furthermore, we observed no copy number alter-
ations (CNA) emerging in resistant human models (Supple-
mentary Fig. S3D). However, in two out of three murine cell 
lines (6499C4.R and 6419C5.R), we captured high-level gene 
amplification of Cdk6 and Abcb1a/Abcb1b on chromosome 5 
at acquired resistance (Fig. 3D), consistent with our observa-
tion of a syntenic region amplified in a human PDAC tumor 
at acquired resistance to adagrasib (patient 4; Fig. 1B and C),  
and suggestive of dysregulation of cell cycle progression 
through CDK6 and potential drug efflux via ABCB1A/B as 
putative mechanisms of acquired resistance. We additionally 
observed co-amplification of a distinct region of chromosome 
5 harboring Cdk8 in 6419C5.R along with a low-level gain of 
chromosome 6, housing Kras and Met, in 6499C4.R.

At a transcriptional level, the in vitro models of acquired 
resistance demonstrated a significant and recurrent upreg-
ulation of EMT processes and cycle progression compared 
to their matched parental models, similar to that observed 
in the PRISM data (Figs. 2 and 3E; Supplementary Fig. S3E 
and S3F). These findings were validated at the protein level 
with increased expression of mesenchymal markers (ZEB1, 
VIM) and/or decreased E-Cadherin expression in the resis-
tant models (Fig. 3F). As we previously observed with the  
MRTX1133-resistant human cell lines KP-4 and PANC-1, 
both enriched in EMT features and displaying sustained PI3K– 
AKT–mTOR signaling upon KRASG12D inhibition (Supple-
mentary Fig. S2F), we also noted generally higher PI3K/mTOR 
signaling activity both at baseline and upon MRTX1133 treat-
ment in resistant models compared to their respective paren-
tal line, as evidenced by increased phosphorylated-(p)AKT 
and pS6 levels (Fig. 3F; Supplementary Fig. S3G and S3H). 
MAPK pathway activity, as determined by levels of pERK, was 
heterogeneous across treatment timepoints and cell lines.

Given the contribution of RTK-dependent signaling in me-
diating baseline resistance to MRTX1133 in PDOs (Supple-
mentary Fig. S2J), along with sustained PI3K–AKT–mTOR 
signaling upon KRASG12D inhibition in models of acquired 
resistance, we hypothesized that distinct patterns in RTK 
upregulation may drive differential MRTX1133 sensitiv-
ity in the models of acquired resistance. We interrogated 
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RTK signaling in the Panc 02.03 isogenic resistant model us-
ing phosphorylated RTK arrays to characterize the activation 
state of 50 RTKs upon MRTX1133 treatment (Supplemen-
tary Fig. S3I). While we did not observe strong differential 
RTK activation after 5 hours of MRTX1133 treatment be-
tween parental and resistant models, we detected increased 
activation levels of HGFR, EGFR, RET, AXL, ERBB2, ERBB3, 
and MSPR (encoded by MST1R) in the resistant model com-
pared to its matched parental after 48 hours of MRTX1133 
treatment, suggesting that activation of multiple RTKs may 
contribute to the resistant phenotype (Fig. 3G and H). Ad-
ditionally, targeting of RTK signaling with small-molecule 
inhibitors showed synergistic activities across both parental 
and resistant models, further suggesting that RTK signaling 
contributes to acquired resistance and represents a tracta-
ble therapeutic target in combination with KRAS inhibition  
(Fig. 3I and J). Collectively, these observations highlight the 
emergence of heterogeneous genetic and non-genetic mech-
anisms in models of acquired resistance, including genomic 
amplifications of cell cycle regulators, as well as EMT and 
adaptive RTK signaling that co-evolve to drive acquired resis-
tance to KRASG12D inhibition in vitro.

Krasg12D Inhibition Drives Deep and Durable 
Responses in an Autochthonous Mouse Model of 
PDAC

After evaluating features of response and resistance to 
MRTX1133 in vitro, we sought to investigate the efficacy of 
KRASG12D inhibition in the immunocompetent, autochtho-
nous KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre) geneti-
cally engineered mouse model (GEMM) of PDAC (49). Mice 
with the KPC genotype were continuously monitored by 
palpation and ultrasound, and once tumors reached a size 
of 100 to 300 mm3, each mouse was randomized to one of 
the two treatment arms, receiving either vehicle (n = 12) or 
MRTX1133 (n = 19; Fig. 4A; Supplementary Tables S7A and 
S7B; Supplementary Fig. S4A–S4C). To evaluate short-term 
pharmacological effects, four MRTX1133-treated KPC mice 
(“Early MRTX1133”) and three vehicle-treated control mice 
(“Early vehicle”) were sacrificed after receiving six doses of 
treatment over 3 days. Tumor volume measurements after 3 
days of MRTX1133 treatment suggested that these tumors 
were responding to KrasG12D inhibition at the time of sacrifice 
[Supplementary Fig. S4D (top)].

The remaining mice were treated with either MRTX1133 
(“Endpoint MRTX1133,” n = 15) or vehicle control  
(“Endpoint vehicle,” n = 9) until they reached a humane  
endpoint (Supplementary Fig. S4B and S4C), thus enabling 
assessment of response and long-term adaptation and 
resistance to MRTX1133. While vehicle-treated animals 
succumbed to aggressive tumor growth within 3 to 15 days 
post-randomization (Fig. 4B and C), MRTX1133 treatment 
significantly prolonged the overall survival of mice with 
PDAC, with a median survival of 10.7 weeks for MRTX1133-
treated mice compared to 1 week for vehicle-treated animals 
(P = 2.08 e–6, Log-rank test; Fig. 4B). We observed PRs and 
moderate tumor volume reductions in 27% (4/15) of mice in 
the endpoint MRTX1133-treated cohort, with tumors display-
ing a subsequent period of SD before ultimately progressing on 

continuous MRTX1133 treatment [Fig. 4C (middle) and D]. 
Primary resistance was observed in 1/15 animals, with tumor 
growth kinetics resembling those of the vehicle-treated mice 
[Fig. 4C (top and middle)]. Complete responses to MRTX1133 
were seen in 67% (10/15) of mice, with rapid and complete tu-
mor regression within the first 2 weeks of treatment, as con-
firmed by the absence of any detectable tumor via ultrasounds 
[Fig. 4C (bottom) and D; Supplementary Fig. S4B (bottom 
row)]. In this group, complete and durable remissions were 
maintained until acquired resistance developed and mice had 
to be sacrificed at a humane endpoint (Supplementary Table 
S7A). In one out of two mice which experienced complete and 
durable regressions of the primary tumors until the animals 
reached humane endpoints, we observed peritoneal metasta-
ses during necropsy, suggesting that acquired resistance can 
also manifest in distant spread. Thus, KrasG12D inhibition 
in the KPC mouse model led to robust tumor responses fol-
lowed by acquired resistance.

evolution of Heterogeneous Resistance Mechanisms 
to Krasg12D Inhibition in the KPC geMM

To define mechanisms of resistance to MRTX1133, we 
performed multimodal characterization of both vehicle- and 
MRTX1133-treated tumors, including WES (n = 20), single- 
nucleus RNA-seq (snRNA-seq, n = 17) and immunohistochem-
istry (IHC, n = 17; Supplementary Fig. S4D). At the genomic 
level, we did not observe putative drug-binding site mutations 
in Kras, such as those that have previously been noted to cause 
resistance to KRAS inhibition in human tumors (14, 18, 20).  
However, we observed high-level genomic amplifications in 
55% (6/11) of tumors derived from endpoint MRTX1133- 
resistant animals, that were absent from vehicle-treated tu-
mors (Supplementary Fig. S5A). These included two tumors 
with a focal amplification of Myc, two tumors harboring Kras 
amplification, and two tumors with amplification of Yap1  
(Fig. 4E; Supplementary Fig. S5B). We also identified a high- 
level amplification of the centromeric region of chromo-
some 5, which harbors Cdk6 and Abcb1a/Abcb1b in two 
MRTX1133-resistant KPC tumors and an amplification 
of Cdk6 alone in another tumor (Fig. 4E; Supplementary Fig. 
S5B), mirroring our observations in isogenic cell line models 
of acquired resistance to MRTX1133, as well as in patients 
with acquired resistance to adagrasib or sotorasib mono-
therapy (Figs. 1B, C, and 3D). Multiple distinct CNAs were 
detected in a single MRTX1133-resistant tumor, including 
amplifications of Kras, Cdk6, Yap1, and Myc [KPC_4093; Sup-
plementary Fig. S5B (top row)].

To complement our investigation of genetic mechanisms of 
resistance in KPC mice, we evaluated transcriptional variation 
by snRNA-seq across early vehicle (n = 3), early MRTX1133-
treated tumors (n = 3), as well as at endpoint vehicle (n = 5) 
and endpoint, MRTX1133-resistant (n = 6) tumors. We cap-
tured 68,479 high-quality nuclei from these tumors, revealing 
five distinct populations after unsupervised clustering and 
manual examination of expression patterns for established 
cell type markers: cancer-associated fibroblasts (CAF), tumor- 
associated macrophages (TAM), endothelial cells (EC), 
pericytes, and epithelial cells (Fig. 4F; Supplementary Fig. 
S6A–S6D). Investigation of non-epithelial cell types in our 
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snRNA-seq data did not highlight cell populations differen-
tially enriched across treatment groups (Supplementary Fig. 
S6E–S6I). As we did not detect high-quality lymphocyte pop-
ulations in the snRNA-seq data, we further characterized tu-
mor infiltrating immune populations via flow cytometry. We 
did not detect any differentially enriched immune cell pop-
ulations between endpoint vehicle and MRTX1133-resistant  

tumors (Supplementary Fig. S6J). Thus, we focused fur-
ther studies on the malignant cell compartment to describe 
MRTX1133 response and resistance.

First, we distinguished putative malignant epithelial cells 
from non-malignant populations in each tumor via inferred 
CNA scores (Supplementary Fig. S7A). Next, we assessed 
proximal pathway inhibition by MRTX1133 in malignant 
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nuclei (n = 58,039) using MAPK pathway transcriptional ac-
tivity as a pharmacodynamic biomarker for KRASG12D inhibi-
tion. We observed significant suppression of MAPK pathway 
activity in the MRTX1133-treated tumors compared to vehi-
cle-treated tumors (Supplementary Fig. S7B). We observed 
a similar decrease in pERK protein levels via IHC in tumors 
treated with MRTX1133 but noted heterogeneity within the 
MRTX1133-resistant group, suggesting differential activa-
tion of the MAPK pathway across the cohort after tumors 
acquire resistance to KRASG12D inhibition (Supplementary  
Fig. S7C).

Single-nucleus inferred CN profiles were then used to 
define intratumoral genetic heterogeneity across the KPC 
cohort (“Methods”). We observed concordance between ge-
nomic amplifications found by both WES and snRNA-seq, 
where the latter revealed the existence of multiple subclones 
in several tumors [Fig. 4F (right pie charts) and G; Supple-
mentary Fig. S7D]. In a subset of MRTX1133-resistant tu-
mors, putative resistance drivers identified at the bulk DNA 
level appeared subclonal when analyzed using CN inferred 
by snRNA-seq (Fig. 4G). In KPC_3323, we observed two dis-
tinct clones, with Yap1 amplification identified only in clone 
1, representing 48% of the malignant cells within this tumor. 
In KPC_3600, Cdk6/Abcb1a/Abcb1b was found amplified in a 
minor clone (clone 3), accounting for 13% of the malignant 
cells in this sample. In aggregate, we observed putative genetic 
drivers of resistance in 6/11 tumors analyzed by WES and/
or snRNA-seq, including cases of subclonal heterogeneity 
for these alterations in two tumors (Fig. 4H). As previously 
suggested from patient data (Fig. 1D), the absence of clear  
resistance-associated genomic alterations within some sub-
clones or entire tumor samples in our KPC cohort indicates 
that non-genetic mechanisms may also play an important 
role in driving acquired resistance to KrasG12D inhibition.

Malignant Cell State evolution in Response and 
Resistance to KRASg12D Inhibition

To identify non-genetic drivers of resistance to KrasG12D 
inhibition, we next assessed transcriptional variation in 
malignant cells across tumors in the snRNA-seq dataset  
(Fig. 5A). Using an established non-negative matrix factor-
ization (NMF) approach (50, 51), we identified 51 high-quality  
programs across the 17 KPC tumors, grouped into six 
metaprograms reflecting core cellular processes such as cell 
cycle and hypoxia, as well as cellular identities along the  
epithelial–mesenchymal axis, including both classical (epi-
thelial) and mesenchymal cell states (Fig. 5A; Supplementary 
Fig. S8A–S8C; Supplementary Table S8, “Methods”). We ad-
ditionally identified a neural-like progenitor signature related 
to our de novo classical metaprogram and resembling a previ-
ously described PDAC transcriptional subtype (52). Finally, we 
identified a novel partial EMT (pEMT) signature analogous 
to previously described hybrid states along the epithelial– 
mesenchymal axis (Supplementary Fig. S8A; refs. 50, 53).

Having defined the diversity of malignant metaprograms 
across KPC tumors (Supplementary Fig. S8A–S8C), we next 
sought to understand evolution across the core cell states 
defined by classical, mesenchymal, and pEMT metapro-
grams by assessing cell state commitment at single nucleus  

resolution using a Markov absorption-based classification ap-
proach (“Methods”; ref. 54). Differential gene expression anal-
ysis across cell state populations identified well-defined genes 
associated with the classical (e.g., Tff1, Tff2, Muc5ac) and mes-
enchymal states (e.g., Zeb1, Snail1, Vim), as well as hallmark 
cellular processes and functions upregulated in a cell state–
specific manner (Fig. 5B and C). EMT features and high KRAS 
signaling were observed in the mesenchymal cells, whereas 
cell cycle processes and increased xenobiotic metabolism were 
enriched in the classical population. The pEMT cell state was 
marked by signatures of cellular stress, enhanced translation, 
protein homeostasis, oxidative phosphorylation, and Myc 
signaling (Fig. 5C; Supplementary Fig. S8D), several of which 
have been previously associated with resistance to KRAS path-
way suppression or inhibition (5, 55). Finally, we conducted 
gene regulatory network analysis and identified major tran-
scriptional regulators whose expression and inferred activ-
ity associated with metaprogram expression across tumors  
(Fig. 5D). Along with identifying well-established metapro-
gram regulators, such as Zeb1 for mesenchymal or Spdef and 
Creb3l1 for classical states, we uncovered novel putative regu-
lators of the pEMT cell state, including Ybx1, Sox4, as well as 
components of the AP1 complex such as Jun, Junb, and Jund.

Next, we assessed the distribution of nuclei according 
to treatment and timepoint across the classical-pEMT- 
mesenchymal tripartite cell state framework (Fig. 5E). Tumors 
from vehicle-treated KPC mice displayed mixed phenotypic 
populations along the classical-mesenchymal axis. In the 
MRTX1133-treated tumors, we observed two distinct pat-
terns of cell state commitment. Tumors in the early (3-day) 
MRTX1133 treatment cohort demonstrated strong depletion 
of mesenchymal PDAC cells and enrichment for the classical 
cell state, suggesting that mesenchymal PDAC cells may be rel-
atively more sensitive than classical PDAC cells to KrasG12D 
inhibition in vivo. This pattern was not observed in any other 
treatment group. Furthermore, within the MRTX1133- 
resistant tumors, we observed a profound shift toward the 
pEMT (60% of nuclei from resistant tumors) and mesenchy-
mal (30% of nuclei from resistant tumors) malignant cell 
states via snRNA-seq (Fig. 5E; Supplementary Fig. S8E and 
S8F). Histologic analysis of KPC tumors across treatment 
groups revealed a strong enrichment of poorly differen-
tiated tumor cells within MRTX1133-resistant tumors 
(Supplementary Fig. S8G and S8H). We also observed a shift 
in the distribution of cycling cells along the classical-pEMT- 
mesenchymal axis in MRTX1133-treated tumors, with classi-
cal cells being the predominant cycling population upon early 
exposure to MRTX1133 treatment and the pEMT and mesen-
chymal cell states demonstrating a greater fraction of cycling 
cells at acquired resistance (Supplementary Fig. S8I). Collec-
tively, these data suggest that malignant cell state determines 
response to KRAS inhibition in vivo, with mesenchymal cells 
displaying greater sensitivity early during treatment and the 
pEMT metaprogram representing a drug-resistant phenotype 
that may reflect plasticity from the classical cell state during 
evolution of resistance to KRASG12D inhibition.

We further validated the classical state commitment during 
early MRTX1133 response at the protein level by employing 
multiplex immunofluorescence (mIF) for the canonical classi-
cal state marker Claudin-18.2 (CLDN18.2) across KPC tumors. 
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Consistent with the classical enrichment at the transcrip-
tional level in the early MRTX1133-treated tumors, we ob-
served enrichment of CLDN18.2 protein expression via mIF 
in these tumors (Fig. 5F). Interestingly, when compared to ve-
hicle-treated tumors, most MRTX1133-resistant tumors also 
displayed a relative enrichment of CLDN18.2 (Supplemen-
tary Fig. S8J). Thus, response to MRTX1133 is accompanied 
by classical cell state enrichment, with CLDN18.2 expression 
upregulated early during response and retained through ac-
quired resistance.

Given the relative sensitivity to KRAS inhibition seen for 
the mesenchymal population of PDAC in the KPC model, 
we next sought additional evidence that human PDAC tran-
scriptional subtypes associate with response to MRTX1133 
in vivo. Human patient-derived xenograft (PDX) models have 
been shown to faithfully recapitulate human PDAC subtype 
diversity, including both classical and basal-like subtypes (56), 
with the basal-like PDAC phenotype showing phenotypic 
similarities with the mesenchymal cell state in PDAC (57). 
We therefore examined a collection of KRASG12D-mutant 
PDX models (n = 7) recently reported to demonstrate PR 
or SD with MRTX1133 treatment (32). We performed tran-
scriptome profiling of these PDX models after 3 days of ve-
hicle or MRTX1133 treatment and determined their baseline  
basal-like versus classical subtype score using the 3-day  
vehicle-treated samples. We observed deep regressions and 
PRs to MRTX1133 in all basal-like models (n = 3/3). Con-
versely, SD was predominantly observed in classical models, 
with little or no tumor regressions in 3/4 models (Fig. 5G). 
Additionally, we observed a significant decrease of the basal- 
like identity upon 3 days of KRAS inhibitor treatment com-
pared to vehicle treatment in 3/7 PDXs (Fig. 5G), thus further 
supporting observations from our autochthonous KPC cohort 
(Fig. 5E). These in vivo PDX results support a relatively in-
creased response to KRAS inhibition for basal-like PDAC 
compared to classical PDAC.

Finally, we examined the interplay between putative ge-
netic and non-genetic drivers of resistance to KRASG12D in-
hibition. We integrated previously defined genetic subclones 
(Fig. 4G and H; Supplementary Fig. S7D) and interrogated 
the distribution of the drug-resistant pEMT metaprogram 
within individual MRTX1133-resistant tumors (Fig. 5H). In 
three out of four tumors where a clonal or subclonal putative 
genomic driver of resistance was detected, we observed rela-
tively lower expression of the pEMT signature. For example, 
malignant nuclei with Cdk6/Abcb1a/Abcb1b amplification 
displayed relatively low enrichment of the pEMT metapro-
gram, whether they were derived from a subclone harboring 
the amplification within a genomically heterogeneous tumor 
(KPC_3600, clone 3) or from a tumor with a clonal ampli-
fication (KPC_3379). Similarly, the Yap1-amplified subclone 
(clone 1) from KPC_3323 also displayed a relatively lower 
pEMT signature compared with the Yap1 non-amplified clone 
2 of that same tumor. In contrast, other tumors displayed co- 
occurrence of both a genetic driver and the pEMT phenotype 
at drug resistance, such as KPC_3421L, displaying a clonal 
Myc amplification and relatively high enrichment of pEMT. 
KPC_3441 did not harbor any identified genomic driver of re-
sistance, yet exhibited relatively high expression of the pEMT 
cell state (Fig. 5H). Thus, we observed heterogeneity in the 

emergence of the pEMT program alongside putative genetic 
drivers of resistance, with evidence that the pEMT state may 
serve as a distinct path to resistance in certain tumors or play 
a complementary role with genetic drivers in other tumors.

Collectively, these data suggest that both genetic and 
non-genetic mechanisms likely co-evolve during therapy and 
give rise to tumors with heterogeneous mechanisms of resis-
tance to mutant-selective KRAS inhibition in PDAC.

efficacy of Combination Chemotherapy with 
KRASg12D Inhibition in PDAC

The complex and heterogeneous patterns of resistance 
mechanisms emerging with single-agent KRAS inhibition 
suggests that combination therapy with KRAS inhibitors will 
be necessary to improve the depth and durability of response 
in advanced disease. We observed a consistent relative greater 
sensitivity of the mesenchymal/basal-like PDAC cells com-
pared with the classical PDAC cells in both the KPC and PDX 
models (Fig. 5E and G), thus suggesting that combination 
strategies targeting vulnerabilities of the classical state may 
enhance the efficacy of KRAS inhibition. Patient data suggest 
that the classical subtype of PDAC responds better to chemo-
therapy than the poorly prognostic basal-like PDAC subtype 
(44, 58, 59). Thus, we sought to investigate whether combi-
nation chemotherapy could significantly improve the efficacy 
of Kras inhibition in multiple mouse models of primary and 
metastatic PDAC.

To this end, we orthotopically implanted 6694C2 murine 
PDAC cells in the pancreas of C57BL6/J mice, and once tu-
mors were detectable by ultrasound, mice were random-
ized to receive vehicle, gemcitabine/(n)ab-paclitaxel (GnP), 
MRTX1133, or a combination of both (MRTX1133/GnP). 
GnP treatment caused modest tumor growth inhibition 
compared to vehicle-treated animals (Fig. 6A). MRTX1133 
monotherapy led to tumor regression, but tumors relapsed 
after 2 weeks of treatment. Consistent with prior reports (32, 
33), short-term treatment with MRTX1133 resulted in in-
creases in CD4+ and CD8+ T cells in this orthotopic model 
(Supplementary Fig. S9A–S9C). Combination therapy with 
MRTX1133 and GnP also caused tumor regressions but sig-
nificantly prevented relapse, with dramatically longer tumor 
growth inhibition on treatment through the endpoint of  
the experiment, occurring after more than 50 days of therapy 
(Fig. 6A). Thus, these data support that combination che-
motherapy plus KRASG12D inhibition leads to significantly 
improved primary tumor growth control compared to either 
treatment alone.

Most patients with PDAC present with metastatic dis-
ease, and early clinical trials of KRAS inhibitors are largely 
conducted in this patient subset where chemotherapy is the 
current standard of care. Thus, we next sought to examine 
single-agent MRTX1133 and combination treatment with 
chemotherapy in a novel mouse model of PDAC metastasis. 
We previously generated a transplantable cell line model of 
metastatic PDAC (6694C2-LM) by isolating and culturing 
a tumor nodule from a spontaneous lung metastasis of a 
6649C2 tumor-bearing mouse (60). Upon subcutaneous (SC) 
implantation of 6694C2-LM cells, followed by subsequent re-
section of the primary tumor and clinical monitoring, mice 
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ultimately develop metastatic spread to the lung, lymph 
nodes, and to a lesser extent the liver (60). In vitro, 6694C2-LM 
is characterized by an increased mesenchymal phenotype 
compared to its parental line, demonstrated by decreased 
E-cadherin and increased Vimentin expression at the protein 

level (Fig. 6B). This line displayed significant resistance to 
MRTX1133 compared to the parental control (6694C2)  
in vitro (Fig. 6C). In vivo, 6649C2-LM implanted subcutaneously 
grows slightly more rapidly than the parental cell line, show-
ing overall more aggressive growth and faster outgrowth 
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Figure 6.  Enhanced efficacy of combination treatment with KrasG12D inhibition and chemotherapy in primary and metastatic PDAC. A, Tumor growth 
kinetics (as measured by ultrasound) of 6694C2 orthotopic pancreatic tumors in C57BL6/J mice treated with the indicated regimens. Comparisons 
have been done at the endpoint of vehicle treated mice against all other arms (day 28, timepoint 1); and at day 52 for MRTX1133 and MRTX1133/GnP 
compared to GnP alone (timepoint 2). Significance determined with two-way ANOVA with the Šidák multiple comparisons test. The adjusted P values for 
each timepoint and comparison is displayed on the right. B, Immunoblots of the 6694C2 and 6694-LM cell lines treated for 24 hours with the indicated 
doses of MRTX1133. GAPDH was used as protein loading control. C, MRTX1133 dose-response curves for 6694C2 and 6694C2-LM cell lines treated 
with increasing concentration of MRTX1133 for 5 days. Points are the mean ± SEM of three biological replicates. Significance determined by two-sided 
Student t test between AUCs from three biological replicates from each cell line. D, Vehicle and MRTX1133 treatment of animals bearing syngeneic sub-
cutaneous double flank tumors of 6694C2 or 6694C2-LM. Points are the mean ± SEM (n = 5 double flanked mice per cell line and treatment). Significance 
determined by Brown–Forsythe and Welch ANOVA followed by Dunnett’s T3 multiple comparisons test. e, Overview of the metastatic model. Subcuta-
neous 6694C2-LM tumors are surgically resected, and mice are monitored for lung metastasis. Adjuvant treatment schedule is shown, with treatment 
arms including MRTX1133 IP twice daily, gemcitabine treatment every 3 days and (n)ab-paclitaxel on days 13 and 19, or a combination of MRTX1133 and 
gemcitabine/(n)ab-paclitaxel (GnP). f, Percentage of mice within each treatment group presenting with metastasis (n = 9–11 mice per group). Significance 
determined by Fisher’s exact test and adjusted with Benjamini-Hocheberg correction. Only significant pairwise comparisons are labeled with a P value 
(P value ≤ 0.05). g, Experimental workflow to study the effect of GnP, MRTX1133, or combination of both on established metastases from 6694C2 and 
6694C2-LM cell lines. H, Barplot depicting the total number of lung macrometastases from 6694C2 (left) or 6694C2-LM (right) across treatment groups 
(n = 5–10 mice per cell line and treatment). Significance determined via Kruskal–Wallis test followed by Dunn’s test and adjusted with Benjamini–Hochberg 
correction. Only the significant P values are displayed (P value ≤ 0.05).
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under MRTX1133 treatment (Fig. 6D). We examined immune 
infiltrates from mid-stage 6694C2-LM subcutaneous tumors 
treated with vehicle versus MRTX1133. Consistent with prior 
work showing that oncogenic KRAS drives production of  
GM-CSF and recruitment of granulocytes (61, 62), we found 
that MRTX1133 treatment resulted in reduced immuno-
suppressive growth factors and reduced infiltration of gran-
ulocytic and monocytic myeloid-derived suppressor cells  
(Supplementary Fig. S10A–S10D). No changes in T cell infil-
trates were observed in this poorly immunogenic model.

In the 6694C2-LM metastasis model (Supplementary  
Fig. S11A), neoadjuvant treatment with either MRTX1133 
or GnP led to comparable primary tumor control and pre-
vention of metastasis, whereas adjuvant MRTX1133 treat-
ment alone led to incomplete control of metastatic spread 
(Supplementary Fig. S11B–S11D). We next evaluated the 
ability of adjuvant MRTX1133, GnP, or the combination of 
MRTX1133 and GnP chemotherapy to control metastatic 
spread. Mice were inoculated with subcutaneous tumors 
which were then surgically removed at a comparable size 
across the cohort (Fig. 6E; Supplementary Fig. S11E). Mice 
were then randomized after surgery and treated with either 
vehicle for 6 weeks, MRTX1133, GnP, or a combination of 
MRTX1133/GnP for 8 weeks before sacrifice and organ 
harvest to examine for metastases. We observed that mice 
treated with adjuvant vehicle, MRTX1133, or GnP alone 
developed macrometastatic disease (Fig. 6F). However, the 
combination treatment of MRTX1133 and GnP reduced 
metastatic burden to undetectable levels.

Finally, we assessed the efficacy of these treatment regi-
mens on the control of established metastases using an in-
travenous tail vein injection model of lung metastasis. We 
injected the metastatic cell line 6694C2-LM or the parental 
6694C2. Tumors were allowed to establish in the lungs for 7 
days prior to the start of therapy (Fig. 6G). Whereas vehicle- 
treated mice presented with disseminated lung metastases, 
GnP treatment reduced the total number of macrometasta-
ses (Fig. 6H). Single-agent MRTX1133 significantly reduced 
the overall metastatic burden compared to GnP alone, with 
greater efficacy observed in the 6694C2 parental model com-
pared to the more MRTX1133-resistant 6694C2-LM model. 
In both cases, the combination of MRTX1133 with GnP sig-
nificantly outperformed all other treatment conditions, with 
none of the enrolled mice demonstrating lung metastases 
(Fig. 6H). These results illustrate the benefit of combination 
chemotherapy with mutant-selective Kras inhibition in an ag-
gressive, metastatic model of PDAC.

discussion
KRAS inhibitors have the potential to transform the care 

of patients with PDAC; however, primary and acquired resis-
tance will limit the efficacy and durability of these therapies. 
Here, we performed a multimodal analysis of clinical samples 
and preclinical models to define mechanisms of resistance 
to mutant-selective KRAS inhibition in PDAC. We identified 
heterogeneous genetic and non-genetic mechanisms of resis-
tance, suggesting multiple combination therapy strategies for 
future clinical trial design. Moreover, we have generated a 
suite of novel in vitro and in vivo models of acquired resistance 

to KRASG12D inhibition that may serve as valuable tools for 
the field to further study resistance mechanisms and evaluate 
combination therapies.

Leveraging a unique collection of paired pretreatment and 
post-progression samples from patients with PDAC treated 
with adagrasib or sotorasib on the KRYSTAL-1 and Code-
BreaK100 trials, we performed ctDNA analyses and identified 
multiple genetic events emerging at acquired resistance, in-
cluding mutations in PIK3CA and KRAS, and amplifications 
in RTKs, KRAS, MYC, and CDK6. A putative mechanism of 
resistance was identified by ctDNA analyses in approximately 
half of patients with PDAC, CRC, and NSCLC. Distinct pat-
terns of resistance mechanisms are observed across tumor 
types, although the mechanistic basis remains poorly defined 
and requires further study. Notably, several patients did not 
harbor clear genetic mechanisms of resistance, suggesting a 
non-genetic etiology of resistance or a sensitivity limitation of 
ctDNA analyses in these patients.

Across a spectrum of preclinical models, we observed sev-
eral recurrent mechanisms of resistance to KRAS inhibition. 
In isogenic in vitro models of acquired resistance and in KPC- 
derived MRTX1133-resistant tumors, we identified concor-
dant copy number gain or amplifications of Cdk6/Abcb1a/b 
and Kras accompanying resistance, consistent with observa-
tions from human ctDNA samples. Moreover, as observed in 
human ctDNA samples at resistance, no drug-binding muta-
tions in KRAS were observed in resistant preclinical models, 
suggesting that these may not be a major mechanism of resis-
tance in PDAC. Integrative multiomic analysis for biomarkers 
of resistance in PDAC cell lines and PDO models revealed that 
EMT and activated PI3K–AKT–mTOR signaling consistently 
associate with relative resistance to KRAS inhibition. More-
over, evidence of RTK-driven adaptive signaling contributing 
to baseline and acquired resistance to KRAS inhibition has 
emerged from our analyses of in vitro models and patient 
specimens, as displayed by recurrent genomic amplifications 
and functional activation at resistance. Recent work has also 
highlighted the importance of activation of EGFR and other 
ERBB family members as an adaptive response and resistance 
mechanism to KRAS inhibition across cancer types (30, 34, 
63). The data presented here support combination therapy 
utilizing agents targeting this adaptive feedback through one 
or more RTKs.

The evolution of drug-resistant cell states along the ep-
ithelial–mesenchymal axis is a consistent feature across 
preclinical models; however, we observed potential differ-
ences with respect to resistance along this spectrum be-
tween in vitro and in vivo settings. In in vitro models, EMT 
signatures and features associated with a mesenchymal cell 
state accompany resistance to KRAS inhibition. In the KPC 
model, we observed enhanced sensitivity and depletion of 
the frankly mesenchymal cell state in short-term treated 
tumors. However, we observed re-emergence of the mesen-
chymal identity, as well as a strong enrichment of a dis-
tinct pEMT signature at acquired resistance to KRASG12D 
inhibition. These observations suggest that cell state plas-
ticity may play an important role in driving resistance to 
KRAS inhibition and highlight the potential importance 
of TME-derived signals in shaping the emergence of drug- 
resistant malignant cell states in vivo.
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The pEMT cell state was marked by evidence of activation 
of MYC and MTORC1 signaling at the transcriptional level, 
consistent with observations using in vitro model systems. 
Moreover, pEMT cells displayed upregulation of oxidative 
phosphorylation and multiple stress-related processes, such as 
protein translation and homeostasis pathways. Notably, some 
of these features have been previously linked to resistance to 
KRAS suppression (5). The pEMT metaprogram observed at 
resistance to KRAS inhibition also resembles similar signatures 
described in recent cell state atlases of human tumors, suggest-
ing that cells expressing features of this state may be present  
at baseline, before treatment with a KRAS inhibitor (50, 53). 
Thus, subclonal heterogeneity of the pEMT state at baseline 
may promote the emergence of drug resistance, therefore 
supporting the rational development of combination therapy 
strategies to target this state. Further work will be needed to 
fully elucidate the drug-resistant nature of cell states along the 
EMT spectrum in both preclinical models and human samples.

While both the classical and mesenchymal cell states were 
recurrently expressed across vehicle-treated tumors, we ob-
served a distinct cell state pattern in MRTX1133-treated 
tumors. The early 3-day treated tumors, representing tumors 
responding to KRASG12D inhibition, displayed a uniquely 
strong classical polarization, suggesting that the classical 
identity, enriched for xenobiotic metabolism and cell cycle 
processes, could provide a fitness advantage upon early expo-
sure to KRAS inhibition in vivo. These results are consistent 
with the enhanced efficacy of MRTX1133 treatment on bas-
al-like versus classical PDAC PDX models presented in this 
manuscript, as well as our prior observations of basal-classical 
plasticity in human PDAC organoid models demonstrating 
that the classical state exhibits less sensitivity to RAS/MAPK 
pathway inhibition than the EMT-associated, basal-like state 
(44). At treatment endpoint, the MRTX1133-resistant tumors 
were strongly committed to the pEMT cell state. The relative 
absence of classical cells and the pervasive expression of the 
pEMT phenotype at resistance highlights a potential transition 
between cell states as one important path to drug resistance. 
Identifying therapeutic targets to address these drug-resistant 
cell states remains a top priority.

The observation of classical cell state enrichment in the re-
sponding tumors suggests that combination therapy targeting 
vulnerabilities in this state during response to KRAS inhibition 
could improve the efficacy and durability of treatment in vivo. 
Identification of the upregulation of CLDN18.2 at the protein 
level in this KRAS inhibitor-induced classical state as well as 
in the drug-resistant pEMT cell state yields an important po-
tential therapeutic opportunity. CLDN18.2 is a tight junction 
protein on the cell surface that is thought to be inaccessible due  
to its localization between cell membranes of normal epithelial 
cells; however, in malignant cells, CLDN18.2 expression is in-
creased and dysregulated leading to accessibility for targeting 
otherwise hidden epitopes. Several CLDN18.2-targeting thera-
pies have demonstrated efficacy in clinical trials for GI cancers, 
including antibodies, antibody-drug conjugates (ADC), and 
CAR-T cells (64–66). Thus, these data support the concept of 
targeting cell surface proteins to treat drug-resistant states and 
specifically suggest investigating combination therapy with 
KRAS inhibition and CLDN18.2 targeted therapies in preclini-
cal models and ultimately clinical trials.

We observed striking intertumoral and intratumoral hetero-
geneity of genetic and non-genetic mechanisms of resistance. 
Within the KPC model, some tumors harbored amplifica-
tions of Yap1 or Cdk6/Abcb1a/b that evolved distinctly from 
the pEMT drug-tolerant state in either a clonal or subclonal 
manner. In contrast, we also observed clonal Myc amplifica-
tion emerging concurrently with expression of the pEMT 
signature at drug resistance. The co-evolution of multiple pu-
tative drug-resistance mechanisms within the same tumors 
mirrors observations in human samples whereby multiple 
distinct mechanisms have been observed within the same pa-
tients (14, 18, 19). This complex landscape of evolving resis-
tance mechanisms presents a challenge when thinking about 
combination therapies for patients. As noted above, targeting 
consistently upregulated cell surface proteins with specificity 
for drug-resistant cell states (e.g., CLDN18.2) represents an 
attractive strategy for addressing non-genetic mechanisms of 
resistance. Exploring the therapeutic implications of emerg-
ing surface targets associated with the EMT phenotype, in-
cluding Netrin-1 (67, 68) and CD70 (69), may prove promising 
in combination with KRAS inhibition. Recent work has also 
shown that KRASG12D inhibition leads to an immunogenic 
response (32, 33); thus, therapies that activate the immune 
response should be further investigated in combination with 
KRAS inhibitors in preclinical models and ultimately clinical 
trials (32, 70).

Furthermore, multiagent chemotherapy is currently the 
standard of care for the treatment of advanced PDAC, and 
cytotoxic chemotherapy in combination with KRAS inhibi-
tion may address multiple potential resistance mechanisms 
simultaneously. Additionally, given the relative increased 
sensitivity to KRAS inhibition of basal-like PDAC and the 
improved efficacy of chemotherapy on classical PDAC, com-
bination chemotherapy and KRAS inhibition represents an 
attractive therapeutic strategy. To this end, we demonstrated  
in multiple PDAC models that the combination of gemcit-
abine/n(ab)-paclitaxel with KrasG12D inhibition led to im-
proved control of primary and metastatic disease compared 
with KrasG12D inhibition alone. Therefore, further investi-
gation of combinations involving chemotherapy and KRAS 
inhibitors is warranted and may present an important strat-
egy for advancing KRAS inhibitor clinical trials to front-line 
therapy in treatment-naïve patients with PDAC and other 
KRAS-mutant tumor types.

Limitations of this study include the restriction of the 
analysis of KRAS inhibitor resistance in human PDAC to 
primarily ctDNA-based analyses. In the future, it will be crit-
ical to obtain biopsies from patients who have progressed on 
RAS inhibitors, and to fully interrogate these specimens for 
both genetic and non-genetic mechanisms of resistance. Our 
preclinical studies have focused on the KRASG12D inhibitor 
MRTX1133. Recently developed “pan-RAS” or “pan-KRAS” 
inhibitors capable of targeting all RAS isoforms or all 
KRAS alleles will be broadly applicable to most patients 
with PDAC (71–74). Resistance mechanisms described here 
are likely to be relevant to many different RAS inhibitors, 
mutant-selective and otherwise; however, these resistance 
mechanisms will need to be evaluated with drugs of different 
selectivity and mechanisms of action to better define patterns 
of cross-resistance.
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Collectively, this study elucidates multiple co-evolving ge-
netic and non-genetic resistance mechanisms that may in-
form future combination therapy strategies. Additionally, the 
multimodal approach presented here involving histologic, 
genomic, transcriptomic, and protein-based analyses of re-
sponse and resistance in patients and preclinical models may 
serve as an important paradigm for future translational stud-
ies of patients enrolled in clinical trials of novel RAS inhibi-
tors or combination therapies.

Methods
Patient Data

Defining Acquired Resistance to KRASG12C Inhibition in Pa-
tients. Written and informed consent to institutional review 
board (IRB)-approved protocols was obtained from patients with 
KRASG12C-mutant PDAC and other GI malignancies. All studies were 
performed in accordance with recognized ethical guidelines, includ-
ing the Belmont Report and U.S. Common Rule. Patients were en-
rolled in a phase 1/2 multiple expansion cohort trial of adagrasib 
in patients with advanced solid tumors with KRASG12C mutation, 
KRYSTAL-1 (849-001), or in the CodeBreaK 100 phase 1/2 trial to 
assess the safety and efficacy of sotorasib treatment in patients with 
KRAS p.G12C-mutated pancreatic cancer who had received at least 
one previous systemic therapy. Patients who had disease progression 
while receiving adagrasib or sotorasib monotherapy were included in 
this study. Patients underwent prescreening for KRASG12C mutation 
in tumor tissue, performed historically or at the time a patient was 
considering study entry using sponsor pre-approved methods and 
laboratories. Platforms used for prescreening tumor mutational anal-
yses included PCR and next-generation sequencing (NGS). Acquired 
resistance was determined based on routine clinical evaluation by a 
blinded, board-certified radiologist and defined as SD for at least 12 
weeks or a partial or complete response followed by disease progres-
sion based on Response Evaluation Criteria in Solid Tumor (RECIST) 
version 1.1 for CT imaging (75). Institutional review board-approved 
correlative studies were performed at participating institutions be-
fore adagrasib or sotorasib treatment, and at the time of resistance to 
adagrasib or to sotorasib. IRB-approved correlative studies were per-
formed at participating institutions on ctDNA obtained at the time 
of resistance, and the results were compared with ctDNA results from 
pretreatment (Supplementary Table S1).

Patient Sample Collection and Processing. Blood samples were 
prospectively acquired from patients enrolled to the KRYSTAL-1 
(849-001; Patients 1–8, 23–26) or the CodeBreaK 100 (patients 
9–22) studies. Peripheral blood (∼20–25 mL) was collected in EDTA 
or Streck BCT tubes, and plasma was obtained by using the Streck 
IFU. Samples from patients treated with adagrasib on KRYSTAL-1 
trial were processed at Resolution Bioscience (now a part of Exact 
Sciences; patients 1, 2, 3, 5, 6, 7, 23, 24, 25, 26) or at MD Anderson 
Cancer Center (patients 4, 8). Samples from patients treated with 
sotorasib on the CodeBreaK-100 trial were processed by Guardant 
Health (patients 9–22). The genomic panels used for each patient 
is described below (“ctDNA Sample Processing and Targeted Panel 
Analysis”; Supplementary Table S1). Blood samples from patients 4 
and 8 were processed within a median of 1.5 hours by centrifugation 
at 2,500 rpm for 10 minutes to separate plasma and buffy coat. A sec-
ond centrifugation step was performed on the plasma at 5,000 rpm 
for 10 minutes to remove cell debris. Density gradient centrifugation 
was used to collect peripheral blood mononuclear cells (PBMC).  
Buffy coats were processed to extract PBMCs. All centrifugation steps 
were performed at 4°C. Cell-free DNA (cfDNA) was extracted from  
5 mL of plasma samples using QIAamp Circulating Nucleic Acid Kit, 

according to the manufacturer’s protocol. The abundance and quali-
ty of cfDNA in the extracted samples were assessed using and bioan-
alyzer Agilent 2100 Tapestation Cell-free DNA ScreenTape analysis 
(Agilent) and Qubit 4 Fluorometer (ThermoFisher Scientific). Germ-
line DNA was extracted from 100 μL PBMC with QIAamp DNeasy 
Blood & Tissue Kit (Qiagen) per manufacturer’s instructions.

ctDNA Sample Processing and Targeted Panel Analysis. Pretreat-
ment and EOT ctDNA samples from patients 1, 2, 3, 5, 6, 7, 23, 24, 
25, and 26 treated with adagrasib were subjected to the RESOLUTION 
ctDx FIRST assay developed at Resolution Biosciences (76). Amplifi-
cations are identified as an increase in coverage depth. In calling large 
and moderate amplifications, the estimated tumor copies are required 
to be 3 (large) or 1 (moderate) more than the tumor ploidy. Longitu-
dinal ctDNA samples from patients 4 and 8, treated with adagrasib, 
were subjected to a SureSelect Cancer All-In-One custom panel of 58 
PDAC-specific genes, designed using SureDesign Tool (Agilent). Pre-
treatment ctDNA and EOT samples from patients 9 to 22 treated with 
sotorasib were subjected to Guardant 360 sequencing panel (trans-
ferred on May 9, 2022) and were analyzed for emergent variants after 
treatment with sotorasib 960 mg. Gene alterations considered in the 
analysis included fusions with MET, EGFR, ERBB3, and FGFR3 as well 
as somatic nonsynonymous or splice regions, SNVs or INDELs; and 
non-aneuploid oncogene copy number gains or tumor suppressor copy 
number losses. Genomic alterations were represented in relation to 
the wild-type reference coding sequence and according to the VAF of 
each specific variant (Supplementary Table S1). From Guardant 360 
reports, we called copy number gains when we detected an increase 
of ≤ 2 copies compared to normal. Amplifications were defined as an 
increase of >2 copies compared to normal ploidy.

Library Preparation and Analysis of Low-Pass WGS Data. For pa-
tients 4 and 8, 10 ng of ctDNA was used as input into SureSelect XT 
Low Input Target Enrichment System protocol following the manu-
facturer’s instructions. About 10 ng of genomic DNA derived from 
PBMCs was enzymatically fragmented using the SureSelect Enzymatic 
Fragmentation Kit (Agilent Technologies). From the same samples, 
low-pass WGS at an average of 5× depth of coverage was performed 
to detect CN variants. Libraries were quantified using the Qubit dsD-
NA High Sensitivity Kit (Invitrogen). The samples were sequenced on 
a NextSeq 2000 or NextSeq 550 instrument (Illumina). The demulti-
plexed FASTQ files were analyzed with the SureCall (Agilent) appli-
cation and the called mutations were uploaded to the Alissa Interpret 
platform (version 5.3.0, Agilent Technologies) for downstream analysis.

Variant Calling, Tumor Mutational Burden, and CNV Calling 
from Cell-Free Low-Pass WGS. For patients 4 and 8, we used an 
ISO27001- and ISO13485-certified platform called Alissa Interpret 
(Agilent Technologies) and a customized pipeline was created to per-
form an automated triage to filter and analyze raw genetic variants. 
For ctDNA samples from patients 4 and 8, tumor mutational bur-
den (TMB) was calculated as the number of mutations divided by the 
panel size. Synonymous mutations as well as SNVs detected in both 
ctDNA and PBMC were excluded from the analysis. The sequencing 
data from low-pass WGS samples were aligned to the human refer-
ence genome (version hg38, using bwa mem). Mapped BAM files were 
processed with HMMcopy’s (version 1.44.0) readCounter to create 
WIG files with 500 kb bins across all chromosomes. WIG files were 
analyzed with ichorCNA3 to identify CNAs and tumor fractions in 
cfDNA samples. Segmented data were uploaded to CNApp4 to com-
pute broad, focal, and global CNA scores.

Extracellular Vesicle Isolation from Human Plasma Samples. For 
patient 4, peripheral blood (∼25mL) was collected in EDTA tubes and 
processed within a median of 1 hour and 30 minutes by centrifuga-
tion at 2,500 × rpm for 10 minutes to separate plasma and buffy coat; 
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followed by an additional 5-minute 5,000 rpm centrifugation at 4°C 
to remove cellular debris. A total of 4 mL of plasma was processed by 
ultracentrifugation overnight at 36,000 rpm. The EV pellet was then 
washed with PBS and centrifuged at 36,000 rpm for 2 to 4 hours. The 
supernatant was then discarded, and the extracellular vesicle (ev) pel-
lets were resuspended in 600 μL PBS for long term storage at −80°C. 
Around 200 μL of resuspended EVs were used for RNA extraction 
using the total exosome RNA & Protein Isolation kit (Invitrogen, 
cat. #4478545). Contaminating DNA was eliminated using DNase 
I (Invitrogen, cat. #18047019) while high-abundance human blood 
globin and ribosomal transcripts were depleted using gRNA/rRNA 
depletion kit (siTOOLsBiotech, Cat. #dp-K096-001002). All depleted 
evRNAs were mixed with 1.8 × Ampure RNA Clean XP.

evRNA Transcripts Analysis. A signature matrix generated with 
expression profiles from normal plasma evRNA and TCGA PDAC 
tumor samples was utilized to deconvolve the PDAC evRNA, en-
abling the generation of non-tumor and tumor-derived gene expres-
sion profiles by CIBERSORTx (77) and CODEFACS (78). Hallmark 
KRAS activity signature score was generated at each timepoint using 
the ssGSEA function implemented in the R package GSVA (version 
1.46.0) on DESeq2 (ref. 79; version 1.38.3) log-normalized tumor- 
derived expression profiles.

Classification of Resistance Mechanisms to KRASG12C Inhibition Across 
Cancer Types. We integrated data from patients with PDAC and other 
GI malignancies from our cohort along with previously published cases 
of NSCLC, CRC, PDAC, other GI malignancies (including appendiceal 
adenocarcinoma, ampullary adenocarcinoma, stomach adenocarcino-
ma, and anal adenocarcinoma), and excluding previously published 
cases of lung neuroendocrine tumor (patient 105; 14), melanoma, 
small cell lung cancer and spindle cell carcinoma (patients 10, 21 and 
8; 19) to create a pan-cancer cohort of 132 patients with KRASG12C mu-
tation and displaying acquired resistance to adagrasib, sotorasib, or di-
varasib (14, 18, 19). Classification of genomic mechanisms of acquired 
resistance was carried out on a per-patient basis by three independent 
examiners using treatment-emergent alterations reported in this study 
(Fig. 1; Supplementary Table S1) or from publicly available data previ-
ously mentioned (Supplementary Fig. S1F; Supplementary Table S2).

In Vitro Culture and Experiments
Origins and Genetic Profiling of PDOs. All patients from whom 

organoids models were derived in this study provided written and in-
formed consent as per IRB-approved protocols at Dana-Farber Can-
cer Institute (DFCI), permitting access to their clinical and genomic 
data (DFCI 03189, 14-408). Genetic profiling was performed on the 
patient’s tissue biopsies using WGS or a targeted sequencing panel  
(OncoPanel), as previously described (44, 80). All organoids utilized in 
this study were annotated with genomic and clinical information and 
subsequently utilized in a de-identified, HIPAA-compliant manner.

PRISM Cell Line Screening Assay. The detailed PRISM assay pro-
tocol is available online at: https://www.theprismlab.org/. Briefly, the 
current PRISM cell set consists of more than 900 barcoded cell lines, 
representing more than 45 lineages, including both adherent and sus-
pension/hematopoietic cell lines. Cell lines were pooled (20–25 cell 
lines per pool) based on doubling time and frozen in assay-ready vi-
als. MRTX1133 was added to 384-well plates at an 8-point dose range 
with three-fold dilutions in triplicate starting from 5 μmol/L. Adher-
ent cell pools were plated at 1,250 cells per well, whereas suspension 
and mixed adherent/suspension pools were plated at 2,000 cells per 
well. Treated cells were then incubated for 5 days, lysed and mRNAs 
were isolated. Barcode amplification, detection, and data processing 
including quality controls were carried out as previously described 
(43) and yielded high-quality data for a total of 877 cell lines.

Culture and Therapeutic Sensitivity of In Vitro Models
PDAC PDO Models. Organoids were cultured at 37°C in 5% 

CO2. Cells were seeded in growth factor reduced Matrigel (Corning; 
Cat. # 356231) domes and incubated with human complete feeding 
medium: Advanced DMEM/F12-based-conditioned medium, 1 × B27 
supplement, 10 mmol/L HEPES, 2 mmol/L GlutaMAX, 10 mmol/L 
nicotinamide, 1.25 mmol/L Nacetylcysteine, 50 ng/mL mEGF,  
100 ng/mL hFGF10, 0.01 mmol/L hGastrin I, 500 nmol/L A83-01, 
Noggin 100 ng/mL, 1 × Wnt-3A conditioned 10% FBS DMEM (50% 
by volume), and 1 × R-spondin Conditioned Basal Medium (10% by 
volume). For therapeutic sensitivity profiling, organoids were disso-
ciated using TrypLE Express (Thermo Fisher, Cat. #12604054) and 
cells were seeded into ultra-low attachment 384-well plates (Corn-
ing; Cat. #4588) at 1,000 viable cells per well into 20 μL of culture  
media, consisting of 10% growth factor reduced Matrigel (Corn-
ing; Cat. #356231) and 90% human organoid medium as described 
above. Organoids were treated 24 hours post-seeding over a 12-point 
dose curve of MRTX1133 (0.1 nmol/L–10 μmol/L) or with DMSO 
for normalization in a randomized fashion using a Tecan D300e  
Digital Dispenser (Tecan Trading AG). Cell viability was assessed 
6 days post-treatment using a Cell-TiterGlo 3D Cell Viability assay 
(Promega; Cat. #G9683), executed according to the manufacturer’s 
instructions. Fluorescence was read using a FLUOstar Omega micro-
plate reader. Technical triplicates were conducted for each biological 
replicate and a total of at least three biological replicates was done for 
each PDO line.

Cell lines. Human PDAC cell lines were obtained from the Broad 
Institute Cancer Dependency Map or from American Type Culture 
Collection (ATCC), and identity was authenticated via STR DNA 
fingerprinting (Lab corps). The KPCY murine cell lines including 
6694C2, 6499C4, 6419C5 were originated from the Stanger lab (81) 
and cells were split every 2 to 3 days. All cell lines were tested every  
3 to 4 months and confirmed to be negative for mycoplasma us-
ing Mycostrip Mycoplasma Detection Kit (InvivoGene; Cat. # 
rep-mys-100) or via PCR (Labcorp). Cells were cultured for at least  
1 week post-thaw before experimental use which consisted of one 
to two passages. Cell lines were cultured at 37°C in 5% CO2 in  
Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 
10% FBS and 1% penicillin/streptomycin (6694C2, 6499C4, 6419C5, 
PANC-1) or Roswell Park Memorial Institute (RPMI) medium 
supplemented with 10% heat-inactivated FBS and 1% penicillin/ 
streptomycin (Panc 02.03). For therapeutic sensitivity profiling, 
cells were seeded either into a 96-well plate (1,000 cells/well, Corn-
ing; Cat. # 3903) or a 384-well plate (500 cells/well, Corning; Cat. 
# 3764). Cell lines were treated post-seeding over a 12-point dose  
curve of MRTX1133, trametinib, gemcitabine or with DMSO follow-
ing the same approach described above. Cell viability was assessed 
5 days post-treatment using a Cell-TiterGlo 2.0 Cell Viability assay 
(Promega; Cat. # G9241), executed according to the manufacturer’s 
instructions. Fluorescence was read using a CLARIOstar microplate 
reader. Technical triplicates were conducted for each biological rep-
licate and a total of at least three biological replicates was done for 
each cell line. Cell lines subjected to therapeutic combinations were 
cultured, seeded, treated, and viability was assayed by Cell-TiterGlo 
2.0. Bliss synergy scores were calculated using the synergyfinder R 
package (version 3.6.3; ref. 82).

Generation of Isogenic Models of Acquired Resistance to 
MRTX1133. MRTX1133-resistant cell lines were generated by 
continuous dose escalation from as low as 1 nmol/L to 10 μmol/L.  
Once resistance to MRTX1133 was confirmed, resistant cell lines were 
routinely maintained in the corresponding medium with 1 μmol/L 
(10% of the maximum dose reached during the evolution of resis-
tance) of MRTX1133. MRTX1133 was removed 3 to 7 days before 
starting individual assays.

http://AACRJournals.org
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Immunoblotting. Cells were washed with ice-cold PBS twice, and 
residual PBS was removed as much as possible. Cells were then lysed 
with RIPA buffer containing phosphatase and protease inhibitors 
(ThermoScientific; Cat. # 78440), scraped down the cells, and collected 
into an Eppendorf tube, mixed well, and kept the tube on ice for 30 
minutes. The samples were centrifuged at 13,000 × g, 4°C for 20 min-
utes. The protein concentration was measured by a BCA protein assay 
kit (Thermo Scientific; Cat. # 23225). An equal amount of protein was 
loaded to the 4% to 20% Criterion TGX Gel (#5671095) and then trans-
ferred to the Immuno-Blot PVDF membrane (Bio-Rad, # 1620177). 
Protein membranes were incubated with primary antibodies at 4°C 
overnight and followed by appropriate HRP-conjugated secondary 
antibody at room temperature for 1 hour. The images were analyzed 
using ECL substrates (Bio-Rad; Cat. #1705062) under the ChemiDoc 
Imaging System (Bio-Rad). The antibodies are listed as below: ERK1/2 
(cell signaling technology, Cat. # 9102S), pERK1/2 (Thr202/Tyr204; 
cell signaling technology, Cat. # 9101S), AKT (cell signaling technol-
ogy, Cat. # 2920S), pAKT (Ser473; cell signaling technology, Cat. # 
9271S), S6 (cell signaling technology, #2317S), pS6 (Ser235/236; cell 
signaling technology, Cat. # 2211S), ZEB1 (cell signaling technolo-
gy, Cat. # 3396S), Vimentin (cell signaling technology, Cat. # 5741S),  
E-Cadherin (cell signaling technology, Cat. # 3195S), β-Actin (cell sig-
naling technology, Cat. # 3700S; Supplementary Table S9).

RTK Array. All the procedures were done according to the man-
ufacturer’s protocol (R&D systems; Cat. ARY001B). Briefly, isogen-
ic parental and resistant Panc 02.03 were treated with 100 nmol/L 
MRTX1133 or DMSO. Lysates were collected at 0 hour (DMSO),  
5 hours, or 48 hours post-treatment and quantified using a BCA pro-
tein assay kit as described above. A total of 200 μg of lysates were incu-
bated with RTK membrane overnight at 4°C, followed by incubation 
with an Anti-Phospho-Tyrosine HRP Detection Antibody. Finally, 
individual dot densitometry analysis was conducted using Fiji image 
analysis software (83).

snRNA-seq Sample Preparation, Library Generation, and Sequenc-
ing. Samples were prepared as previously described (52). Briefly, 
ST stock solution was prepared in nuclease-free water with a final 
concentration of 146 mmol/L NaCl (Thermo Fisher Scientific, Cat. 
#M9759), 20 mmol/L Tricine (VWR, Cat #. E170-100G), 1 mmol/L 
CaCl2 (VWR, Cat. # 97062-820), and 21 mmol/L MgCl2 (Sigma- 
Aldrich, Cat. #M1028). A total of 2 mL of NST nuclei isolation  
solution was prepared for each sample by adding 0.2% Nonidet P40 
Substitute (Thermo Fisher Scientific, Cat. # AAJ19628AP), 0.01% 
bovine serum albumin (New England Biolabs, Cat. # B9000S),  
0.15 mmol/L of spermine (Sigma-Aldrich, Cat. # S3256-1G),  
0.5 mmol/L spermidine (Sigma-Aldrich, Cat. # S2626-1G), and 1:40 
Protector RNase Inhibitor (Roche, Cat. # 3335399001) to ST stock. 
For each specimen, 3 mL working ST buffer was made by adding 1:100 
Protector RNase Inhibitor to ST stock. Nuclei resuspension solution 
(NRS) was prepared by adding 1% BSA (Miltenyi, Cat. # 130 091-376) 
and 1:40 Protector RNase inhibitor to PBS (Gibco, Cat. # 10010023). 
Snap-frozen tumor chunks were placed in microcentrifuge tubes  
with 1 mL NST and manually minced with fine straight tungsten 
carbide scissors (Fine Science Tools; Cat. # 15514-12) for 8 minutes. 
Nuclei suspension was then passed over a 30-micron cell strainer  
(Miltenyi Biotec; Cat. # 130-098-458) into a 15 mL conical tube 
(ThermoFisher Scientific; Cat. # 339651). Microcentrifuge tubes and 
strainers were washed with an additional 1 mL NST, then nuclei sus-
pensions were diluted with 3 mL ST buffer. Following this, suspen-
sions were centrifuged for 5 minutes at 500 g, 4°C with slow brake. 
Following inspection of the pellet, the supernatant was removed, and 
the pellet was resuspended in 150 to 200 μL of NRS and then passed 
through a FACS tube filter (Falcon; Cat. # 352235). Nuclei were 
then quantified using a disposable hemocytometer (inCYTO; Cat. # 
82030 -472) in brightfield and then diluted or concentrated in NRS,  

according to the manufacturer’s instructions. Single-cell gene expres-
sion libraries were generated as previously described (52) and up to 12 
samples were pooled per flow-cell and then sequenced on a NovaSeq 
S2 (Illumina) with the following paired-end read configuration: read 
1: 28 nt; read 2: 90 nt; i7 index read: 10 nt; i5 index read: 10 nt.

WES Sample Preparation and Sequencing. For WES of KPC 
tumors and cell lines, genomic DNA was extracted using Qiagen  
AllPrep DNA/RNA Mini Kit (Qiagen; Cat. # 80204). WES was per-
formed by MedGenome or Novogene and the library was prepared 
using Agilent SureSelectXT Mouse All Exon kit and the sequencing 
was carried out on a NovaSeq (Illumina, PE150).

Bulk RNA-seq Sample Preparation and Sequencing. Parental and 
MRTX1133-resistant cell lines (Fig. 3) were trypsinized and washed 
with PBS twice, cell pellets were collected, and total RNA was ex-
tracted using the RNeasy Plus Kits for RNA Isolation according to 
the manufacturer’s protocol (Qiagen; Cat. #73404). Total RNA was 
sent to Novogene for mRNA-seq library preparation and NGS using 
Illumina NovoSeq. All the conditions and cell lines were prepared in 
triplicate.

In Vivo Protocols
Mouse Models. All animal treatments and procedures were con-

ducted under approved protocols aligned with guidelines from the 
Institutional Animal Care & Use Committee (IACUC, protocol 16-
015) at Dana-Farber Cancer Institute (DFCI) or MD Anderson Can-
cer Center. KPC (KrasLSL-G12D/+; Trp53LSL-R172H/+; p48-Cre) GEMM mice  
were obtained as a generous gift from Dr. Sunil Hingorani and were 
bred and maintained in a pathogen-free Animal Resource Facility 
(ARF) at DFCI. C57BL/6 mice were purchased from Jackson labs 
(Stock #000664) and nude mice from Charles River. Mice experi-
ments using PDXs were derived as previously described (84).

Tumor Growth Monitoring. KPC mice underwent weekly palpa-
tion for tumor detection starting at 8 weeks of age. Upon the palpable 
detection of tumors, ultrasound imaging (Vevo 3100) was conducted 
twice a week to track changes in tumor volume. Ultrasound imag-
es spanning the full length and width of the detected tumor were 
acquired in increments of 0.17 to 0.22 mm, depending on tumor 
size. All images were subsequently imported into the Vevo LAB soft-
ware (version 5.6.0) for quantification of tumor volume. Every four 
to five images, the tumor area was manually outlined, allowing the 
system AI to outline the images in between. Manual adjustments of 
the outlines performed by the AI were carried out, if necessary. Once 
the tumors reached a volume between 100 and 300 μL, animals were 
non-blindly randomized into either the vehicle or MRTX133 treat-
ment groups. For the short-term treatment groups, mice received a 
total of six doses administered over 3 days and were subsequently 
sacrificed. Their tumor volume was monitored before the initial and 
after the last dosing. Endpoint-treated mice were treated until they 
reached an IACUC-approved humane endpoint presenting clinical 
signs but not limited to body condition score <2, weight loss >15%, 
excessive or prolonged hypothermia, dyspnea, dehydration, hypoac-
tivity, hunched posture, ruffled fur. Tumor volumes from KPC, or-
thotopic PDAC tumors, and PDX models were monitored twice a 
week by ultrasound imaging.

In Vivo Treatments. MRTX1133 was provided by Mirati Ther-
apeutics Inc. 10% Captisol (Cydex Pharmaceuticals A Ligand Com-
pany, RC-0C7-100) in 50 mmol/L QB citrate buffer solution pH 5.0  
(Teknova, Q2443) was used to formulate MRTX1133 and vehicle. 
Formulated MRTX1133 was freshly prepared and stored light- 
protected at 4°C for up to 1 week. MRTX1133 (30 mg/kg) was admin-
istered via intraperitoneal injection, twice per day, at the maximum  
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in vivo tolerated dose as described by the manufacturer (30, 31), 
causing no significant cytotoxic side effects during treatment. Gem-
citabine/n(ab)-paclitaxel (GnP) treatments are detailed in sections 
“Metastasis Model” and “Implantation and Treatment of Pancreatic 
Orthotopic Tumors”.

Tumor Harvest and Processing. Mice were sacrificed by CO2 as-
phyxiation followed by cervical dislocation. Immediately after death, 
the tumor was harvested and further processed for downstream 
experiments including formalin fixation for histopathology and 
snap freezing for genomic DNA or single nuclei extraction. Forma-
lin-fixed tissues were submitted to Harvard Medical School Rodent 
Histopathology Core for paraffin embedding. Serial sections of 4 to 
5 µm thickness were prepared from the formalin-fixed, paraffin-em-
bedded (FFPE) tissues and used subsequent experiments, including: 
hematoxylin-eosin (H&E), multiplex immunofluorescence, chromo-
gen-based immunohistochemical staining.

Subcutaneous Tumor Implantation. Resistant cell lines were as-
sessed in vivo by performing double flank subcutaneous tumor inocu-
lations of 200,000 cells per tumor with five mice per group per tumor 
line. Mice were treated with either vehicle or MRTX1133 as previously 
described, starting once the tumor was palpable (average 4.5 mm3). 
Tumors were measured every 3 days and treatment was continued 
until tumors ulcerated, reached a size of 1,000 mm3, or mice reached 
the experimental timepoint, after which mice were sacrificed as pre-
viously described.

Patient-Derived Xenografts. PDXs were derived as previously  
described (84) and tumor fragments (4 × 4 × 4 mm3) were implanted 
on the right hind flanks of female athymic nude mice (Charles River). 
Treatment started when the tumor volume reached 150 to 250 μL as 
monitored by caliper measurements. At enrollment, mice were ran-
domized to receive either vehicle (10% Captisol in 50 mmol/L sodium 
citrate pH = 5) or MRTX1133 (30 mg/kg, MedChemExpress) twice 
per day IP, as described above. For efficacy studies, treatment groups 
included six mice per group. For acute pharmacodynamic (PD) bio-
marker studies (n = 4 mice per group), tumors were allowed to grow 
to an average volume of 250 to 350 mm3 and collected 4 hours after 
3 days of treatment. All animals received LabDiet 5053 chow ad li-
bitum. During the PDX efficacy studies, tumor growth was moni-
tored twice a week, and the tumor volume was calculated as TV = 
(D × d2/2), where “D” is the larger and “d” is the smaller superficial 
visible diameter of the tumor mass. Body weights were measured 
twice weekly and used to adjust dosing volume and monitor animal 
health. All animal studies are reviewed and approved by the Institu-
tional Animal Care and Use Committee (IACUC) at MD Anderson 
Cancer Center.

Metastasis Model. Metastasis was assessed as published previ-
ously (60). In brief, 6694C2-LM cells were subcutaneously injected 
with 200,000 cells per animal in the shaved lower back. Primary tu-
mors were surgically removed 11 days post-tumor inoculation with 
collection of lungs, inguinal lymph nodes, and livers to look for me-
tastasis 4 to 8 weeks later. Mice with tumor regrow at the primary 
site after surgical removal were eliminated from the study. Neoad-
juvant treatment was performed starting at day 6 where mice were 
treated with MRTX1133 twice per day IP, as described above, until 
the morning of day 11 when surgery was performed or gemcitabine  
(25 mg/kg, IP) at day 6 and 8 and (n)ab-paclitaxel (30 mg/kg, IV) on 
day 6. Primary tumors were weighed post-surgery. Adjuvant treat-
ment was started on day 13, 2 days post-surgery, with mice treated 
twice daily with MRTX1133 for 8 weeks and/or with (n)ab-paclitaxel 
(30 mg/kg IV) on day 13 and 19 and gemcitabine (25 mg/kg, IP) every 
3 days starting on day 13 for 8 weeks or vehicle for 6 weeks. After 
harvest, macrometastasis was assessed visually by inguinal lymph 

node size and nodules on the lung while the micrometastatic area 
was assessed using H&E, processed as above described, scanned on 
an Olympus VS200 Slide Scanner, and quantified using QuPath (85).

Implantation and Treatment of Pancreatic Orthotopic Tumors. Ef-
ficacy of MRTX1133, chemotherapy, and combination of both were 
assessed in the primary setting by implanting 50,000 6694C2 cells 
orthotopically into the pancreas of C57BL6/J mice. Once tumors 
were detectable by ultrasound, 10 mice were randomly assigned to 
each of four treatment groups wherein they received either vehicle, 
gemcitabine/n(ab)-paclitaxel (GnP), MRTX1133, or a combination of 
MRTX1133 and GnP. Mice undergoing GnP treatment were dosed 
IP every 3 days with gemcitabine (150 mg/kg), along with two intra-
venous doses of n(ab)-paclitaxel (50 mg/kg), one on the day of en-
rollment and the other 6 days later. MRTX1133 was administered 
as previously mentioned. Tumor volume changes were assessed by 
ultrasound twice per week. Treatment was maintained until tumors 
reached a maximum diameter of 2 cm in any direction or until mice 
reached a humane endpoint, at which time they were sacrificed as pre-
viously outlined.

Generation and Treatment of Established Metastases. To assess  
the efficacy of combination chemotherapy and MRTX1133 in the 
context of established lung metastases, 60,000 6694C2 or 6694C2-
LM cells were injected into the tail vein of C57BL6/J mice. After  
7 days, five mice per cell line were randomized to the vehicle group 
and 10 mice were assigned to receive either gemcitabine/n(ab)- 
paclitaxel (GnP), MRTX1133, or MRTX1133 and GnP. The dosing 
regimen was the same as described for the orthotopic setting. At de-
fined experimental timepoints, mice were sacrificed and macrometas-
tases were tallied by visually assessing nodules on the lungs.

Tumor Immune Infiltrate Analysis. Tumors were harvested, 
minced, and incubated in digestion buffer [RPMI (Gibco), 2% FBS, 
0.2 mg/mL Collagenase P (Roche), 0.2 mg/mL Dispase (Gibco), 
and 0.1 mg/mL DNase I (Roche)] for 30 minutes at 37°C. Tumors 
were dissociated by repetitive pipetting with the collected superna-
tant placed in a 40-micron cell filter and quenched by cold FACS 
buffer (PBS with 2% fetal calf serum and 0.5 mmol/L EDTA). The 
resulting tumor debris and immune cells were centrifuged, washed 
with PBS, and resuspended in FACS buffer containing a master 
mix of antibodies. Cells were incubated in the staining mix for 15 
minutes at 4°C, washed in PBS, and resuspended in 1% formalin 
for analysis on a spectral flow cytometer (Sony SP6800). Flow 
cytometry antibodies were purchased from Biolegend [αCD45 
(30-F11), αCD4 (RM4-5), αCD8 (53-6.7), αCD103 (2E7), αLy6C 
(1A8), αI-A/I-E (M5/114.5.2), αF4/80 (BM8), αSiglecF (E50-2440), 
αCD11b (M1170), αCD11c (N418), αGR1 (RB6-8C5), αB220 
(RA3-6B2)].

Histopathology Assessment. Sections of 4 to 5 μm thickness were 
prepared as previously mentioned. Brightfield scans of the H&E-
stained slides were prepared using the Vectra Polaris Imaging Sys-
tem (PhenoImager HT). To perform quantitative assessment, scans 
of these slides (.qptiff files) were loaded into QuPath (85), and two 
separate QuPath projects (.qpproj files) were created; the first proj-
ect for measuring areas of PDAC, PanIN, ADM, and normal pancre-
as within the tissue section, and the second project for measuring 
areas of well, moderate, or poor differentiation within the PDAC 
areas. For this, the areas of interest were annotated on the .qptiff 
files with QuPath’s brush tool by a research pathologist, and the 
area measurements (in sq. microns) were exported as a .csv file for 
further downstream analysis. As a validation step to check any dis-
crepancies, all slides were reviewed independently by an experienced 
gastrointestinal pathologist to obtain a visual estimation of these 
area measurements.

http://AACRJournals.org
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Immunohistochemistry. Immunohistochemistry staining was per-
formed using standard staining on 4-μm-thick FFPE tissue sections 
from KPC mice tumors. Sections were stained for pERK (T202/Y204; 
Cell Signaling Technology 4376, dilution 1:500) to assess activity lev-
els of the MAPK pathway. Tissue sections were baked at 60°C, depa-
raffinized, and hydrated with xylene and 100% ethanol, respectively, 
then underwent heat-mediated antigen retrieval with sodium citrate 
buffer. Slide staining was performed in a Leica BOND RX Research 
Stainer (Leica Biosystems). Antigen expression was visualized using 
DAB-chromogen and slides were counterstained using hematoxylin 
to visualize the nuclei. Brightfield scans of IHC-stained slides were 
prepared at 40× resolution using the Vectra Polaris Imaging System 
(PhenoImager HT). The staining and quality of the tumor tissue was 
evaluated by a certified pathologist.

Immunohistochemistry Scoring. Scoring was done by visually 
determining the percentage of marker positivity in invasive tumor  
areas. The values are the average of several regions selected per sam-
ple. The scoring criteria for pERK was as follows: 100% to 76% = 4, 
51% to 76% = 3, 26% to 50% = 2, 1% to 25% = 1, 0% = 0. Scores were 
then normalized to the highest levels of staining observed across all 
tumors analyzed. Staining accuracy of the scoring was verified by a 
trained and certified pathologist.

Multiplex Immunofluorescence. A multiplex immunofluorescence 
(mIF) panel comprising a classical protein marker (CLDN18.2), nu-
clear marker (DAPI), and epithelial cell marker (pan-cytokeratin) was 
developed following previously described methodology (86). Second-
ary Opal polymer HRP anti-rabbit antibodies and Opal fluorophores 
were used for detecting primary antibodies. Staining was carried out 
on the Leica Bond RX Research Stainer (Leica Biosystems). The stain-
ing protocol comprised sequential cycles of antigen retrieval (Tris/
EDTA), protein blocking, primary antibody incubation, secondary 
antibody incubation, and fluorescent labeling via tyramide signal 
amplification on whole slides. Overview scans of all mIF slides were 
prepared at 10× magnification using the Vectra Polaris Imaging Sys-
tem (PhenoImager HT). Slide fluorescent images are then acquired 
using the PhenoImager HT multispectral imaging system (Akoya Bio-
sciences). After image acquisition and spectral unmixing, each image 
is visually inspected to ensure that only regions of invasive cancer are 
selected for analysis and that all regions are free of artifacts and sub-
optimal staining. Images are then processed using a customized pipe-
line that employs supervised machine learning to segment tissue into 
regions of tumor epithelium and surrounding stroma. Within tumor 
epithelial regions, individual tumor cells are then identified based on  
joint consideration of morphology and cytokeratin expression. Within 
the tumor cell compartment, membranous expression of CLDN18.2  
is quantified, and cells are classified as positive or negative for each 
marker using a pathologist-trained machine learning classifier.

Quantification and Statistical Analyses
Compound Response Analysis. For each cell line and patient-derived  

organoid, we used the R package dr4pl (version 2.0.0) to fit a four- 
parameter logistic curve to the response across doses of MRTX1133.  
The AUC was then calculated as the normalized integral as follows:
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This formulation puts AUC values on a scale between 0 and 1, where 
lower AUC values indicate increased sensitivity to treatment (43).

KPC GEMM Survival Analysis. The survival analysis was con-
ducted using the survival R package (version 3.5-8) and employed a 
Log-rank test on Kaplan–Meier curves to compare the overall survival  

between endpoint MRTX1133- and vehicle-treated KPC GEMMs. 
The MRTX1133-treated mice KPC_3411 and KPC_4076 were cen-
sored at day 0 as their endpoint was due to technical reasons but were 
still included in the analysis (Supplementary Table S7).

MRTX1133 In Vitro Response Groups and Biomarker Discov-
ery. Stratification of KRASG12D mutated cell lines based on re-
sponses to MRTX1133 from the PRISM viability screen was gener-
ated using a Jenks natural break optimization approach on the AUC 
values with a number of breaks set to 2. The discovery of biomarkers 
of response and resistance to MRTX1133 was carried out by inte-
grating previously defined response groups with publicly available  
datasets from the 23Q4 DepMap release. These included cell line 
metadata and lineages, Log2 CN ratios, bulk RNA-seq, and RPPA. 
For each type of omics, comparisons were done between resistant and 
sensitive subsets of cell lines using a two-sided Student t test. DESeq2 
(ref. 79; version 1.28) with adaptive shrinkage (87) was used on raw 
RNAseq counts to carry out differential gene expression over all de-
tected genes between sensitive and resistant cell lines (Fig. 2) or resis-
tant and parental pairs (Fig. 3). GSEA were performed on the ranked 
and unfiltered genes based on Log2FC from differential gene expres-
sion analysis between the aforementioned groups, using the fGSEA R 
package (version 1.24.0; Supplementary Tables S4A and S4B).

Mutation and CNV Identification from Bulk DNA WES. FASTQ 
files were converted to unmapped Bam (uBAM) files using the GATK 
paired-fastq-to unmapped-bam Terra workflow (snapshot 10). The 
Processing-for-variant-discovery-gatk4 Terra workflow (snapshot 10) 
was used to map the uBAM files to the reference genome (mm10 for 
mouse-derived tumors and mouse cell lines and hg38 for human cell 
lines), as well as to mark duplicate reads and to perform base recali-
bration. Somatic variant calling was performed at a per tumor basis 
with Terra’s mutect2-gatk4 workflow (version 4.1.7.0, snapshot 21). 
We used the matched parental cell line for in vitro models of acquired 
resistance (6694C2, 6499C4, 6419C5, Panc 02.03, PANC-1; Fig. 3) 
and a matched sample from normal tissue for KPC derived (Fig. 4). 
Several samples (KPC_3323, KPC_3421L, KPC_3421S, KPC_3422, 
KPC_3518, KPC_3587, KPC_3716, KPC_3776) were sequenced 
at a significantly greater depth than anticipated due to a technical 
error. To remedy this error, processed BAMs were down-sampled us-
ing Picard’s DownsampleSam method (snapshot 2 of Terra Workflow 
GPTAG/ DownsampleBam with a random seed set to 5054) to a de-
sired coverage of 100× to make them comparable with all other 
WES samples. A custom Terra workflow was used to perform copy 
number analysis using CNVkit (version 0.9.10) on a per-sample 
basis using matched normal tissue or parental cell lines as refer-
ence for KPC tumors and isogenic models of acquired resistance,  
respectively.

Bulk RNA-seq Processing and Analysis. FASTQ files for paired 
parental and resistant cell lines (Fig. 3) were aligned using STAR 
aligner (version 2.6.1c) with GRCh38 reference for human lines and 
GRCm38.p6 for mouse lines or to obtain raw read counts. Additional 
processing to TPMs was performed using RSEM (version 1.3.0) from 
the rsem_v1-0_BETA_cfg Terra workflow (snapshot 6). Differential 
gene expression analysis on the raw counts was performed as pre-
viously described (section: MRTX1133 in vitro response groups and 
biomarker discovery). Bulk transcriptomic profiles of PDX models 
were obtained by Quant-Seq. Briefly, RNA was extracted from SNAP 
frozen tissues, and RNA sample quality was assessed by RNA Screen-
Tape on a 4200 Tapestation (Agilent Technologies Inc.,) and quan-
tified by Qubit 2.0 RNA HS assay (ThermoFisher). The library was 
constructed using QuantSeq 3′ mRNA-Seq Library Prep Kit FWD for  
Illumina (Lexogen). Final libraries quantity was assessed by Qubit 2.0 
(ThermoFisher) and quality was assessed by TapeStation HSD1000 
ScreenTape (Agilent Technologies Inc.). The average final library 
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size was about 320 bp with an insert size of about 200 bp. Illumi-
na 6-nt single indices were used. Equimolar pooling of libraries was 
performed based on QC values and sequenced on an Illumina HiSeq 
(Illumina) with a read length configuration of 150 PE. Read 1 reads 
were trimmed using Trimmomatic v0.39 and BBDuk from BBTools 
v.38.34. Human and mouse reads were identified using Xenome 
v.1.0.1 with genome references hg38 and mm10, respectively. Human 
reads were mapped and counted using Kallisto (version 0.44.0) and 
the genecode.v31 transcript index. Counts were then transformed to 
counts per million and log2-transformed with a pseudocount of 1.

snRNA-seq Data Preprocessing. BCL files were converted to 
FASTQ using Illumina’s BCL Convert Tool. CellRanger (version 
7.0.1) was used to demultiplex the FASTQ reads and align them to the 
mm10 mouse transcriptome (mm10_premrna-1.2.0). We then used 
CellBender remove background (version 0.2.0) Terra workflow (snap-
shot 11) to remove ambient RNA and other technical artifacts from 
the count matrices. We used a false positive rate of 0.01 along with a 
number of epochs ranging between 150 and 200 and a learning rate 
comprised between 5e–5 and 1e–4. We set the parameters “expected 
cells” based on the estimated number of cells from the CellRanger 
output. For downstream analyses, we used CellBender’s filtered out-
put file (out_filtered.h5). Next, we filtered the combined gene expres-
sion matrix to only include high-quality nuclei using the following 
criteria: total genes in [400–6,000], total counts in [1,000–35,000], 
percent mitochondrial counts <5%, percent ribosomal counts <5%, 
cellular complexity (log10 genes per UMI) >0.8. We identified doublets 
at a per-sample basis using the quality control filtering steps previ-
ously mentioned in combination with DoubletFinder (version 2.0.3) 
and removed them from each gene×nuclei expression matrices. We 
additionally removed genes that were not detected in at least 100 nu-
clei across the entire dataset. Next, UMI counts were then normalized 
by the total number of UMIs per nucleus and multiplied by a scaling 
factor of 10,000. Normalized counts were then log transformed for 
downstream analyses using the R package Seurat (version 5.0.0). Log 
normalized counts were then scaled while regressing out the total 
number of counts and genes per nuclei and were used to perform PCA 
over the top 3,000 most variable genes. We subsequently used the first 
50 principal components (PC) to build a k-nearest neighbor (knn) 
graph (k = 20) and identify clusters by using the Leiden algorithm 
(resolution = 0.9) and visualized individual nuclei using uniform 
manifold approximation and projection (UMAP) projection (n.neigh-
bors = 20). These steps were iteratively repeated to identify and filter 
out remaining poor-quality nuclei from the dataset. Subsequently, 
we annotated distinct cellular populations identified in the previous 
steps using known cell-type specific gene markers and defined puta-
tive malignant epithelial nuclei based on the expression of epithelial 
markers, in combination with membership in sample-specific cluster-
ing, to be used as observation sets in inferCNV. A similar workflow 
was implemented for the exploration and analysis of the malignant 
and TME compartments, separately. After isolating the population of 
interest, we re-scaled the data and ran PCA. For malignant nuclei, we 
used the first 50 PCs to build a knn graph (k = 20) and clustered using 
the Leiden algorithm (resolution = 0.6) followed by dimensionality 
reduction via UMAP (n.neighbors = 20). For the TME cohort, single 
nuclei profiles were integrated across samples via Harmony (version 
1.2.0), and the first 20 harmonized PCs were retained to build a knn 
graph (k = 20) and carry out clustering using the Leiden algorithm 
(resolution = 0.5), followed by dimensionality reduction via UMAP 
(n.neighbors = 20). CAF- and TAM-specific analyses were carried out 
following the same approach (Supplementary Fig. S6).

Single-Nucleus CNA Inference and Malignant Classification. The 
InferCNV Terra workflow (snapshot 15) was used to infer large-scale 
CNAs from snRNA-seq. The workflow was run on a per-sample basis 
using CellBender-corrected counts and using a reference population 

of 1,500 high-confidence non-malignant nuclei evenly and randomly 
sampled from TAMs, ECs, and CAFs across the cohort. InferCNV was 
run under the following parameters: cutoff = 0.1, window_length = 
101, analysis_mode = subclusters, denoise = TRUE, HMM = TRUE, 
tumor_subcluster_pval = 0.01. Subclonal clustering was carried out 
using the Leiden clustering and high probability alterations were 
identified by using a six-state Hidden Markov Model (i6-HMM) with 
a stringent probability cutoff (BayesMaxPNormal = 0.2). Nuclei were 
classified as malignant at a per-sample basis, using the top 10% al-
tered putative malignant nuclei as reference, following the approach 
previously described, in combination with membership of nuclei to 
sample-specific SNN clusters (Supplementary Fig. S6D and S6E). 
Putative drivers of resistance previously identified as amplified via 
WES were defined as subclonal if present in an i6-HMM state 6 in a 
single clone, as identified via inferCNV subcluster analysis, within a 
tumor (Yap1: KPC_3323 clone 1. Cdk6/Abcb1a/Abcb1b in KPC_3600  
clone 3).

Calculating and Comparing Signature Scores. Signature scores 
were computed as previously described (44), by taking a set of genes 
defining a signature and comparing their average relative expression 
to that of a control set (n = 100 genes) randomly sampled to mirror 
the expression distribution of the genes used for the input, as imple-
mented in Seurat’s AddModuleScore function. Single-nucleus signa-
ture scores were compared across groups by implementing a linear 
mixed-effect model using the R package lme4 (version 1.1-35.1). The 
sample ID was used as a random effect and the treatment group or 
malignant cell state classification, as well as the mouse sex, were used 
as fixed effect covariates. Pairwise group comparisons were conducted 
using the estimated marginal means derived from the linear mixed- 
effect model with the R package emmeans (version 1.10.0; Supple-
mentary Fig. S7B).

Identification of Recurrent Gene Expression Programs. Transcrip-
tional diversity within malignant nuclei was studied using NMF as 
previously described (50, 51). Each sample was processed separately 
and the corresponding gene × nuclei expression matrix was filtered to  
retain protein-coding genes (excluding genes encoding for mitochon-
drial and ribosomal transcripts) captured in at least 1% of the nuclei 
within that specific sample. NMF was run over a range of k parameters 
[k in (4–9)] using the sklearn.decomposition (version 1.3.1) implemen-
tation in Python 3.10.8. For each sample, the algorithm was run 100 
times and the factorization yielding the lowest reconstruction error 
based on Frobenius beta loss method was kept. This generated a total 
of 39 NMF factors per sample, later referred to as programs, then sum-
marized by their top 50 weighted genes. We then defined a program as 
“robust” following previously established criteria (50, 51):

 1  Has at least 80% overlap at the gene level with a program obtained 
within the same tumor using a different factorization value.

 2  Has at least 40% overlap with a program analyzed from another 
tumor.

 3  A “founder” program was defined for each set of overlapping pro-
grams (step 1) by selecting that with the highest overlap with a pro-
gram identified in another tumor.

 4  Is nonredundant within the same tumor: Once the robust program 
was defined using the above criterion, any other program within 
the same tumor with >20% and <80% overlap with the selected ro-
bust program was removed.

This resulted in the obtention of 54 robust programs which were 
then clustered using (1-pairwise Jaccard similarity) as distance metric 
and the average linkage method. Manual inspection of the hierarchi-
cal clustering results allowed the definition of seven clusters, referred 
to as metaprograms. We defined the gene lists for each metaprogram 
by selecting the top 50 genes based on the number of occurrences  
and average weight across robust programs within the same  
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metaprogram. We then used signatures from MsigDB including Hall-
mark (H), Reactome (C2:REACTOME), Biocarta (C2:BIOCARTA), 
Kyoto Encyclopedia of Genes and Genomes (KEGG; C2:KEGG). We 
additionally used a panel of PDAC transcriptional subtype signatures 
as well as multiple curated gene sets from the previously published 
work (44, 50, 52, 53, 88–91). The degree of overlap between gene sig-
natures or metaprograms with other publicly available signatures was 
assessed using a hypergeometric test and defined as significant with a 
Qvalue threshold of 0.05 (Benjamini–Hochberg). We then annotated 
each metaprogram based on recurrent biological themes among the 
significantly associated signatures. In the process, removed MP2 from 
further analysis as it contained genes associated with immune effector 
functions and processes (Ptprc, Ebf1, Tbxas1, Lyn, Mertk, Inpp5d, Apobec1, 
Rftn1, Cd84, Ly86, Mrc1, Lcp1, Fyb; Supplementary Table S8).

Gene Regulatory Network Analysis to Nominate Putative Metapro-
gram Regulators. Transcription factor activity was characterized on 
a per-sample basis using pySCENIC (version 0.12.1) and following the 
standard workflow. After an initial gene filtering of the expression 
matrix to retain genes captured in at least 1% of the nuclei from a 
sample. Correlation networks between mouse transcriptional factors 
and potential targets were calculated with GRNBoost2 from Arboreto 
(version 0.1.6) and sets of genes co-expressed with TFs were identified 
based on the correlation networks and compiled into regulons. Next, 
cis-regulatory motif analysis was performed using RcisTarget with 
mm10 cisTarget databases v10 containing two gene-motif rankings: 
10 kb around the TSS (transcription start site) and 500 bp upstream 
and 100 bp downstream of the TSS. Regulon activity was then scored 
in each cell using the AUCell (version 1.6) package. Next, we calcu-
lated the average Pearson correlation between regulons activity and 
metaprogram scores within samples contributing to that metapro-
gram (Fig. 5A). Then, on a per metaprogram basis, we selected the top 
five regulons which activity was the most highly correlated with the 
metaprogram score and these transcription factors were defined as 
putative regulators of that metaprograms (Fig. 5D).

Malignant Cell State Classification. Single nuclei were classified 
across the mesenchymal, classical, and pEMT cell states in two steps. 
First, we classified nuclei into one of the three cell states using near-
est template prediction as implemented in the R package CMScaller 
(version 2.0.1) and the list of genes of each of the cell states. Next, 
we selected nuclei that were confidently classified into a given cell 
state (Qvalue, BH < 0.01) and randomly sampled 2,000 nuclei within 
each group, which were subsequently used to train a Markov absorp-
tion-based classifier over the first 50 PCs using the “Classify” function 
from Phenograph (version 1.5.2; k = 20). Output probabilities were 
subsequently used for visualization (Fig. 5E).

Malignant Cell State Differential Gene Expression Analysis. We 
implemented a negative binomial gamma mixed effect model using 
the R package Nebula (version 1.5.1) to identify genes differentially 
expressed between each malignant cell state, based on Phenograph 
classifications. The sample ID was used as random effect, the treat-
ment status and the mouse sex were used as fixed effect covariates, 
and the log-normalized total counts were used as an offset (Fig. 5B). 
Next, to enrich for genes whose expression is specific to the pEMT 
cell state and exclusive to mesenchymal and classical cell states, we 
corrected the Log2FC values of the pEMT versus others (Mesenchy-
mal + Classical) comparison by the absolute Log2FC value of that 
from the mesenchymal and classical comparison. Genes were defined 
as differentially expressed and specific to a cell state with the follow-
ing thresholds: Qvalue (BH) < 0.01, abs(Log2FC) > 1 (for classical and 
mesenchymal cell states), or corrected Log2FC > 1 (for pEMT cell 
state). Enrichment of biological processes in each cell state was 
carried out using a hypergeometric test with the MsigDB mouse 
Hallmark gene set database.

Data Availability
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