Abstract
In quarter-diaphragms from 40 h-starved rats the rate of glycogen mobilization is sufficient to account for the rate of lactate+pyruvate+alanine production. It is concluded, therefore, that alanine derives its carbon skeleton predominantly via glycolysis and not via synthesis de novo from tricarboxylic acid-cycle intermediates and related amino acids.
Full text
PDF



Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Chang T. W., Goldberg A. L. Leucine inhibits oxidation of glucose and pyruvate in skeletal muscles during fasting. J Biol Chem. 1978 May 25;253(10):3696–3701. [PubMed] [Google Scholar]
- Chang T. W., Goldberg A. L. The metabolic fates of amino acids and the formation of glutamine in skeletal muscle. J Biol Chem. 1978 May 25;253(10):3685–3693. [PubMed] [Google Scholar]
- Chang T. W., Goldberg A. L. The origin of alanine produced in skeletal muscle. J Biol Chem. 1978 May 25;253(10):3677–3684. [PubMed] [Google Scholar]
- Felig P. Amino acid metabolism in man. Annu Rev Biochem. 1975;44:933–955. doi: 10.1146/annurev.bi.44.070175.004441. [DOI] [PubMed] [Google Scholar]
- Garber A. J., Karl I. E., Kipnis D. M. Alanine and glutamine synthesis and release from skeletal muscle. IV. beta-Adrenergic inhibition of amino acid release. J Biol Chem. 1976 Feb 10;251(3):851–857. [PubMed] [Google Scholar]
- Goldstein L., Newsholme E. A. The formation of alanine from amino acids in diaphragm muscle of the rat. Biochem J. 1976 Feb 15;154(2):555–558. doi: 10.1042/bj1540555. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kovacevic Z., McGivan J. D. Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev. 1983 Apr;63(2):547–605. doi: 10.1152/physrev.1983.63.2.547. [DOI] [PubMed] [Google Scholar]
- Livesey G., Lund P. Enzymic determination of branched-chain amino acids and 2-oxoacids in rat tissues. Transfer of 2-oxoacids from skeletal muscle to liver in vivo. Biochem J. 1980 Jun 15;188(3):705–713. doi: 10.1042/bj1880705. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Odedra B. R., Palmer T. N. A putative pathway of glyconeogenesis in skeletal muscle. Biosci Rep. 1981 Feb;1(2):157–165. doi: 10.1007/BF01117013. [DOI] [PubMed] [Google Scholar]
- Palmer T. N., Caldecourt M. A., Slavin J. P. Pyruvate kinase and alanine synthesis in skeletal muscle. Biosci Rep. 1982 Nov;2(11):941–948. doi: 10.1007/BF01114901. [DOI] [PubMed] [Google Scholar]
- Palmer T. N., Caldecourt M. A., Sugden M. C. Adrenergic inhibition of branched-chain 2-oxo acid dehydrogenase in rat diaphragm muscle in vitro. Biochem J. 1983 Oct 15;216(1):63–70. doi: 10.1042/bj2160063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer T. N., Caldecourt M. A., Sugden M. C. Amino acid oxidation and alanine production in rat hemidiaphragm in vitro. Effects of dichloroacetate. Biochem J. 1984 Oct 1;223(1):113–117. doi: 10.1042/bj2230113. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Palmer T. N., Caldecourt M. A., Warner J. P., Sugden M. C. The role of phosphoenolpyruvate carboxykinase in muscle alanine synthesis. Biochem J. 1984 Dec 15;224(3):971–976. doi: 10.1042/bj2240971. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snell K., Duff D. A. The release of alanine by rat diaphragm muscle in vitro. Biochem J. 1977 Feb 15;162(2):399–403. doi: 10.1042/bj1620399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Snell K. Muscle alanine synthesis and hepatic gluconeogenesis. Biochem Soc Trans. 1980 Apr;8(2):205–213. doi: 10.1042/bst0080205. [DOI] [PubMed] [Google Scholar]
- Spydevold O. The effect of octanoate and palmitate on the metabolism of valine in perfused hindquarter of rat. Eur J Biochem. 1979 Jul;97(2):389–394. doi: 10.1111/j.1432-1033.1979.tb13125.x. [DOI] [PubMed] [Google Scholar]
