Size of the inositol 1,4,5-trisphosphate-sensitive calcium pool in guinea-pig hepatocytes

Colin W. TAYLOR and James W. PUTNEY, Jr.

Department of Pharmacology, Medical College of Virginia, Richmond VA 23298-0001, U.S.A.

Permeabilized hepatocytes accumulated ${}^{45}Ca^{2+}$ into a non-mitochondrial pool when provided with ATP. ${}^{45}Ca^{2+}$ efflux from this pool was revealed by removal of ATP with glucose and hexokinase or by inhibiting uptake with NaVO₃. The effect of inositol 1,4,5-trisphosphate (IP₃) on ${}^{45}Ca^{2+}$ efflux from the pool was investigated. IP₃ (5 μ M) evoked a rapid increase in the rate of ${}^{45}Ca^{2+}$ efflux. Kinetic analysis of the effect of IP₃ indicated the existence of two distinct Ca²⁺ fractions within the pool; only one, accounting for about one-third of the ATP-dependent Ca²⁺ content of the pool, was responsive to IP₃. The effect of IP₃ on ${}^{45}Ca^{2+}$ efflux from the non-mitochondrial pool does not require ATP, a finding that is inconsistent with a previous suggestion that this effect may be mediated by protein phosphorylation.

INTRODUCTION

An increase in cytosolic $[Ca^{2+}]$ is an early response of many cells to the presence of a hormone or neurotransmitter. In hepatocytes, and in many other cells, the initial increase in cytosolic [Ca²⁺] is independent of the presence of extracellular Ca²⁺ and is mainly due to mobilization of Ca2+ from intracellular stores (Exton, 1980; Aub et al., 1982: DeWitt & Putney, 1984). Phospholipase C-mediated hydrolysis of PIP, is believed to be the initial cellular response when receptors bind agonists that mobilize Ca²⁺ (Berridge, 1984). IP₃, the water-soluble product of PIP₂ hydrolysis, is thought to be the link between lipid hydrolysis at the plasma membrane and Ca2+ mobilization from intracellular stores (Berridge & Irvine, 1984). In many permeabilized cells, including guinea-pig hepatocytes (Burgess et al., 1984b), IP, evokes a rapid net release of Ca²⁺ from an intracellular pool. This pool is ATP-dependent; it is vesicular, since Ca^{2+} ionophores discharge it and prevent a subsequent response to IP₃; and it is non-mitochondrial, since normal responses to IP, are observed at free $[Ca^{2+}]$ below the threshold for mitochondrial uptake or in the presence of mitochondrial inhibitors (Burgess et al., 1984b). These results suggest that endoplasmic reticulum is probably the site of the intracellular IP₃-sensitive Ca²⁺ pool. Cell-fractionation studies further support this conclusion. IP₃ does not evoke Ca2+ release from isolated mitochondria, but it does cause release from subcellular fractions enriched in enzyme markers for endoplasmic reticulum (Dawson & Irvine, 1984; Prentki et al., 1984a; Streb et al., 1984).

In permeabilized neutrophils, IP_3 mobilizes Ca^{2+} from a non-mitochondrial pool, presumably endoplasmic reticulum, even when Ca^{2+} uptake into that pool is inhibited (Prentki *et al.*, 1984*b*), suggesting that a major site of action of IP_3 is a Ca^{2+} -efflux pathway of the endoplasmic reticulum. Using a different protocol, we report here that IP_3 stimulates Ca^{2+} efflux from a nonmitochondrial pool of permeabilized hepatocytes and that this action is sufficient to account for the quantity of Ca^{2+} released from the intracellular stores of intact hepatocytes by hormones. Although IP₃ evokes release of Ca^{2+} , maximal concentrations or repeated pulses of IP₃ evoke net release of only part of the accumulated Ca^{2+} (Biden *et al.*, 1984; Burgess *et al.*, 1984*a*; Joseph *et al.*, 1984). This could indicate either complete depletion of a fraction of the pool which is sensitive to IP₃, or partial depletion of a homogeneous Ca^{2+} pool. In the present study, we have examined the effects of IP₃ on the kinetics of Ca^{2+} efflux from the non-mitochondrial Ca^{2+} pool of permeabilized hepatocytes to determine whether all or part of the pool is IP₃-sensitive. We conclude that a distinct pool of Ca^{2+} can be completely emptied by IP₃, but a larger pool is not responsive.

EXPERIMENTAL

Preparation of permeabilized hepatocytes

Hepatocytes were prepared by collagenase digestion of livers isolated from sodium pentabarbitone-anaesthetized male Hartley guinea pigs (200-300 g) (Burgess et al., 1981). The cells were resuspended in Eagle solution supplemented with 2% (w/v) albumin at 37 °C; the pH was maintained at 7.4 by equilibration with O_2/CO_2 (19:1). Samples of cells were resuspended at a cell density of about 1 mg of cellular protein/ml in a Ca²⁺-free medium whose ionic composition otherwise resembled cytosol (Burgess et al., 1983). This medium had the following composition (mM): KCl, 100; NaCl, 20; NaHCO₃, 25; MgSO₄, 5; NaH₂PO₄, 0.96; EGTA, 1.0; albumin, 2%, w/v; pH 7.2 at 37 °C; the gas phase was O_2/CO_2 (19:1). Cells were permeabilized by addition of saponin (75 μ g/ml) for 7–10 min, after which about 99% of the cells were permeable to Trypan Blue. The permeabilized cells were washed and resuspended in the cytosolic medium without saponin and with CaCl₂ added give a free [Ca²⁺] of 180 nm, the estimated to concentration in an intact unstimulated hepatocyte (Burgess et al., 1983). Antimycin (10 μ M) was included to prevent mitochondrial substrate oxidation, and 2,4dinitrophenol (0.5 mm) and oligomycin (10 μ M) were added to prevent Ca²⁺ uptake by mitochondria.

Abbreviations used: IP₃, inositol 1,4,5-trisphosphate; PIP₂, phosphatidylinositol 4,5-bisphosphate.

Measurement of ⁴⁵Ca²⁺ efflux from the non-mitochondrial pool of permeabilized hepatocytes

Permeabilized cells were incubated in the cytosolic medium (free $[Ca^{2+}] = 180 \text{ nM}$) with ${}^{45}Ca^{2+}(1 \ \mu Ci/ml)$ at a density of 2–3 mg of cellular protein/ml. ${}^{45}Ca^{2+}$ uptake into the non-mitochondrial pool was initiated by addition of ATP (1.5 mm). The ${}^{45}Ca^{2+}$ contents of 100 μ l samples of cells were determined by rapid dilution into 10 ml of cold iso-osmotic sucrose (310 mm) containing EGTA (4 mm) and [³H]mannose (0.3 μ Ci/ml) to correct for trapped volume. Samples were rapidly filtered through Whatman GF/C filters, washed with 10 ml of cold iso-osmotic sucrose, and the filters were counted for radioactivity by liquid-scintillation counting. ATPdependent ⁴⁵Ca²⁺ uptake into the non-mitochondrial pool reaches a steady state within 10 min of the addition of ATP (Burgess et al., 1984a). In the present experiments, glucose and hexokinase or NaVO₃, at the concentrations given in the Results section, were added to the cells 13 min after addition of ATP. Both procedures inhibit ⁴⁵Ca²⁺ uptake into the pool such that the kinetics of ⁴⁵Ca²⁺ efflux are revealed. The effects of IP₃ on ⁴⁵Ca²⁺ efflux were examined by simultaneously adding it and NaVO₃ or glucose and hexokinase. The protein content and ⁴⁵Ca²⁺ specific radioactivity of each incubation were determined, and cell Ca²⁺ contents expressed in nmol of Ca^{2+}/mg of cellular protein.

Analysis of results

ATP-dependent ⁴⁵Ca uptake into the non-mitochondrial pool was calculated (nmol/mg of cellular protein) and then expressed as a percentage of the uptake at the time of addition of NaVO₃ or glucose and hexokinase. Logarithms of these percentages were used to calculate arithmetic means, standard errors and least-squares linear-regression lines. The statistics were then backtransformed to percentages (Sokal & Rohlf, 1981) and plotted semi-logarithmically.

Materials

IP₃ was prepared from ox brain (Irvine *et al.*, 1984). ⁴⁵CaCl₂ and [³H]mannose were supplied by NEN. Collagenase was obtained from Boehringer Mannheim and A23187 from Calbiochem. Hexokinase (type V from baker's yeast) and all other reagents were from Sigma.

RESULTS AND DISCUSSION

⁴⁵Ca uptake into the non-mitochondrial pool of permeabilized cells was increased from 0.36 ± 0.05 nmol/ mg of protein (mean ± s.e.m., n = 18) to $3.04 \pm$ 0.23 nmol/mg by addition of ATP. Subsequent addition of gltcose (10 mM) and hexokinase (0.1-50 units/ml) to deplete the medium of ATP decreased the ⁴⁵Ca²⁺ content of this pool. The maximal rate of ⁴⁵Ca²⁺ loss from the pool was observed after addition of 10 or 50 units of hexokinase/ml, implying that these additions depleted ATP sufficiently rapidly to allow ⁴⁵Ca²⁺ efflux to be observed free of remaining ATP-dependent uptake. In all later experiments, we used 50 units of hexokinase/ml and 10 mM-glucose to deplete ATP rapidly and thereby to reveal the kinetics of ⁴⁵Ca²⁺ efflux from pre-loaded pools.

The kinetics of $^{45}Ca^{2+}$ efflux from the non-mitochondrial pool after addition of glucose and hexokinase are shown in Fig. 1. A single, rapid, component accounts for

Fig. 1. Kinetics of ⁴⁵Ca²⁺ efflux from the non-mitochondrial pool of permeabilized hepatocytes

At 13 min after addition of ATP to permeabilized cells, glucose (10 mM) and hexokinase (50 units/ml) were added (zero time in this Figure). ${}^{45}Ca^{2+}$ contents of the cells are shown as a percentage of the ATP-dependent ${}^{45}Ca^{2+}$ uptake at the time of addition of glucose and hexokinase. Results are means ± S.E.M. for seven observations.

most of the efflux; slower components have not been further analysed. Subsequent experiments have examined the effects of IP_3 during the time when the rapid component accounts for most ⁴⁵Ca efflux from the pool.

Addition of $5 \mu M$ -IP₃ with glucose and hexokinase evoked a more rapid ⁴⁵Ca²⁺ efflux than did glucose and hexokinase alone (Fig. 2). The increased efflux was complete within 30 s and half-complete within 6 s (the shortest time of sampling). After 30 s, the rate constants for efflux were similar irrespective of the presence of IP₃. Similar results were obtained when NaVO₃ (1 mm, a concentration that totally inhibited ATP-dependent uptake into the non-mitochondrial pool of permeabilized hepatocytes; results not shown) was used to inhibit Ca²⁺ uptake into the pool. This indicates that NaVO₃ does not affect the efflux pathway that is regulated by IP₃. Several lines of evidence indicate that the transient stimulation of ⁴⁵Ca²⁺ efflux is attributable to complete depletion of an IP_3 -sensitive Ca^{2+} pool rather than to rapid degradation of IP_3 . Firstly, IP_3 is degraded with a half-time of several minutes by permeabilized guinea-pig hepatocytes under these conditions (B. A. Leslie, unpublished work). Secondly, the effects of addition of 5 μ m-or 15 μ m-IP₃ were not statistically different (results not shown). Thirdly, a second addition of IP₃ (5 μ M) did not evoke a second

Fig. 2. Effects of IP₃ on ⁴⁵Ca²⁺ efflux from the non-mitochondrial pool of permeabilized hepatocytes

Glucose (10 mM) and hexokinase (50 units/ml) were added alone (\odot) or with 5 μ M-IP₃ (\bigcirc) to permeabilized cells 13 min after addition of ATP. ⁴⁵Ca²⁺ contents are shown as percentages of the ATP-dependent ⁴⁵Ca²⁺ contents at the time of the additions (zero time in the Figure). Results are means ± S.E.M. for nine observations.

release of ${}^{45}Ca^{2+}$, whereas addition of IP₃ to the control cells caused a rapid efflux of ${}^{45}Ca^{2+}$ such that their ${}^{45}Ca^{2+}$ content fell to about the same value as the cells that had received two pulses of IP₃ (Fig. 3).

After the transient IP₃-induced ⁴⁵Ca²⁺ efflux, the rate constants for ⁴⁵Ca²⁺ efflux were similar irrespective of the presence of IP_3 (Fig. 2), indicating that IP_3 had not affected the Ca²⁺ pool from which this slower efflux occurs. Ionophore $A23187 (10 \ \mu M)$ completely discharges all of the 45Ca2+ in the ATP-dependent non-mitochondrial pool within 90 s ($t_1 = 20$ s), indicating that the inability of IP₃ to discharge this pool totally is not a consequence of the presence of a large bound fraction of Ca²⁺. Rather, there must be two physically distinct Ca²⁺ fractions within the non-mitochondrial pool, one sensitive to IP, and another insensitive. Extrapolation of the lines describing the IP₃-insensitive efflux to the time of addition of glucose and hexokinase or of glucose, hexokinase and IP_3 allows the size of the IP_3 -sensitive Ca^{2+} pool to be calculated (Fig. 2). This calculation suggests that, under the conditions of these experiments, with Ca²⁺ buffered at the concentration observed in intact unstimulated cells, about one-third of the ATP-dependent ⁴⁵Ca²⁺ uptake by the non-mitochondrial pool is sequestered in a pool that is IP₃-sensitive.

Fig. 3. Effects of two additions of IP₃ on ⁴⁵Ca²⁺ efflux from the non-mitochondrial pool of permeabilized hepatocytes

Permeabilized cells were incubated with ATP for 13 min before addition of glucose (10 mM) and hexokinase (50 units/ml) either alone (\odot) or with 5 μ M-IP₃ (\bigcirc) (additions made at zero time as shown in the Figure). Then 3 min later, 5 μ M-IP₃ was added to both incubations (arrow). ⁴⁵Ca²⁺ contents are shown as percentages of the ATP-dependent ⁴⁵Ca²⁺ content at the time of the first addition. Results are means±S.E.M. for six observations.

Permeabilized hepatocytes incubated in the presence of ATP release 25-35% of their ⁴⁵Ca²⁺ in response to maximal concentrations of IP₃ (Burgess et al., 1984a; Joseph et al., 1984). Furthermore, similar amounts of Ca^{2+} are released by intact hepatocytes stimulated by adrenaline and by permeabilized hepatocytes stimulated by IP₃ at concentrations estimated to occur in intact cells after stimulation by adrenaline (Burgess et al., 1984a). The results of the present study demonstrate that, when Ca2+ uptake into the non-mitochondrial pool is inhibited, IP_3 evokes Ca^{2+} release from a pool of comparable size and with a time course comparable with that observed in permeabilized cells in which Ca²⁺ uptake into the intracellular pool is not inhibited. Together, these findings confirm that the effects of agonists on the intracellular Ca²⁺ pools of hepatocytes are adequately explained by stimulation of Ca^{2+} efflux from a fraction of a non-mitochondrial pool that is IP₃-sensitive.

 IP_3 , at physiological concentrations, has been reported to activate a kinase that phosphorylates a 62kDa protein in a Ca²⁺-independent manner in cell lysates of cultured monkey fibroblasts and bovine brain (Whitman *et al.*, 1984). An attractive hypothesis, in light of the established role of protein phosphorylation in regulating sarcoplasmic-reticulum Ca²⁺ fluxes (Le Peuch *et al.*, 1979), is that IP₃-stimulated phosphorylation of this protein may be an early step in the sequence of events whereby IP₃ evokes Ca²⁺ release. In a previous study, Ca²⁺ release by IP₃ was insensitive to changes in [ATP] in the range 50 μ M-1.5 mM (Burgess *et al.*, 1984*b*). In the present study, IP₃ evoked Ca²⁺ efflux from the non-mitochondrial pool despite the absence (Fig. 2), even the prolonged absence (Fig. 3), of ATP; and the stimulation of Ca²⁺ efflux from the pool was similar whether uptake had been inhibited by NaVO₃ or by removal of ATP. It is therefore very unlikely that protein phosphorylation is a necessary step in the action of IP₃ on intracellular Ca²⁺ pools. Rather, protein phosphorylation may be another, parallel, intracellular effect of IP₃.

The present study and those by Prentki *et al.* (1984*b*) and Dawson & Irvine (1984) provide evidence that IP₃ stimulates Ca^{2+} release from a functionally, and presumably anatomically, distinct fraction of the endoplasmic reticulum. The last authors found that IP₃ evoked Ca^{2+} release from rat liver microsomal fractions, the Ca^{2+} was then re-accumulated, but a second pulse of IP₃ failed to elicit Ca^{2+} release. This they explained by proposing that IP₃ evoked release only from sensitive vesicles, but, in the continued presence of IP₃, the Ca^{2+} is then accumulated into an insensitive pool.

At present, the morphological correlate of the IP_3 -sensitive Ca^{2+} pool is unknown. However, it is tempting to speculate that the pool may be within endoplasmic reticulum that is closely associated with the plasma membrane. Such a location could explain the otherwise enigmatic finding that, once the hormone-sensitive intracellular Ca^{2+} pool has been depleted by stimulation of intact cells with agonists in Ca^{2+} -free media, subsequent restoration of extracellular Ca^{2+} allows the pool to refill without changes in cytosolic Ca^{2+} activity (Aub *et al.*, 1982; Poggioli & Putney, 1982).

We thank Robin Irvine for his generous gifts of $(1,4,5)IP_3$. This work was supported by a National Institutes of Health Grant, AM-32823.

Received 20 May 1985/15 July 1985; accepted 26 July 1985

REFERENCES

- Aub, D. L., McKinney, J. S. & Putney, J. W., Jr. (1982) J. Physiol. (London) 331, 557-565
- Berridge, M. J. (1984) Biochem. J. 220, 345-360
- Berridge, M. J. & Irvine, R. F. (1984) Nature (London) 312, 315-321
- Biden, T. J., Prentki, M., Irvine, R. F., Berridge, M. J. & Wollheim, C. B. (1984) Biochem. J. 223, 467–473
- Burgess, G. M., Claret, M. & Jenkinson, D. H. (1981) J. Physiol. (London) 317, 67-90
- Burgess, G. M., McKinney, J. S., Fabiato, A., Leslie, B. A. & Putney, J. W., Jr. (1983) J. Biol. Chem. 258, 15336– 15345
- Burgess, G. M., Godfrey, P. P., McKinney, J. S., Berridge, M. J., Irvine, R. F. & Putney, J. W., Jr. (1984*a*) Nature (London) **309**, 63–66
- Burgess, G. M., Irvine, R. F., Berridge, M. J., McKinney, J. S. & Putney, J. W., Jr. (1984b) Biochem. J. 224, 741-746
- Casteels, R. & Droogmans, G. (1981) J. Physiol. (London) 317, 263–279
- Dawson, A. P. & Irvine, R. F. (1984) Biochem. Biophys. Res. Commun. 120, 858–864
- DeWitt, L. M. & Putney, J. W., Jr. (1984) J. Physiol. (London) 346, 395-407
- Exton, J. H. (1980) Am. J. Physiol. 238, E3-E12
- Irvine, R. F., Brown, K. J. & Berridge, M. J. (1984) Biochem. J. 222, 269-272
- Joseph, S. K., Thomas, A. P., Williams, R. F., Irvine, R. F. & Williamson, J. R. (1984) J. Biol. Chem. 259, 3077–3081
- Le Peuch, C. J., Haiech, J. & Demaille, J. G. (1979) Biochemistry 18, 5150–5157
- Poggioli, J. & Putney, J. W., Jr. (1982) Pflugers Arch. 392, 239-243
- Prentki, M., Biden, T. J., Janjic, D., Irvine, R. F., Berridge, M. J. & Wollheim, C. B. (1984a) Nature (London) 309, 562-564
- Prentki, M., Wollheim, C. B. & Lew, D. P. (1984b) J. Biol. Chem. 259, 13777-13782
- Sokal, R. R. & Rohlf, F. J. (1981) Biometry, 2nd edn., W. H. Freeman, San Francisco
- Streb, H., Bayerdorffer, E., Haase, W., Irvine, R. F. & Schultz, I. (1984) J. Membr. Biol. 81, 241–253
- Whitman, M. R., Epstein, J. & Cantley, L. (1984) J. Biol. Chem. 259, 13652-13655