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Abstract 

Background Title-abstract screening in the preparation of a systematic review is a time-consuming task. Modern 
techniques of natural language processing and machine learning might allow partly automatization of title-abstract 
screening. In particular, clear guidance on how to proceed with these techniques in practice is of high relevance.

Methods This paper presents an entire pipeline how to use natural language processing techniques to make 
the titles and abstracts usable for machine learning and how to apply machine learning algorithms to adequately 
predict whether or not a publication should be forwarded to full text screening. Guidance for the practical use 
of the methodology is given.

Results The appealing performance of the approach is demonstrated by means of two real-world systematic reviews 
with meta analysis.

Conclusions Natural language processing and machine learning can help to semi-automatize title-abstract screen-
ing. Different project-specific considerations have to be made for applying them in practice.

Keywords Machine learning, Natural language processing, Language models, Systematic review, Meta analysis, 
Automatization, Title-abstract screening

Background
Collecting knowledge from different studies by com-
bining them within a systematic review with or without 
meta analysis is an important contribution to the genera-
tion of high-level evidence in medicine. This evidence is 
often used for the development of trustworthy guidelines 

and to inform policy makers, health care providers, 
and patients [1]. However, collecting the information 
included in different studies is a time-consuming task 
and the amount of biomedical literature is growing. The 
comprehensive literature search should be as extensive 
as possible to identify all relevant studies and to reduce 
the risk of reporting bias. As a consequence, thousands 
of citations matching the search criteria may be found. 
Subsequently, these citations need to be screened in 
two stages with regard to the inclusion and exclusion 
criteria to answer a particular medical research ques-
tion. In a first stage, the abstracts of all identified stud-
ies are screened and determined to be relevant or not. 
In the second stage, the full texts of the relevant studies 
are assessed regarding inclusion in the systematic review 
meeting the specific criteria.
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The average time from registration to publication of a 
systematic review is 67 weeks [2] even though no patient 
data has to be collected but only existing studies are 
screened and summarized. Due to the importance of 
systematic reviews for evidence-based medicine and the 
large amount of work required, there are approaches to 
(semi-)automate various processes including the search 
of randomized controlled trials (RCT), screening of cita-
tions, data extraction, and bias assessment [3]. In particu-
lar, title-abstract (TIAB) screening is a time-consuming 
task since it is common practice that at least two human 
reviewers independently read all identified titles and 
abstracts and decide whether the respective citation has 
to be included or excluded from full-text screening. Disa-
greement is commonly solved by a third person. How-
ever, this task consists of plain text reading and could 
thus potentially be done by methods of natural language 
processing (NLP) and machine learning (ML). More spe-
cifically, a combined text processing and ML pipeline 
could be established to, first, convert titles and abstracts 
into a dataset that is suitable for ML and, second, build a 
classifier to the classification problem “include/exclude.”

Some existing software tools support the TIAB 
screening process for systematic reviews in medi-
cal research [4]. Those are, for example, Abstractr [5], 
RobotReviewer [6], EPPI Reviewer [7], RobotAnalyst 
[8], SWIFT-Review [9], Colandr [10], Rayyan [11], Dis-
tillerSR [12], and ASReview [13]. Typically, these tools 
process the titles and abstracts using NLP and subse-
quently train an ML algorithm to classify additional 
publications. These tools share a common feature: they 
train multiple ML models adaptively. This is achieved 
by continually augmenting the training dataset with 
publications identified as most relevant by the ML algo-
rithm, a process known as active learning [13]. Con-
sequently, the tool engages with reviewers during the 
screening process, iteratively recommending the next 
papers to be reviewed. However, this approach may 
be inconvenient in practice, as screeners may find it 
uncomfortable to frequently pause their workflow to 
await the ML model’s recommendation for the next 
paper to screen. A great advantage of these tools is their 
easy usage for researchers without strong programming 
skills and their high performance in applications. They 
could reduce the workload with minimal risk of exclud-
ing relevant citations. However, these approaches are 
typically inflexible and cannot be adapted to specific 
demands. Evaluation studies showed that their perfor-
mance greatly varied when applied to different types 
of reviews [14–16]. Furthermore, only one classifica-
tion algorithm is trained based on a specific data rep-
resentation. It has been shown that the performance of 
a classifier depends on the processing of the titles and 

abstracts and the choice of the model [17]. Lange et al. 
[17] compared various methods by means of diagnos-
tic test studies, and other approaches focused, e.g., on 
pre-clinical animal studies [18], in vitro studies [19], or 
cluster randomized trials [20]. Recently, Kebede et  al. 
[21] evaluated the performance of NLP and ML algo-
rithms for TIAB screening.

These tools can be subsumed into two categories. First, 
there are proof-of-concept publications which show that 
ML can help with TIAB screening but do not provide 
guidance on how to apply the procedures in practice. 
Second, complete software packages are made available 
that allow the application of NLP and ML techniques 
to TIAB screening. While these packages can be enor-
mously helpful, they are hardly adjustable. This means 
that the source code can be modified only with much 
effort (or not at all) and this complicates their applicabil-
ity in situations that deviate from the intended use case. 
Examples of such deviations may be another data coding 
or the desire to apply other than the implemented NLP 
or ML techniques. A detailed description of the neces-
sary steps to apply NLP and ML techniques in practice 
together with easy-to-apply source code and recommen-
dations for practical use is still missing to the best of our 
knowledge.

In this paper, we present a semi-automated approach 
to TIAB screening, which is straightforward, transpar-
ent, and allows for customization in order to be adaptable 
to different scopes of systematic reviews. This makes the 
presented methodology of particular interest for statisti-
cians and other programmers who work on the task to 
automatize steps of TIAB screening by ML techniques. 
We describe in detail the text processing that converts 
the titles and abstracts into a dataset which is subse-
quently used to train a selection of ML algorithms. The 
resulting dataset is split into a training and a test set. For 
the training set, the include/exclude decision is made by 
two human screeners. Different ML models are trained 
on this training data and evaluated on the test set. We 
iteratively grow the training set in order to investigate the 
required minimum training set size after which at least 
one of the human screeners can stop their involvement. 
This procedure is described in the “Methods” section. We 
present the application of our approach to the systematic 
reviews by Friedrichs et al. [22] and Wadewitz et al. [23] 
in the  “Results” section. In the “Practical implications” 
section, we elaborate in more detail how the approach 
can be applied to a concrete practical setting. In the “Dis-
cussion” section, we conclude with a discussion, and give 
an outlook for future application and research on the 
presented approach.
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Methods
The methodology of the presented classification approach 
is summarized in Fig. 1. In the following subsections, the 
respective steps are described in detail.

Datasets
Two different datasets from real systematic review pro-
jects were used regarding the development and evalua-
tion of the approach of semi-automated TIAB screening.

INTRISSI
The presented approach was first developed and evaluated 
within the systematic review with meta analysis by Frie-
drichs et al. [22] from the INTRISSI project. The objective 
of this systematic review is to assess the relative contri-
bution of intravenous antibiotic prophylaxis, mechanical 
bowel preparation, oral antibiotic prophylaxis, and com-
binations thereof towards the reduction of surgical site 
infection incidence in elective colorectal resections. Litera-
ture search was performed in several databases, including 
Cochrane Central Register of Controlled Trials (CEN-
TRAL), Cochrane Database of Systematic Reviews (CDSR) 
from The Cochrane Library, MEDLINE, LILACS (Litera-
tura Latinoamericana y del Caribe en Ciencias de la Salud), 
Current Contents/Clinical Medicine, and Web of Science. 
The systematic review was limited to randomized con-
trolled trials (RCT). The identified citations were imported 
to the software Rayyan [11] for the manual screening. 
Duplicates were removed and the citations were exported 
as CSV files to be used for the automated TIAB screening.

PPU
The approach was applied and evaluated in a further real 
systematic review about the comparison of surgical and 
alternative approaches for the treatment of perforated pep-
tic ulcers (PPU) [23]. The literature search was conducted 
in PubMed, Cochrane Library, Embase, Cumulative Index 

to Nursing and Allied Health Literature (CINAHL), Clini-
cal.Trials.gov, and International Clinical Trials Registry 
Platform (ICTRP). Again, the identified citations were 
imported to Rayyan [11], screened according to in- and 
exclusion criteria, and exported as CSV files.

Text processing
The unstructured titles and abstracts had to be trans-
formed into a data frame that allows the application of 
ML methods. We aimed at creating a data frame with 
one row per publication and one column per word (uni-
gram). The cells should show the counts how often the 
respective word appeared in the corresponding title and 
abstract. To achieve this, NLP techniques were applied. 
First, all words were set to lower case. Then, the words 
were lemmatized. This means that words were reduced to 
their lemmas, thus their intended meaning. For instance, 
the words “analyze” and its progressive form “analyzing” 
were both lemmatized to “analyze” since they have the 
same meaning. Afterwards, to avoid special characters, 
all of them (as well as numbers) were deleted as well as 
any white space. To avoid that words with the same inter-
pretation were treated as separate words, word stems 
were built using Porter’s stemming algorithm [24]. In a 
next step, we deleted fill words as, for instance, “and” or 
“also” as well as words that we did not expect to be use-
ful for classification as, e.g., “england” or “https.” These 
words were detected by comparing the word stems to 
those of the list of Grady Ward’s English words [25].

At last, one comment to lemmatization and stemming is 
warranted. In NLP, often only lemmatization is used since 
it returns words that indeed exist (e.g., “history” instead 
of the stem “histori”). However, in our case, we focused 
on whether or not a word stem appeared in the title/
abstract and, therefore, we only needed the word stems. 
Note that in those TIAB screening problems, there usually 
is a p > n situation, i.e., there are many more words than 

Fig. 1 Workflow of presented methodology. First, the title and abstracts are successively screened by two human reviewers who decide if a citation 
should be included or excluded. Next, the titles and abstracts are processed by natural language processing (NLP) techniques to receive a numeric 
dataset, that is subsequently used to train machine learning (ML) models with respect to binary classification of in- or exclusion



Page 4 of 14Pilz et al. Systematic Reviews          (2024) 13:274 

included studies. We made the best experience with using 
lemmatization and stemming together since this reduces 
the number of different words and therefore the number 
of different columns in the dataset, mitigating the p > n 
issue. To illustrate this effect, one can look at the words 
“program,” “programming,” and “programmer.” While lem-
matization reduces the progressive form “programming” 
to “program,” the noun “programmer” remains unchanged. 
Stemming, however, converts all three words to “pro-
gram.” In our case, we were not interested in differentiating 
whether someone is “programming” or whether is a “pro-
grammer.” The only fact of relevance was to know whether 
anything related to “program” appears in the text.

Machine learning
Variable selection
Due to the fact that the number of columns was much 
larger than the number of rows ( p > n ), variable selection 
was applied. First, we decided to remove all words (i.e., 
columns) that appeared only once since they would not 
contribute to the final decision due to a missing second 
appearance. Second, we applied an elastic net [26] that is an 
l1 - and l2-penalized logistic regression. The words that were 
selected by this procedure were used as candidate features 
for classification. Note that when the dataset was split into 
training and test set, the described variable selection proce-
dure was only applied on the training set to avoid bias.

Machine learning methods
According to the no-free-lunch theorem [27], there is no 
learning method that generally performs well for every 
prediction problem. This implies that a new model com-
parison is necessary for each prediction task. To depict 
the variety of methods appropriately, we chose a kernel-
based method (support vector machine), a linear-model-
based approach (logistic regression), and two tree-based 
methods, among which one uses bagging (random for-
ests) and one uses boosting (LightGBM) to combine mul-
tiple trees. In this section, the four candidate methods are 
briefly described and references are given. For a detailed 
description of statistical learning, we refer to the book by 
Hastie et al [28]. 

1. Support vector machines (SVMs) are a kernel-based 
learning method. The features are mapped by a ker-
nel function into high-dimensional feature spaces to 
allow for non-linear classification boundaries in the 
decision space. The empirical representer theorem 
reduces the dimension of the optimization prob-
lem and with advanced optimization techniques, 
the optimal SVM can be computed for different loss 
functions. A mathematical description of SVMs is 
given by Steinwart and Christmann [29].

2. Logistic regression is a popular variant of generalized 
linear models. In comparison to linear models that are 
suitable for continuous data, logistic regression is used 
for classification. The linear predictor is mapped by a 
suitably chosen link function into the interval [0,  1], 
thus defining a probability. A general overview of gen-
eralized linear models is provided by McCullagh and 
Nelder [30].

3. Random Forest [31] is an ensemble method of deci-
sion trees that is based on bagging. This means that 
the trees are trained on bootstrapped versions of the 
dataset in order to reduce variance in the data. These 
trees are then united by majority vote. Thus, the class 
that is predicted by the majority of the trees is chosen 
as random forest prediction.

4. LightGBM [32] is an approach for gradient boost-
ing of decision trees. By gradient boosting, its per-
formance is improved in each iteration. Compared 
with the probably more famous XGBoost algorithm, 
it shows a remarkable reduction in runtime.

Apart from logistic regression, all these methods have 
different hyperparameters that have to be set. We defined 
the hyperparameters by grid search and five-fold cross-
validation on the training set, thus the prediction of the 
validation set was entirely blinded. The concrete grids can 
be found in the code provided as supplemental material.

Performance measures
Since usually in TIAB screening the major part of publica-
tions is not forwarded to full-text screening, one has to deal 
with imbalanced data. In order to obtain a classification 
that is trained without focusing on a specific cutoff value 
for inclusion, the main performance measure is the area 
under the curve (AUC) under the receiver operating char-
acteristic (ROC) curve. Confidence intervals for the AUC 
are computed by bootstrapping. Since it is more impor-
tant to include all publications that should be included to 
full-text screening than excluding all non-relevant papers, 
a cutoff value will be defined. Publications with a larger to-
be-included probability than this cutoff will be included in 
the full-text screening and publications with a lower proba-
bility excluded. The proportion of correctly included papers 
among all included papers is denoted as true-positive rate. 
Analogously, the proportion of correctly excluded papers 
among all excluded papers is called true-negative rate.

To investigate the number of training samples that are 
needed to provide an acceptable prediction quality we 
applied the following procedure. The dataset was split into 
training and test sample. The size of the training sample 
was iteratively increased from 10% of the full dataset to 90% 
of the full dataset in steps of 10%. For each resulting clas-
sification problem, the variable selection procedure was 
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performed and the ML methods were trained on the train-
ing set. They were evaluated on the test set by computing 
the AUC.

Cutoff value
Furthermore, a cutoff value was determined that could be 
used to decide whether or not a publication should be for-
warded to full-text screening. Since the dataset is expected 
to be imbalanced (more publications are excluded from 
than included into full-text screening), special techniques 
are necessary. In general, one may optimize the Youden 
index or the geometric mean of sensitivity and specificity 
to obtain a “best” cutoff value. However, in the context of 
TIAB screening, mistakenly excluding relevant publications 
is worse than including too many publications since the 
first error cannot be corrected during full-text screening. 
Therefore, we propose the following approach to compute 
the cutoff value. We applied cross-validation on the training 
set since in practice the results of the test set are not known. 
In each iteration of the cross-validation, the training set was 
split into two subsets. On the first subset, the model was 
trained and the probabilities for inclusion of publications in 
the second subset were predicted by this model. The cutoff 
value was then defined as the smallest to-be-included prob-
ability among all publications in the second subset that were 
included to full-text screening by human screeners. For 
K-fold cross-validation, this yields K cutoff values. As final 
cutoff, one could for instance use the minimum, the median, 
or the mean of the K cutoff values, depending on how 
secure one wants to be to not miss important publications 
for full-text screening. These approaches will be explored in 
the “Choice of cutoff value” section.

Fine‑tuned language models
Currently, language models are gaining more and more 
attention. Those are neural-network-based text models 
which are trained on huge amounts of data to learn pat-
terns and generate coherent responses. To do text clas-
sification using language models, pretrained language 
models are fine-tuned by the training data to allow for 
classification. The titles and abstracts are transferred 
to the models as a whole together with their respective 
label (include or exclude). Then the underlying model is 
updated in order to learn to distinguish between to-be-
included and to-be-excluded publications.

An increasing number of language models exist but not all 
of them are freely available for fine-tuning. We applied two 
language models to our data. GPT-2 [33] is the most recent 
GPT-model that is freely available. Furthermore, we applied 
SciBERT [34], a variant of BERT [35] that is specifically 
trained for scientific text. Both are transformer-based mod-
els that differ in their architecture. While GPT-2 aims at 
predicting the next word in a sequence, given the previous 

words, BERT is designed to predict a missing word in a sen-
tence by considering context from both left and right. The 
latter makes BERT, and consequently also SciBert, well-
suited for the task of text classification while GPT-2’s main 
purpose is the generation of human-like text. However, it 
can be used for text classification as well. As the fine-tun-
ing of language models takes a long time and therefore also 
consumes a lot of energy, cutoff values as described above 
were not computed for the language models. For the same 
reason, we did not perform any hyperparameter tuning for 
the language models. This of course gives a disadvantage 
to the language models compared with the ML algorithms. 
It should, however, be noted that hyperparameter tuning 
would costs many hours of runtime, making the approach 
unfavorable for application in practice.

Software
Text processing was done using R, version 4.3.2 [36]. In 
particular, the packages textstem [37] and tm [38] 
were used for NLP techniques. The package qdap-
Dictionaries [39] was used as a reference diction-
ary containing the list of Grady Ward’s English words. 
For data wrangling and plotting, the tidyverse [40] 
packages were applied. Machine learning models were 
trained using Python, version 3.11, in particular the 
scikit-learn package [41]. Language models were 
fine-tuned in Python, using the transfomers library [42]. 
R and Python were connected by means of the package 
reticulate [43]. A reproducible report based on both 
languages was built with Quarto (https:// quarto. org/). 
Example code is available as supplemental material.

Results
INTRISSI
We used the research question by Friedrichs et al. [22] as 
an example, which was briefly outlined in the “INTRISSI” 
section. In the literature research, after removing dupli-
cates, 4958 citations were detected among which 4460 
were declared suitable for TIAB screening. Citations 
for which abstracts were not available or in another lan-
guage than English were removed. The human screeners 
included 225 of these publications for full-text screen-
ing. After full-text screening, 128 citations remained for 
the systematic review. For the classification, 10164 word 
stems appeared at least twice in the titles and abstracts.

Next, the results are reported for iteratively increasing the 
training sample from 10% to 90% of the total dataset in steps 
of 10%. The included publications were distributed uni-
formly to the 10% batches, this means that also the number 
of to-be-included publications continuously increases with 
an increasing training sample. The AUC values for each 
method are visualized in Fig. 2. The corresponding 95% con-
fidence intervals are provided in Table 1 in the Appendix.

https://quarto.org/
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We observe that the larger the training sample, the better 
the performance of the complex methods random forest, 
LightGBM, and support vector machine. This shows once 
more that machine learning methods need a certain amount 
of data to be able to outperform classical methods such as 
logistic regression. The AUC values were above 87% for the 
random forest even with a training sample of only 447 pub-
lications. The results remained quite stable from a training 
proportion of 1341 publications on. The only exception was 
the SVM at a training size of 3125 publications where the 
performance dropped remarkably. This illustrates that in the 
current dataset, a training set of 1341 publications would 
have been sufficiently large to predict the remaining papers’ 
allocation. The language models SciBERT and GPT-2 per-
form weak for a small amount of training data. From a 
training size of 1341 on, they perform equally well as the 
tree-based methods random forest and LightGBM. How-
ever, they do not outperform these algorithms. It should be 
recalled that no hyperparameter tuning was performed for 
the language models for runtime reasons.

PPU
To explore our findings on a second dataset, we investi-
gated the systematic review PPU as outlined in the “PPU” 
section. In the literature research, 1343 publications were 
declared suitable for TIAB screening. The human screen-
ers included 79 of these publications for full-text screen-
ing. For the classification, 4370 word stems appeared at 
least twice in the titles and abstracts.

Figure  3 shows the results depending on the size of 
the training data. In the Appendix, Table 2 gives the cor-
responding 95% confidence intervals. In this example, 

larger sample sizes are needed to achieve an AUC of 
more than 80%. Furthermore, the finding that logistic 
regression and SVMs do not perform on an equivalent 
level as the other algorithms is confirmed here. From a 
training sample of around 1000 publications on, the lan-
guage models (again without hyperparameter tuning) are 
the best-performing methods. Particulary the SciBERT 
algorithm outperforms all other methods on this data-
set. AUC values in the range of more than 90% as in the 
INTRISSI example are only observed for SciBERT. Note, 
however, that the total sample size was smaller here.

Choice of cutoff value
For the systematic review INTRISSI, we analyzed the 
cutoff values that are defined only on the training set 
in order to decide which publications from the test set 
should be included into full-text screening. Besides the 
cutoff, also the corresponding true-positive and true-
negative rates are reported. These three numbers are 
depicted in Fig.  4 for each learning method and when 
choosing the final cutoff as mean, median, or minimum, 
respectively, of the cutoff values that were obtained by 
cross-validation. As mentioned in the “Fine-tuned lan-
guage models” section, the cutoff values were not com-
puted for the language models due to an enormous 
amount of runtime and resources that would have been 
necessary.

We observed that the true-positive rates were in a 
high range from training samples of 1341 publications 
onwards when the learning method was a random forest 
or LightGBM. Especially the random forest also showed 
high true-negative rates. This observation is in line with 

Fig. 2 AUC values depending on the size of the training set
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the AUC values that were highest for the tree-based 
approaches random forest and LightGBM. There were 
no large differences between choosing the mean or the 
median of the cutoff values obtained from cross-valida-
tion. Choosing the minimum increased the true-positive 
rate by decreasing the true negative rate as expected. Thus 
the minimum reduced the probability of missing impor-
tant publications for full-text screening by increasing the 
number of to-be-excluded publications that were falsely 
included into full-text screening. The true-negative rates 
were not monotonic in the proportion of the training set. 
This could hold true since we randomly chose the publica-
tions to be added to the training set iteratively and thus 
it may have happened that in one iteration more or less 
complicated cases switch from test to training set, making 
the classification more or less difficult, respectively.

Practical implications
Extended workflow
Figure  1 showed the workflow of the presented ML 
approach. In practice, however, the picture has to be 
extended to demonstrate the entire workflow. This is 
depicted in Fig.  5. When applying the demonstrated 
approach in practice, a training sample has to be defined 
that is screened by two human reviewers. Based on this 
training sample, an ML model is trained as described 
above and a cutoff value is defined. Each publication in 
the test sample is forwarded to full-text screening if the 
model predicts an inclusion probability of at least this 
cutoff value. One human reviewer screens the citations 
in test sample as well. Only for decisions where the ML 

model and the human reviewer disagree, the second 
human reviewer is considered to solve the conflict.

Size of training sample
The selection of the training sample size is critically impor-
tant in practice. This consideration is particularly pertinent 
given the highly imbalanced nature of classes (inclusion/
exclusion) in TIAB screening. Typically, there are signifi-
cantly more manuscripts to exclude than to include. Con-
sequently, it is impractical to recommend a single number 
as the optimal size of the training set. In some cases, even 
a large training sample may contain only a few publications 
to be included, which means that any ML model may lack 
sufficient information to accurately identify relevant publi-
cations. Thus, it may be more advisable to manually dou-
ble-screen titles and abstracts until a certain threshold of 
to-be-included publications is reached. Setting this thresh-
old is not trivial and may depend on the present classifica-
tion task. For instance, one may think about increasing the 
training sample until the cross-validated AUC stabilizes. In 
our concrete example, we observe that the training sam-
ple should contain at least 69 inclusions (cf. the “Results” 
section). This number is obtained from Fig. 2 as the AUC 
stabilizes from a training sample size of 1341 on that cor-
responds to a number of included publications of 69. How-
ever, this value could be different in other examples such 
that a case-specific evaluation is recommended.

Moreover, an adaptive procedure, as employed by many 
existing software tools, may be worth considering. For 
example, human double-screening could be conducted 
until 70 included papers are identified. At this point, an ML 

Fig. 3 AUC values depending on the size of the training set
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model could be trained along with a cutoff value for inclu-
sion. Subsequently, the ML model would be used to predict 
the inclusion probability for the remaining unscreened pub-
lications. Publications with inclusion probabilities near the 
cutoff value would be double-checked to further augment 
the training sample. The final ML model and cutoff value 
would then be determined based on this enlarged training 
sample.

Illustration of cutoff value choice
To illustrate the workflow on a particular example, we 
choose the systematic review INTRISSI and assume that 

40% of the data are available as training data. In this case, 
the training dataset consists of 1788 and the test set of 
2672 publications. We trained a random forest on the 
training data and predicted the test set without knowl-
edge of the outcome.

In the test set, there were 133 publications to be 
included and 2539 to be excluded for full-text screening, 
thus the data was quite imbalanced. Of note, this is not 
known in practice, as the test samples are not classified 
by two human reviewers. The cutoff value for inclusion 
to full-text screening is therefore selected based on the 
training sample exclusively. In the concrete example, 

Fig. 4 Cutoff, true-negative rate, and true-positive rate depending on size of the size of the training set
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selecting the cutoff value as the minimum of the cross-
validated values described in the “Cutoff value” and 
“Choice of cutoff value” sections, yields a cutoff of 0.219. 
If in the test set, all publications with a to-be-included 
probability of at least 0.219 had been included, all pub-
lications that were included by human screeners were 
included by the ML approach as well. This would have 
implied that in total 1491 publications would have been 
included for full-text screening. Therefore, this cutoff 
allowed a true-positive rate of 1 and a true-negative rate 
of 0.465.

Figure  6 shows the inclusion probabilities for the test 
set. It demonstrates that by the cutoff value of 0.219 (gray 
line), all to-be-included publications would indeed be 
included. However, this comes with the price of including 
many false positive publications with a to-be-included 
probability close to the cutoff value. The larger the prob-
ability for inclusion, the less false positive cases appear. 
Choosing a larger cutoff of around 0.3 would save a lot of 
false positive results but imply two false negative results, 
i.e. two publications that should be forwarded to full-text 
screening would be excluded after title-abstract screen-
ing (by the decision of the ML model). Again, note that 
these values are not known in a real example as the test 
set decisions are not known.

The time savings by the ML approach can be analyzed by 
counting how many abstracts have to be read in the tradi-
tional and in the ML-based approach respectively. While 
in the traditional approach, two reviewers would read 4460 
abstracts, in the ML approach, two reviewers would read 
1788 abstracts until the ML model is sufficiently trained. 
The remaining 2672 abstracts would only need to be read 
by one reviewer. For the 1358 publications of the test set 
with contradictory decision between the ML algorithm 
and the human reviewer, a second human reviewer would 
be asked to read their abstracts. In total, 8920 abstracts 
would have been read in the traditional, and 7606 abstracts 
in the ML approach. Assuming that it takes 1 minute to 
read an abstract [44], this would result in saving 1314 min-
utes, i.e. more than 21 hours of reading time.

Discussion
In this paper, we demonstrated that title-abstract screen-
ing can be partly automatized by an NLP and ML pipe-
line that converts the text into a dataset and treats the 
question of whether or not including a citation to full-
text screening as a supervised classification problem. In 
one of the two given datasets, we showed that tree-based 
ML methods as well as fine-tuned language models can 

Fig. 5 Extended workflow of presented methodology
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achieve AUC values of more than 0.95 when the training 
set consists of at least 1000 citations. This implies that 
human screeners only have to classify about 1000 pub-
lications while the remaining titles and abstracts could 
be allocated automatically to inclusion in or exclusion 
from full-text screening. It is not necessarily true that 
this generalizes to other title-abstract screenings as well 
and, therefore, we recommend a method comparison on 
the training set in order to identify the best ML method 
for the concrete problem at hand. In particular, different 
NLP or ML techniques than the presented ones may be 
more appropriate in another TIAB screening. The pre-
sented approach can be customized in a straightforward 
manner. Additional ML techniques can be implemented 
equivalently as in the supplemental software scripts.

A similar approach to this problem was presented by 
Kebede et al. [21], however without describing the NLP 
procedure in detail regarding lemmatization or stem-
ming, which can have marked impact on the classifica-
tion performance [17], and without the comparison to 
fine-tuned language models. They used more methods 
than we did in our approach and observed AUC val-
ues between 0.7 and 0.89. Their performance might be 
slightly worse since they did not include a general vari-
able selection at the beginning and thus had to work with 
a larger amount of words. Similar to our work, tree-based 
approaches, in their case random forest and XGBoost, 
were among the best performing methods.

Fine-tuned language models showed a comparable to 
superior performance to classic ML algorithms, whereby 
it must be noted that no hyperparameter tuning was per-
formed for runtime reasons and that we did not use the 
most recent language models. However, in the context 
of TIAB screening, language models suffer from some 

limitations. First, it takes a long time to fine-tune them 
what decelerates the training step and complicates tasks 
like cutoff computation. Second, since they use the titles 
and abstracts as a whole, they do not provide a vari-
able importance measure. Therefore, the most important 
words for classification cannot be analyzed afterwards 
to validate the procedure. Seen through the lense of the 
emerging field of interpretable machine learning, the lack 
of such explanations may be seen as a limitation of lan-
guage models. However, it is important to mention that 
the field of language models is growing rapidly and that 
the current front runners (for instance GPT-4) were not 
available for our analysis. When these models will be 
available for free in the future, they may outperform the 
methods presented in this manuscript. The same asser-
tion holds for the possibility of hyperparameter tuning 
of language models, which may become better applica-
ble in the future, if computer power increases. Of note, 
recent activities [45] present interesting ideas of how to 
overcome the limitation of runtime. There, the language 
models are not fine-tuned but the titles and abstracts of 
the training data together with the titles and abstracts 
to be classified are given within the prompt. This kind of 
prompt engineering enormously reduces the computa-
tion time and did not show inferior results for different 
language models [45].

Another important aspect with regard to the practi-
cal applicability of the presented approach is the combi-
nation of the NLP/ML pipeline with human screeners. 
Obviously, two human screeners are necessary to clearly 
classify the training sample of at least one thousand pub-
lications that will be used to train the ML algorithms. For 
the test data, different approaches are imaginable. First, as 
outlined in the “Practical implications” section, one may 

Fig. 6 Histogram of inclusion probabilities of the test set
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replace one human screener by the machine, thus the 
machine would serve as second reviewer. Another human 
screener would then be consulted to check cases in which 
the human and the machine decision differ. Second, to 
save more time, one may even imagine to classify the 
test sample completely by the NLP/ML engine. Publica-
tions whose inclusion probability are close to the defined 
cutoff value could then be analyzed by a human screener 
to reduce the risk to wrongly exclude important publica-
tions. This second approach could help to avoid time that 
is spent with publications that do not at all fit to the scope 
of the intended review, in particular with regards to the 
fact that a human screener needs on average one min-
ute per title/abstract [44]. In total, the utilization scope 
of the presented approach depends on the individual 
risk one is willing to take to mistakenly miss few relevant 
publications.

In practice, the cutoff value that indicates whether 
a specific publication should be forwarded to full-
text screening is of high importance. We presented an 
approach of how this cutoff value can be defined on the 
training set and evaluated it on the test set. Of course, 
such a test set evaluation is not possible in practice as 
the results of the test set are not known. The results 
from the “Choice of cutoff value” section showed 
that under a high-performing ML algorithm (in our 
results random forest or LightGBM), using the mini-
mum of the cross-validated cutoff values as final cutoff 
value implies that no to-be-included publication in the 
test set is missed, even for a small training sample. Of 
course, this comes with the cost of a large number of 
false positive publications in the test set, i.e., publica-
tions that are falsely recommended for full-text screen-
ing. This can be toned down by two strategies. First, one 
may more deeply analyze publications whose to-be-
included probability is close to the cutoff value in order 
to ensure correct decisions for them. Second, one can 
probably avoid a lot of these cases by including a sec-
ond human reviewer in cases where the ML model and 
the remaining human reviewer disagree. We think that 
this strategy would detect the majority of false positive 
inclusions and thus reduce the amount of papers for full 
text screening. It is crucial to acknowledge that, regard-
less of the methodology employed, there is no assurance 
that all relevant publications will be captured. The fact 
that the presented strategies do not provide an estimate 
of the procedure’s recall (i.e., the proportion of correctly 
included publications among all publications) is a limi-
tation of the described procedure and may be an inter-
esting area for future research.

O’Connor et  al. [46] discussed the barriers to adap-
tion of automation tools. They claimed more evalu-
ation and evidence were needed to gain trust in the 

systematic review community for the implementation 
of automation technologies. In the years that have 
passed since then, the evidence base has grown and 
tools were retrospectively evaluated and applied [14–
16, 47]. Additionally, our approach proved to reduce 
the screening burden at minimal risk of missing any rel-
evant study. With this in mind, we want to encourage 
the systematic review community, especially research-
ers with programming background, to use semi-auto-
mated title-abstract screening approaches in order to 
contribute to faster generation of systematic reviews 
with less workload. Even though there are several tools 
and platforms available, they are still very rarely used 
for systematic reviews [48].

For researchers it would be highly beneficial to not 
only automatize the title-abstract screening but also 
the full-text screening. However, this requires the 
application of the NLP techniques on a much larger 
amount of text, namely the entire paper and not only 
title and abstract. This implies more pre-processing 
work in order to correctly handle figures, tables, and 
further elements that appear between text blocks. Fur-
thermore, this much larger number of words drasti-
cally increases the noise in the dataset and, therefore, 
makes the classification problem more difficult to 
solve. This is in particular important since one does 
not want to miss any publication that would have 
been included by human screeners. Despite these dif-
ficulties, the automatization of full-text screening is an 
interesting topic for future research when computer 
performance will improve.

Conclusions
We presented the workflow to use natural language 
processing, machine learning, and fine-tuned language 
models to the task of title-abstract screening. The used 
methodology was described in detail and with focus 
on being reproducible in practice. The latter makes the 
approach easily adjustable to the particular needs of a 
specific systematic review and therefore facilitates its 
application. By means of a systematic review, we dem-
onstrated the strong performance of these techniques 
by achieving AUC values of more than 95%. In a sec-
ond systematic review, we could achieve AUC values 
of around 85% under smaller sample sizes. In both 
cases, it was illustrated that tree-based machine learn-
ing methods show a comparable performance to freely 
available fine-tuned language models. In particular, 
we extensively discussed a suitable choice of the cut-
off value for inclusion of papers into full text screen-
ing in order to not only give a proof of concept but also 
give guidance how to apply the method in practice for 
future systematic reviews.
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Appendix: Tables

Table 1 AUC values with 95% confidence interval from different ML methods by size of training sample for the systematic review 
INTRISSI

Training size Logistic regression Support vector 
machine

Random forest LightGBM SciBERT GPT‑2

447 83 [80, 85] 78 [75, 82] 87 [85, 90] 88 [85, 90] 74 [70, 78] 55 [51, 59]

894 81 [78, 83] 79 [76, 82] 89 [87, 92] 88 [86, 91] 87 [84, 89] 78 [75, 81]

1341 79 [76, 83] 85 [82, 88] 95 [93, 96] 94 [92, 96] 93 [91, 95] 91 [89, 94]

1788 79 [74, 84] 89 [85, 92] 96 [95, 97] 95 [94, 96] 96 [95, 97] 92 [90, 94]

2235 83 [78, 87] 92 [90, 95] 96 [95, 97] 95 [94, 96] 97 [96, 98] 96 [95, 97]

2680 80 [75, 85] 91 [88, 94] 96 [95, 98] 95 [93, 97] 97 [96, 98] 94 [92, 96]

3125 81 [75, 87] 77 [71, 84] 97 [96, 98] 93 [90, 96] 97 [96, 98] 96 [95, 98]

3570 80 [72, 87] 90 [85, 94] 97 [96, 99] 93 [89, 97] 98 [97, 99] 96 [95, 98]

4015 78 [66, 90] 83 [72, 94] 97 [95, 99] 96 [92, 99] 97 [95, 98] 96 [93, 98]

Values are given as a percentage

Table 2 AUC values with 95% confidence interval from different ML methods by size of training sample for the systematic review PPU

Training size Logistic regression Support vector 
machine

Random forest LightGBM BERT GPT‑2

135 75 [70, 81] 63 [56, 71] 71 [63, 78] 67 [60, 73] 70 [64, 76] 52 [46, 59]

270 72 [67, 78] 60 [51, 68] 69 [62, 76] 73 [67, 80] 79 [74, 84] 54 [48, 60]

405 72 [66, 78] 57 [48, 66] 68 [58, 77] 68 [58, 78] 77 [71, 83] 64 [57, 70]

540 68 [59, 76] 61 [51, 71] 75 [67, 84] 74 [65, 83] 76 [69, 83] 73 [66, 80]

674 69 [61, 76] 60 [50, 70] 77 [68, 86] 80 [72, 87] 91 [88, 94] 76 [69, 83]

808 59 [47, 71] 59 [47, 71] 81 [73, 89] 76 [67, 84] 87 [82, 92] 80 [73, 88]

942 65 [52, 78] 62 [49, 75] 78 [65, 91] 81 [71, 90] 88 [83, 94] 84 [76, 92]

1076 72 [59, 86] 68 [56, 80] 83 [70, 96] 80 [68, 93] 92 [87, 97] 84 [75, 94]

1210 70 [43, 97] 66 [43, 89] 76 [52, 100] 80 [56, 100] 89 [75, 100] 85 [65, 100]

Values are given as a percentage

Abbreviations
ML  Machine learning
NLP  Natural language processing
SVM  Support vector machine
TIAB  Title-abstract

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13643- 024- 02688-w.

Supplementary Material 1.

Acknowledgements
Figures 1 and 5 have been designed using images from Flaticon.com (the 
icons csv, paper, and stationery stack made by Freepik, the monitor icon made 
by Icongeek26).

Authors’ contributions
MP, SZ, and JV prepared the first draft of the manuscript. MP, SZ, MK, and JV 
developed the statistical procedure. MP trained the machine learning and 

fine-tuned the language models. JF, EW, and UR created the datasets for the 
analysis. All authors read and approved the final manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. We thank the 
German Federal Ministry of Education and Research (BMBF) for funding this 
work under grant 01KG2106.

Data availability
The datasets used during the current study are available from the correspond-
ing author on reasonable request. The R- and Python-code is available as 
supplemental material.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

https://doi.org/10.1186/s13643-024-02688-w
https://doi.org/10.1186/s13643-024-02688-w


Page 13 of 14Pilz et al. Systematic Reviews          (2024) 13:274  

Received: 26 February 2024   Accepted: 20 October 2024

References
 1. Zhang Y, Akl E, Schünemann H. Using systematic reviews in guideline 

development: The GRADE approach. Res Synth Methods. 2019;10(3):312–
29. https:// doi. org/ 10. 1002/ jrsm. 1313.

 2. Borah R, Brown A, Capers P, Kaiser K. Analysis of the time and workers 
needed to conduct systematic reviews of medical interventions using 
data from the PROSPERO registry. BMJ Open. 2017;7(2). https:// doi. org/ 
10. 1136/ bmjop en- 2016- 012545.

 3. Marshall I, Wallace B. Toward systematic review automation: A practical 
guide to using machine learning tools in research synthesis. Syst Rev. 
2019;8(1):1–10. https:// doi. org/ 10. 1186/ S13643- 019- 1074-9/ TABLES/2.

 4. Harrison H, Griffin S, Kuhn I, Usher-Smith J. Software tools to support 
title and abstract screening for systematic reviews in healthcare: an 
evaluation. BMC Med Res Methodol. 2020;20(7). https:// doi. org/ 10. 1186/ 
s12874- 020- 0897-3.

 5. Wallace B, Small K, Brodley C, Lau J, Trikalinos T. Deploying an Interactive 
Machine Learning System in an Evidence-Based Practice Center. http:// 
github. com/ bwall ace/ abstr ackr- web. Accessed 30 Oct 2024.

 6. Marshall IJ, Noel-Storr A, Kuiper J, Thomas J, Wallace BC. Machine learning 
for identifying Randomized Controlled Trials: An evaluation and practi-
tioner’s guide. Res Synth Methods. 2018;9(4):602–14. https:// doi. org/ 10. 
1002/ jrsm. 1287.

 7. Thomas J, Brunton J, Graziosi S. EPPI-Reviewer 4: software for research 
synthesis. EPPI-Centre Software. London: Social Science Research Unit, 
UCL Institute of Education; 2010.

 8. Przybyła P, Brockmeier A, Kontonatsios G, Le Pogam M, McNaught J, von 
Elm E, et al. Prioritising references for systematic reviews with RobotAna-
lyst: A user study. Res Synth Methods. 2018;9(3):470–88. https:// doi. org/ 
10. 1002/ jrsm. 1311.

 9. Howard B, Phillips J, Miller K, Tandon A, Mav D, Shah M, et al. SWIFT-
Review: A text-mining workbench for systematic review. Syst Rev. 
2016;5(1):1–16. https:// doi. org/ 10. 1186/ s13643- 016- 0263-z.

 10. Cheng SH, Augustin C, Bethel A, Gill D, Anzaroot S, Brun J, et al. Using 
machine learning to advance synthesis and use of conservation and 
environmental evidence. Conserv Biol. 2018;32(4):762–4. https:// doi. org/ 
10. 1111/ cobi. 13117.

 11. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan - a web 
and mobile app for systematic reviews. Syst Rev. 2016;5(210). https:// doi. 
org/ 10. 1186/ s13643- 016- 0384-4.

 12. Gartlehner G, Wagner G, Lux L, Affengruber L, Dobrescu A, Kaminski-
Hartenthaler A, et al. Assessing the accuracy of machine-assisted abstract 
screening with DistillerAI: A user study. Syst Rev. 2019;8(1):1–10. https:// 
doi. org/ 10. 1186/ s13643- 019- 1221-3.

 13. van de Schoot R, de Bruin J, Schram R, Zahedi P, de Boer J, Weijdema 
F, et al. An open source machine learning framework for efficient and 
transparent systematic reviews. Nat Mach Intell. 2021;3(2):125–33. https:// 
doi. org/ 10. 1038/ s42256- 020- 00287-7.

 14. Gates A, Johnson C, Hartling L. Technology-assisted title and abstract 
screening for systematic reviews: A retrospective evaluation of the 
Abstrackr machine learning tool. Syst Rev. 2018;7(1):1–9. https:// doi. org/ 
10. 1186/ S13643- 018- 0707-8.

 15. Gates A, Guitard S, Pillay J, Elliott S, Dyson M, Newton A, et al. Perfor-
mance and usability of machine learning for screening in systematic 
reviews: A comparative evaluation of three tools. Syst Rev. 2019;8(1):1–11. 
https:// doi. org/ 10. 1186/ S13643- 019- 1222-2/ TABLES/3.

 16. Gates A, Gates M, Sebastianski M, Guitard S, Elliott S, Hartling L. The semi-
automation of title and abstract screening: A retrospective exploration 
of ways to leverage Abstrackr’s relevance predictions in systematic and 
rapid reviews. BMC Med Res Methodol. 2020;20(1):1–9. https:// doi. org/ 10. 
1186/ s12874- 020- 01031-w.

 17. Lange T, Schwarzer G, Datzmann T, Binder H. Machine learning for identi-
fying relevant publications in updates of systematic reviews of diagnostic 
test studies. Res Synth Methods. 2021;12(4):506–15. https:// doi. org/ 10. 
1002/ JRSM. 1486.

 18. Bannach-Brown A, Przybyła P, Thomas J, Rice A, Ananiadou S, Liao J, 
et al. Machine learning algorithms for systematic review: reducing 

workload in a preclinical review of animal studies and reducing 
human screening error. Syst Rev. 2019;8(23). https:// doi. org/ 10. 1186/ 
s13643- 019- 0942-7.

 19. Wilson E, Cruz F, Maclean D, Ghanawi J, McCann S, Brennan P, et al. 
Screening for in vitro systematic reviews: a comparison of screening 
methods and training of a machine learning classifier. Clin Sci. 2023 
01;137(2):181–193. https:// doi. org/ 10. 1042/ CS202 20594.

 20. Al-Jaishi A, Taljaard M, Al-Jaishi M, Abdullah S, Thabane L, Devereaux P, 
et al. Machine learning algorithms to identify cluster randomized trials 
from MEDLINE and EMBASE. Syst Rev. 2022;11(1):1–10. https:// doi. org/ 10. 
1186/ S13643- 022- 02082-4.

 21. Kebede M, Le Cornet C, Fortner R. In-depth evaluation of machine learn-
ing methods for semi-automating article screening in a systematic review 
of mechanistic literature. Res Synth Methods. 2023;14(2):156–72. https:// 
doi. org/ 10. 1002/ jrsm. 1589.

 22. Friedrichs J, Seide S, Vey J, Zimmermann S, Hardt J, Kleeff J, et al. Interven-
tions to reduce the incidence of surgical site infection in colorectal resec-
tions: systematic review with multicomponent network meta-analysis 
(INTRISSI): study protocol. BMJ Open. 2021;11(11). https:// doi. org/ 10. 
1136/ bmjop en- 2021- 057226.

 23. Wadewitz E, Grilli M, Friedrichs J, Vey J, Klose J, Kleeff J, et al. Approaches 
for the treatment of perforated peptic ulcers: a network meta-analysis 
of randomized controlled trials. 2023. https:// doi. org/ 10. 1136/ bmjop 
en- 2023- 082732.

 24. Porter M. An algorithm for suffix stripping. Program. 1980;14(3):130–7. 
https:// doi. org/ 10. 1108/ eb046 814.

 25. Ward G. Moby Thesaurus II. 2002. https:// www. guten berg. org/ ebooks/ 3202.
 26. Zou H, Hastie T. Regularization and Variable Selection via the Elastic Net. 

J R Stat Soc Ser B (Stat Methodol). 2005;67(2):301–20. https:// doi. org/ 10. 
1111/j. 1467- 9868. 2005. 00503.x.

 27. Wolpert DH, Macready WG. No free lunch theorems for optimization. 
IEEE Trans Evol Comput. 1997;1(1):67–82. https:// doi. org/ 10. 1109/ 4235. 
585893.

 28. Hastie T, Tibshirani R, Friedman J. The elements of statistical learning: data 
mining, inference and prediction. 2nd ed. Springer; 2009. https:// doi. org/ 
10. 1007/ 978-0- 387- 84858-7.

 29. Steinwart I, Christmann A. Support Vector Machines. Information Science 
and Statistics. New York: Springer; 2008.

 30. McCullagh P, Nelder J. Generalized Linear Models. 2nd ed. Chapman and 
Hall/CRC; 1989. https:// doi. org/ 10. 1201/ 97802 03753 736.

 31. Breiman L. Random Forests. Mach Learn. 2001;45:5–32. https:// doi. org/ 10. 
1023/A: 10109 33404 324.

 32. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, et al. LightGBM: A 
Highly Efficient Gradient Boosting Decision Tree. In: Advances in Neural 
Information Processing Systems. vol. 30. Curran Associates, Inc.; 2017. p. 
3146–54. https:// dl. acm. org/ doi/ 10. 5555/ 32949 96. 32950 74.

 33. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I. Language Models 
are Unsupervised Multitask Learners. 2019. https:// www. bibso nomy. org/ 
bibtex/ 2c692 ad190 6553f ce788 d1667 21041 c70/ mstei ninger.

 34. Beltagy I, Lo K, Cohan A. SciBERT: Pretrained Language Model for Scien-
tific Text. In: EMNLP. 2019. https:// aclan tholo gy. org/ D19- 1371/.

 35. Devlin J, Chang M, Lee K, Toutanova K. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. In: Proceedings of the 
2019 Conference of the North. Association for Computational Linguistics; 
2019. https:// doi. org/ 10. 18653/ v1/ n19- 1423.

 36. R Core Team. R: A Language and Environment for Statistical Computing. 
Vienna; 2022. https:// www.R- proje ct. org/. Accessed 30 Oct 2024.

 37. Rinker T. textstem: Tools for stemming and lemmatizing text. Buffalo; 2018. 
Version 0.1.4. http:// github. com/ trink er/ texts tem. Accessed 30 Oct 2024.

 38. Feinerer I, Hornik K, Meyer D. Text Mining Infrastructure in R. J Stat Softw. 
2008;25(5):1–54. https:// doi. org/ 10. 18637/ jss. v025. i05.

 39. Rinker T. qdapDictionaries: Dictionaries to Accompany the qdap Package. 
Buffalo; 2013. 1.0.7. http:// github. com/ trink er/ qdapD ictio naries.

 40. Wickham H, Averick M, Bryan J, Chang W, McGowan L, Francois R, et al. 
Welcome to the tidyverse. J Open Source Softw. 2019;4(43):1686. https:// 
doi. org/ 10. 21105/ joss. 01686.

 41. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
et al. Scikit-learn: Machine Learning in Python. J Mach Learn Res. 
2011;12:2825–30.

 42. Wolf T, Debut L, Sanh V, Chaumond J, Delangue C, Moi A, et al. Transform-
ers: State-of-the-Art Natural Language Processing. In: Proceedings of the 

https://doi.org/10.1002/jrsm.1313
https://doi.org/10.1136/bmjopen-2016-012545
https://doi.org/10.1136/bmjopen-2016-012545
https://doi.org/10.1186/S13643-019-1074-9/TABLES/2
https://doi.org/10.1186/s12874-020-0897-3
https://doi.org/10.1186/s12874-020-0897-3
http://github.com/bwallace/abstrackr-web
http://github.com/bwallace/abstrackr-web
https://doi.org/10.1002/jrsm.1287
https://doi.org/10.1002/jrsm.1287
https://doi.org/10.1002/jrsm.1311
https://doi.org/10.1002/jrsm.1311
https://doi.org/10.1186/s13643-016-0263-z
https://doi.org/10.1111/cobi.13117
https://doi.org/10.1111/cobi.13117
https://doi.org/10.1186/s13643-016-0384-4
https://doi.org/10.1186/s13643-016-0384-4
https://doi.org/10.1186/s13643-019-1221-3
https://doi.org/10.1186/s13643-019-1221-3
https://doi.org/10.1038/s42256-020-00287-7
https://doi.org/10.1038/s42256-020-00287-7
https://doi.org/10.1186/S13643-018-0707-8
https://doi.org/10.1186/S13643-018-0707-8
https://doi.org/10.1186/S13643-019-1222-2/TABLES/3
https://doi.org/10.1186/s12874-020-01031-w
https://doi.org/10.1186/s12874-020-01031-w
https://doi.org/10.1002/JRSM.1486
https://doi.org/10.1002/JRSM.1486
https://doi.org/10.1186/s13643-019-0942-7
https://doi.org/10.1186/s13643-019-0942-7
https://doi.org/10.1042/CS20220594
https://doi.org/10.1186/S13643-022-02082-4
https://doi.org/10.1186/S13643-022-02082-4
https://doi.org/10.1002/jrsm.1589
https://doi.org/10.1002/jrsm.1589
https://doi.org/10.1136/bmjopen-2021-057226
https://doi.org/10.1136/bmjopen-2021-057226
https://doi.org/10.1136/bmjopen-2023-082732
https://doi.org/10.1136/bmjopen-2023-082732
https://doi.org/10.1108/eb046814
https://www.gutenberg.org/ebooks/3202
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1109/4235.585893
https://doi.org/10.1109/4235.585893
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1201/9780203753736
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://dl.acm.org/doi/10.5555/3294996.3295074
https://www.bibsonomy.org/bibtex/2c692ad1906553fce788d166721041c70/msteininger
https://www.bibsonomy.org/bibtex/2c692ad1906553fce788d166721041c70/msteininger
https://aclanthology.org/D19-1371/
https://doi.org/10.18653/v1/n19-1423
https://www.R-project.org/
http://github.com/trinker/textstem
https://doi.org/10.18637/jss.v025.i05
http://github.com/trinker/qdapDictionaries
https://doi.org/10.21105/joss.01686
https://doi.org/10.21105/joss.01686


Page 14 of 14Pilz et al. Systematic Reviews          (2024) 13:274 

2020 Conference on Empirical Methods in Natural Language Processing: 
System Demonstrations. Association for Computational Linguistics; 2020. 
pp. 38–45. https:// doi. org/ 10. 18653/ v1/ 2020. emnlp- demos.6.

 43. Ushey K, Allaire J, Tang Y. reticulate: Interface to ‘Python’. 2022. R package 
version 1.26. https:// CRAN.R- proje ct. org/ packa ge= retic ulate. Accessed 30 
Oct 2024.

 44. Shemilt I, Khan N, Park S, Thomas J. Use of cost-effectiveness analysis 
to compare the efficiency of study identification methods in sys-
tematic reviews. Syst Rev. 2016;5(1):1–13. https:// doi. org/ 10. 1186/ 
S13643- 016- 0315-4.

 45. Wang S, Scells H, Zhuang S, Potthast M, Koopman B, Zuccon G. Zero-shot 
Generative Large Language Models for Systematic Review Screening 
Automation. 2024. https:// arxiv. org/ abs/ 2401. 06320. Accessed 30 Oct 
2024.

 46. O’Connor A, Tsafnat G, Thomas J, Glasziou P, Gilbert S, Hutton B. A ques-
tion of trust: can we build an evidence base to gain trust in systematic 
review automation technologies? Syst Rev. 2019;8(143). https:// doi. org/ 
10. 1186/ s13643- 019- 1062-0.

 47. Hamel C, Kelly SE, Thavorn K, Rice DB, Wells GA, Hutton B. An evaluation 
of DistillerSR’s machine learning-based prioritization tool for title/abstract 
screening - impact on reviewer-relevant outcomes. BMC Med Res Meth-
odol. 2020;20(1):1–14. https:// doi. org/ 10. 1186/ s12874- 020- 01129-1.

 48. Blaizot A, Veettil SK, Saidoung P, Moreno-Garcia C, Wiratunga N, Aceves-
Martins M, et al. Using artificial intelligence methods for systematic 
review in health sciences: A systematic review. Res Synth Methods. 
2022;13(3):353–62. https:// doi. org/ 10. 1002/ jrsm. 1553.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://CRAN.R-project.org/package=reticulate
https://doi.org/10.1186/S13643-016-0315-4
https://doi.org/10.1186/S13643-016-0315-4
https://arxiv.org/abs/2401.06320
https://doi.org/10.1186/s13643-019-1062-0
https://doi.org/10.1186/s13643-019-1062-0
https://doi.org/10.1186/s12874-020-01129-1
https://doi.org/10.1002/jrsm.1553

	Semi-automated title-abstract screening using natural language processing and machine learning
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Datasets
	INTRISSI
	PPU

	Text processing
	Machine learning
	Variable selection
	Machine learning methods
	Performance measures
	Cutoff value

	Fine-tuned language models
	Software

	Results
	INTRISSI
	PPU
	Choice of cutoff value

	Practical implications
	Extended workflow
	Size of training sample
	Illustration of cutoff value choice

	Discussion
	Conclusions
	Appendix: Tables
	Acknowledgements
	References


