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Abstract
Objective White matter hyperintensities (WMH) on brain MRI images are the most common feature of cerebral small 
vessel disease (CSVD). Studies have yielded divergent findings on the modifiable risk factors for WMH and WMH’s 
impact on cognitive decline. Mounting evidence suggests sex differences in WMH burden and subsequent effects on 
cognition. Thus, we aimed to identify sex-specific modifiable risk factors for WMH. We then explored whether there 
were sex-specific associations of WMH to longitudinal clinical dementia outcomes.

Methods Participants aged 49–89 years were recruited at memory clinics and underwent a T2-weighted fluid-
attenuated inversion recovery (FLAIR) 3T MRI scan to measure WMH volume. Participants were then recruited for 
two additional follow-up visits, 1–2 years apart, where clinical dementia rating sum of boxes (CDR-SB) scores were 
measured. We first explored which known modifiable risk factors for WMH were significant when tested for a sex-
interaction effect. We additionally tested which risk factors were significant when stratified by sex. We then tested to 
see whether WMH is longitudinally associated with clinical dementia that is sex-specific.

Results The study utilized data from 713 participants (241 males, 472 females) with a mean age of 72.3 years and 
72.8 years for males and females, respectively. 57.3% and 59.5% of participants were diagnosed with mild cognitive 
impairment (MCI) for males and females, respectively. 40.7% and 39.4% were diagnosed with dementia for males 
and females, respectively. Of the 713 participants, 181 participants had CDR-SB scores available for three longitudinal 
time points. Compared to males, females showed stronger association of age to WMH volume. Type 2 Diabetes was 
associated with greater WMH burden in females but not males. Finally, baseline WMH burden was associated with 
worse clinical dementia outcomes longitudinally in females but not in males.
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Introduction
Cerebral small vessel disease (CSVD) is a common cause 
of stroke and cognitive impairment in older adults. 
White matter hyperintensities (WMH) observed on 
brain T2-weighted fluid-attenuated inversion recovery 
(T2-FLAIR) magnetic resonance imaging (MRI) are sur-
rogate markers of CSVD. While there is clear evidence 
that WMH leads to cognitive decline, the magnitude of 
its relationship to cognition and to the rate of cognitive 
decline varies considerably across individuals [1]. More-
over, studies have yielded divergent findings on the risk 
factors for development and progression of WMH [2]. 
Sex appears to be an important moderator in how risk 
factors are related to WMH incidence and severity, yet 
few have reported sex-specific risk factor differences [3]. 
A comprehensive understanding of sex-specific modifi-
able risk factors for WMH can inform improved diagnos-
tics and targeted treatment.

There are a limited number of studies which examine 
and report sex-specific differences for the consequences 
of WMH. A majority of studies found postmenopausal, 
older females to have higher WMH volume (WMHV) 
burden compared to males [4–10], yet some have 
observed no differences [11] or that males have higher 
WMH burden [12, 13]. Previous studies have also 
reported that modifiable risk factors for WMH are sex-
specific. Hypertension and higher body mass index (BMI) 
have been observed to have a stronger association with 
WMH burden in males compared to females [8, 14–16]. 
Studies have reported that diabetes and smoking are risk 
factors for females but not males [8, 17–19]. It has also 
been reported that WMH is associated with worse cogni-
tive and clinical outcomes in females compared to males 
[15]. The discrepant findings regarding sex-specific risk 
factors, severity, and clinical outcomes of WMH may be 
explained by regional differences in WMH distribution, 
which have been linked to varying risk factors and out-
comes in each sex suggesting different underlying etiolo-
gies [15, 20].

Thus, it is necessary to identify modifiable risk fac-
tors of CSVD have sex-specific associations with CSVD, 
which in turn can inform approaches to the prevention 
and treatment of dementia. CSVD is associated several 
vascular risk factors such as hypertension, hypothyroid-
ism, hypercholesterolemia, diabetes mellitus, body mass 

index (BMI), and tobacco smoking [21–23]. Since many 
vascular risk factors are treatable or modifiable, identify-
ing sex-specific risk factors could help reduce the over-
all burden of WMH and its associated cognitive decline. 
Moreover, by examining a broad range of sex-specific risk 
factors- including modifiable, genetic [24], and poten-
tial contributors such as amyloid burden [25]- a clearer 
understanding of the sex-specific risk architectures for 
CSVD can potentially be gained. In this study of 713 
predominantly cognitively impaired participants, we 
tested whether associations of modifiable risk factors for 
WMH varied by sex. We then tested any sex differences 
in longitudinal associations of WMH to clinical demen-
tia outcomes. We hypothesized that females would have 
a stronger association of age with WMH, the modifiable 
risk factors would be sex-specific, and that WMH would 
have a stronger effect on clinical dementia outcomes in 
females.

Methods
Participants
This study was a part of the ongoing Biobank Innovations 
for Chronic Cerebrovascular Disease With ALZheimer’s 
Disease Study (BICWALZS) and the Centre for Con-
vergence Research of Neurological Disorders. The BIC-
WALZS was planned and initiated in October 2016 by 
the Korea Disease Control and Prevention Agency for the 
Korea Biobank Project, a national innovative biobanking 
program that fosters biomedical and healthcare research 
and development infrastructure. The original goal was to 
facilitate, regulate, and ensure the optimal use of human 
biological specimens for research from real-world data in 
the fields of subjective cognitive decline (SCD), mild cog-
nitive impairment (MCI), Alzheimer’s disease (AD), and 
subcortical vascular dementia (SVaD).

All participants underwent Clinical Dementia Rating 
(CDR) global score and sum of boxes of CDR (CDR-SB) 
which was translate and certified in Korean [26]. The 
CDR is obtained by interviewing patients and their care 
givers and captures cognition and function. It assesses six 
domains (memory, orientation, judgment and problem 
solving, community affairs, home and hobbies, and per-
sonal care) and the score for each domain range from 0 
to 3, with a higher score indicating greater impairment. 
Then, CDR-SB score range from 0 to 18 and is a validated 

Discussion Older females have an accelerated increase in cerebrovascular burden as they age, and subsequently 
are more vulnerable to clinical dementia decline due to CSVD. Additionally, females are more susceptible to the 
cerebrovascular consequences of diabetes. These findings emphasize the importance of considering sex when 
examining the consequences of CSVD. Future research should explore the underlying mechanisms driving these sex 
differences and personalized prevention and treatment strategies.

Clinical trial registration The BICWALZS is registered in the Korean National Clinical Trial Registry (Clinical Research 
Information Service; identifier, KCT0003391). Registration Date 2018/12/14.
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outcome measure used in clinical trials of dementia [27, 
28].

The clinical diagnosis criteria used for this study were 
as follows: SCD criteria included self-and/or informant 
reports of cognitive decline but no objective impairment 
in cognitive tasks (no less than − 1.5 SD in each of the 
neurocognitive test domains and CDR = 0) [30] patients 
with MCI were evaluated based on a CDR [27] score of 
0.5, the expanded Mayo Clinic criteria [30], patients with 
AD dementia were evaluated using the National Institute 
on Aging-Alzheimer’s Association Core Clinical Prob-
able AD Dementia Criteria [31]; and subcortical vascular 
dementia (SVaD) was evaluated based on above-moder-
ate WMH and vascular dementia criteria in accordance 
with the Diagnostic Statistical Manual of Mental Disor-
ders, fifth edition [32]. Patients with a history of neuro-
logical or medical conditions such as territorial cerebral 
infarction, intracranial hemorrhage, Parkinson’s disease, 
heart failure, renal failure, or others that could interfere 
with the study such as end-stage diabetic complications 
were excluded. The presence or absence of type 2 diabe-
tes, hypertension, and hyperlipidemia was based on the 
clinical history of treatment with the diagnosis by a phy-
sician. Blood pressure, pulse pressure, body mass index 
and smoking status also were evaluated.

The BICWALZS is registered in the Korean National 
Clinical Trial Registry (Clinical Research Informa-
tion Service; identifier, KCT0003391). The study was 
approved by the Institutional Review Board of Ajou Uni-
versity Hospital (AJOUIRB-SUR-2021-038), and written 
informed consent was obtained from all the participants 
and caregivers. Participants from the BICWALZS were 
recruited at the memory clinics of Ajou University Hos-
pital and Suwon Community Geriatric Centers in South 
Korea. All the participants were Korean (Eastern Asian 
ethnicity). Among these individuals, we used data from 
713 participants with brain MRI, amyloid PET, APOE, 
CDR, and blood laboratory assessments. Within this 
cohort, 181 participants had two additional follow-up 
visits where their CDR was measured.

Blood sampling and laboratory assessments
Blood samples were collected by venipuncture after an 
overnight fast in the morning. Blood laboratory tests 
included HbA1c, serum lipid, homocysteine, and thyroid 
function tests.

APOE genotyping
Informed consent was obtained from all participants 
regarding the collection and genotyping of blood genomic 
DNA. Genomic DNA was isolated from the blood sam-
ples, and single-nucleotide polymorphism (SNP) geno-
typing was performed by DNA Link, Inc. (Seoul, Korea) 
using the Affymetrix Axiom KORV1.0-96 Array (Thermo 

Fisher Scientific, Waltham, MA, USA) according to the 
manufacturer’s protocol. The APOE genotypes were 
derived from rs429358 and rs7412, which were included 
in the array.

Amyloid PET acquisition and measurement of amyloid 
deposition
18F-flutemetamol PET scan was performed on a Dis-
covery STE/690 PET/CT scanner (GE, Milwaukee, WI, 
USA), with the same protocol used on all participants 
[17]. 18F-flutemetamol was injected into the antecubital 
vein as a bolus (mean dose, 185 MBq). After 90  min, a 
20-min PET scan (4 × 5  min dynamic frames) was per-
formed. The PET sequence parameters are listed in Sup-
plementary Table 1 [17]. 18F-flutemetamol PET scans 
were co-registered to individual MRI scans, which were 
normalized to a T1-weighted MRI template using trans-
formation parameters. To quantify 18F-flutemetamol 
retention, the standard uptake value ratio (SUVR) was 
obtained using the pons as a reference region. Global 
cortical 18F-flutemetamol retention was calculated using 
an automated anatomical labeling (AAL) atlas.

Image acquisition and MR data processing for white matter 
hyperintensities
Participants completed the baseline MRI scans on a GE 
Discovery MR750w 3T scanner or a Philips Achieva 
3T Scanner, including the following two sequences: a 
three-dimensional (3D) magnetization-prepared rapid 
gradient echo (MPRAGE) T1-weighted sequence and a 
T2-weighted (T2w) fluid-attenuated inversion recovery 
(FLAIR) sequence. The MRI sequence parameters are 
listed in Supplementary Table 1. To quantify the WMH 
on T2w FLAIR images, we leveraged a pretrained deep 
learning model described in our previous study [33]. 
Briefly, the deep learning segmentation model consists 
of a transformer-based encoder and a convolutional 
decoder to ensure a larger receptive field for lesion seg-
mentation. The model was trained on an unparalleled 
dataset including FLAIR images acquired at 1.5T, 3T 
and 7T with significant data augmentation incorporat-
ing commonly seen MR artifacts, such as, noise, inho-
mogeneity, and minor ghosting. FreeSurfer (version 7.1.1, 
https:/ /surfer .nmr.mg h.ha rvard.edu/) was used to  c a l c u 
l a t e intracranial volume (ICV). The total WMH volume 
(WMHV) was normalized by the ICV [WMHV = WMH/
ICV] and log-transformed for analysis.

Statistical analysis
We performed two analyses using multivariate linear 
regression: a sex-interaction analysis and a main effect 
analysis. Sex-specific risk factors for WMH were tested 
using multivariate linear regression models performed in 
R (version 4.3.1 https://www.R-project.org). Predictors 

https://surfer.nmr.mgh.harvard.edu/
https://www.R-project.org
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of interest included age, type 2 diabetes status, hyper-
tension status, body mass index (BMI), cardiovascular 
risks (pulse pressure, systolic and diastolic blood pres-
sure, low-density and high-density lipid levels), thyroid 
stimulation hormone (TSH) levels, and amyloid β (Aβ) 
burden (global 18  F-flutemetamol SUVR). TSH, HbA1c 
and homocysteine were log-transformed due to right-
ward skew. We first performed a sex-interaction analy-
sis to test for individual risk factor’s interaction with sex 
on WMHV. Risk factors tested included age, hyperten-
sion status, type 2 diabetes status, HbA1c, pulse pres-
sure, diastolic and systolic blood pressure, homocysteine, 
TSH, APOE4 status, HDL, and LDL. In the main effect 
analysis, we tested individual risk factors stratified by 
sex. Hypertension, type 2 diabetes and APOE4 status 
were categorical variables and all other risk factors tested 
were continuous. The analyses controlled for scanner site 
and cognitive diagnosis (i.e., no cognitive decline, MCI, 
dementia). Multiple comparisons correction were per-
formed for each analysis using the Benjamini-Hochberg 
false discovery rate method (FDR) [34].

Of all the 713 participants with cross-sectional data 
available, there were 181 participants who completed two 
additional follow-up visits and obtained additional CDR 
sum of boxes (CDR-SB) scores. Follow-up visits were 
acquired approximately one year after the prior visit. To 
analyze the association between WMHV and clinical out-
comes longitudinally, we utilized a Linear Mixed Effects 
model (LME) to test for associations of CDR-SB with the 
interaction effect of WMHV*visit time (baseline, follow-
up, visit 3), Aβ burden*visit time, stratified by sex. The 
LME model controlled for fixed effects of age and scan-
ner site, as well as a random slope for each participant. 
LME models were implemented with the lmer function 
from the lme4 package in R [35]. To visualize results, we 
used the function ‘plot_model’ in the R package sjPlot to 
generate plots of the marginal effects of WMHV on visit 
time [36].

Results
Table  1 displays the characteristics of the entire cohort 
stratified by sex. Participants were 241 males and 472 
females, with an average age 72.3 years and 72.8 years 
for males and females, respectively. 57.3% and 59.5% of 
participants were diagnosed with MCI for males and 
females, respectively. 40.7% and 39.4% were diagnosed 
with dementia for males and females, respectively. 20.3% 
and 18.4% of participants were under the age of 65 years 
for males and females, respectively. There were no signifi-
cant sex differences in the proportion of those with MCI 
vs. dementia vs. no cognitive decline at baseline. Males 
had a significantly higher number of years of education, 
proportion with type 2 diabetes, and LDL and HDL lev-
els. Females had significantly higher homocysteine levels. 

Supplementary Table 2 displays the characteristics of the 
participants in the cross-sectional cohort who had two 
additional follow-up visits with a Clinical Dementia Rat-
ing Sum of Boxes (CDR-SB) measured versus those who 
did not have longitudinal measures. No demographic 
characteristics varied significantly between the two sub-
groups. Participants with available longitudinal data were 
58 males and 123 females, with an average age 70.8 years 
and 72.6 years for males and females, respectively. 56.9% 
and 56.1% of participants were diagnosed with MCI for 
males and females, respectively. 39.8% and 43.9% were 
diagnosed with dementia for males and females, respec-
tively. Additionally, CDR-SB scores did not significantly 
differ between male and female at any of the three lon-
gitudinal time points (not shown, p = 0.97, 0.66, and 0.91 
for visit at baseline, visit 2, and visit 3, respectively).

We tested each WMH risk factor for a sex interaction 
effect controlling for scanner site and cognitive diagno-
sis. Two interaction effects tested survived multiple com-
parisons: age*sex and type 2 diabetes status*sex (Table 2). 
WMHV increased at a higher rate as females aged com-
pared to males (Fig.  1A). Diabetic females had higher 
WMHV compared to non-diabetic females whereas there 
were no group differences for males (Fig.  1B). Notably, 
HbA1c*sex was close to surviving multiple comparison 
(FDR corrected p-value = 0.07). Higher HbA1c was asso-
ciated with greater WMHV for females but not males 
(Fig. 1C).

To visualize sex-specific risk architectures, we tested 
which risk factors were significantly associated with 
WMHV when stratified by sex and controlling for scan-
ner site and cognitive diagnosis (Supplementary Table 
3, Fig. 2). After correction for multiple comparisons, for 
males, age was the largest risk factor for WMHV fol-
lowed by hypertension. For females, age was the largest 
risk factor for WMHV followed by hypertension, pulse 
pressure, diabetes, homocysteine, and HbA1c. All of the 
variables survived multiple comparisons correction for 
females.

We then explored whether baseline WMHV is dif-
ferentially related to longitudinal trajectories of clini-
cal dementia outcomes by sex (Table  3). Follow-up 
visits were acquired approximately one year after the 
prior visit. The interaction effect between Aβ burden and 
visit time on CDR-SB scores was observed to be signifi-
cant for both males and females. We also observed a sig-
nificant interaction effect between baseline WMHV and 
visit time on CDR sum of boxes score for females but not 
males. For females, larger baseline WMHV was associ-
ated with a greater CDR sum of boxes score increase over 
the three visits (Fig. 3).
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Discussion/conclusions
In a large South Korean cohort of predominantly cogni-
tively impaired participants, we tested sex differences in 
WMH, in associations of known risk factors to WMH, 
and in associations of WMH to longitudinal clinical out-
comes. Our study has three main findings. First, females 
appear to be protected from WMH burden at middle 
age but are observed to be more vulnerable at older age 
compared to males. Second, type 2 diabetes status was 
associated with greater WMH burden in females but not 
males. Finally, WMHV was associated with worse clinical 
dementia outcomes longitudinally in females only.

A significant number of studies in the last two decades 
have observed older, predominantly postmenopausal 
females to have a higher prevalence for cerebrovascu-
lar burden and disease compared to males [4–10, 37]. 
There is limited understanding of the underlying mecha-
nisms through which these sex differences arise, but the 
different trajectories of endogenous sex hormones has 

been proposed to play a role. In particular, during the 
premenopause, endogenous estrogen is thought to be 
protective for neuronal and cerebrovascular health [38, 
39]. Recently, the Rhineland study reported that post-
menopausal females had more WMH compared with 
premenopausal females and men of the same age range 
[10]. Moreover, a recent UK-Biobank study observed that 
females with a longer reproductive lifespan had signifi-
cantly smaller WMH burden in late life independent of 
the history of oral contraceptive use or hormone replace-
ment therapy [40]. Taken together, our findings contrib-
ute to the growing body of literature which displays an 
increased risk for CSVD in late life for postmenopausal 
females compared to males of the same age.

Diabetes status and its severity are risk factors for 
CSVD. Chronic hyperglycemia stimulates the over-
production of mitochondrial superoxide radicals in 
endothelial cells, resulting in oxidative stress, endothe-
lial dysfunction, and inflammation. These events are 

Table 1 Participant characteristics
Characteristic Group; Mean (SD) Statistical Test p-value

Male, n  = 241 Female, n  = 472 t-testa/chi-squared testb

Age 72.3 (7.44) 72.8 (7.59) -0.93a 0.35
Participants aged < = 65 years old (%) 49 (20.3%) 87 (18.4%) 0.26b 0.61
Years of Education 10.4 (4.74) 7.04 (4.54) 9.04a < 0.001
BMIa 23.9 (3.03) 24.0 (3.31) -0.41a 0.68
HbA1c

b, % mmol/mol 6.12 (1.04) 5.98 (0.89) -1.80a 0.073
log(TSH)c, mIU/L 0.51 (0.82) 0.46 (0.97) -0.78a 0.43
log(Homocysteine)d, umol/L 2.69 (0.445) 2.50 (0.36) -5.57a < 0.001
Global 18 F-flutemetamol SUVRe 0.68 (0.15) 0.67 (0.15) -0.93a 0.35
‡APOE ɛ4 positive, N (%) 80 (33.2%) 135 (28.6%) 1.39b 0.24
Hypertension, N (%) 132 (54.8%) 256 (54.2%) 0.0031b 0.96
Diabetes, N (%) 67 (27.8%) 93 (19.7%) 5.6b 0.018
Smoker, N (%) 152 (63.1%) 23 (4.9%) 288.64b < 0.001
Cognitive Diagnosis, n (%) 1.38b 0.50
No cognitive decline n = 5 (2.1%) n = 5 (1.1%)
MCI n = 138 (57.3%) n = 281 (59.5%)
Dementia n = 98 (40.7%) n = 186 (39.4%)
Cardiovascular Risk Factors
Pulse Pressure, mmHg 75.8 (12.4) 76.0 (11.6) -0.24a 0.81
Systolic Blood Pressure, mmHg 130.7 (17.3) 134.6 (19.3) -2.71a 0.0070
Diastolic Blood Pressure, mmHg 76.0 (12.1) 76.7 (11.5) -0.70a 0.48
LDL-C, mg/dL 92.7 (33.3) 104 (38.8) 4.10a < 0.001
HDL-C, mg/dL, M (SD) 51.6 (14.1) 58.3 (14.8) 5.89a < 0.001
Unless otherwise indicated
aBMI information is available for all males and 471 out of 472 female participants
bHbA1c is available for 231 out of 241 male participants and 453 out of 472 female participants
cTSH is available for all male participants and 470 out of 472 female participants
dHomocysteine is available for 224 out of 241 male participants and 434 out of 472 female participants
eGlobal 18 F-flutemetamol SUVR is available for 209 out of 241 male participants and 435 out of 472 female participants

†WMHV expressed as log(cm3/Intracranial volume)

‡ APOE ɛ4 positive: 2/4, 3/4, 4/4

BMI, Body mass index; DBP, Diastolic blood pressure; HDL-C, High-density lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; SBP, Systolic blood 
pressure; WMHV, White matter hyperintensity volume; TSH, Thyroid-stimulating hormone; SCD, Subjective cognitive decline; MCI, Mild cognitive impairment; AD, 
Alzheimer’s Disease; SUVR, Standard uptake value ratio; APOE, Apolipoprotein
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associated with the pathogenesis of vascular damage, in 
both small and large blood vessels [41]. Numerous cross-
sectional and longitudinal studies have displayed an asso-
ciation between diabetes status and HbA1c levels with 
WMH burden [17, 42–45]. Large observational studies 
observe type 2 diabetes confers a greater risk of incident 
cardiovascular disease in women compared with men 
[46], and evidence also supports a more adverse effect of 
diabetes on CSVD in females compared to males [47]. For 
example, diabetes was reported to confer an increased 
risk of vascular dementia in females but not males in 
both a large community-based cohort study as well as a 
meta-analysis with over 2.3  million individuals [48, 49]. 
Some studies have also reported diabetes to be associ-
ated with greater WMH or lacune volume in females but 
not males [17–19]. Furthermore, animal models have 
supported the finding that diabetes is associated with 
worse cerebrovascular burden in females. A recent study 
observed that when mice are given a high fat diet causing 
hyperglycemia, white matter damage was only observed 
in females while neuroinflammatory activation was only 
observed in males [50]. Moreover, a study utilizing a 
genetic mouse model of diabetes reported that females 

had larger ischemic infarcts compared to males. These 
infarcts were exacerbated by ovariectomy and amelio-
rated by E2 treatment, which suggests estrogen directly 
influences diabetes effect on CSVD [51]. Collectively, our 
findings contribute to the idea that diabetes is differen-
tially associated with CSVD burden between sexes. There 
is still limited understanding of the potential sex-specific 
mechanisms through which diabetes may incur sex dif-
ferences in CSVD.

Marked sex differences have been reported for the tra-
jectories of cognitive and clinical decline in dementia. 
In a pooled analysis of 26,000 participants, females were 
reported to have greater cognitive reserve but faster cog-
nitive decline than men [52]. Data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) study displayed 
that female MCI participants experienced cognitive dete-
rioration faster than males with MCI [53, 54]. Sex-spe-
cific differences in the trajectories of cognitive decline 
have also been supported by fMRI studies looking at 
memory network alterations. In particular, in a longitu-
dinal fMRI study, we recently reported that male memory 
network alterations were more associated with amyloid 
burden while female’s alterations were more correlated to 
WMH volume [55]. Our longitudinal findings on clinical 
dementia outcomes are similar in that baseline amyloid 
burden was associated with worse longitudinal CDR-SB 
scores in both sexes, but only females are associated with 
worse outcomes due to baseline WMH volume. Our find-
ings also agree with a recent longitudinal study analyz-
ing ADNI participants, where females had worse CDR-SB 
scores over time compared to males with the same level 
of WMH burden [15]. When examining other clini-
cal manifestations of CSVD, some studies reported that 
females had worse functional outcomes and cognitive 
decline after stroke [56, 57]. Combined, our findings sug-
gest that older females may have less resilience to CSVD 
burden compared to males.

Our study has limitations. First, we do not have infor-
mation available regarding participants’ medication use. 
Uncontrolled hypertension has been reported to be a sex-
specific risk factor for WMH [10], thus our lack of infor-
mation on participants’ medication may have contributed 
to our lack of findings of sex differences in associations 
of hypertension to WMHV. We do not have informa-
tion of diabetes medication, but our findings for diabetes 
status can be supported by our similar observations for 
HbA1c, which is an indicator for diabetic control. Addi-
tionally, we do not have information on menopausal 
status nor whether participants received hormone ther-
apy. The study’s higher proportion of females (approxi-
mately 65–70%) may facilitate obtaining lower p-values 
for female risk factors, which could explain why sev-
eral risk factors were significant for females, while only 
hypertension and age were significant males. Finally, our 

Table 2 The interaction between sex with age, diabetes status is 
associated with WMHV. Multiple linear regression analysis tested 
for interaction effect with sex and known risk factors in relation 
to normalized white matter hyperintensity volume. Analysis 
controlled for scanner site and cognitive diagnosis and FDR 
multiple comparisons p-value correction was performed

WMHV
β (Std. error) β 95% Confi-

dence interval
Uncor-
rected 
p-value

Age*Sex -0.037 (0.011) (-0.058, -0.016) 0.00050
Hypertension*Sex -0.15 (0.17) (-0.48, 0.17) 0.36
Diabetes*Sex -0.52 (0.20) (-0.91, -0.14) 0.00079
log(HbA1c)*Sex -1.55 (0.63) (-2.78, -0.32) 0.014
Pulse Pressure *Sex -0.014 (0.0069) (-0.028, -0.00068) 0.040
Systolic BP *Sex -0.0062 (0.0047) (-0.016, 0.0031) 0.19
log(Homocysteine) 
*Sex

-0.21 (0.21) (-0.62, 0.21) 0.33

log(TSH) *Sex 0.17 (0.097) (-0.025, 0.36) 0.089
Diastolic BP *Sex -0.0076 (0.0071) (-0.022, 0.0065) 0.29
APOE4 Status *Sex 0.27 (0.18) (-0.089, 0.63) 0.14
HDL *Sex 0.0064 (0.0060) (-0.0054, 0.018) 0.28
LDL *Sex 3.7E-4 (0.0024) (-0.0043, 0.0051) 0.88
Global18F-flute-
metamol SUVR *Sex

0.30 (0.60) (-0.88, 1.47) 0.62

BMI *Sex -0.0041 (0.027) (-0.058, 0.050) 0.88
Smoking Status *Sex 0.10 (0.27) (-0.42, 0.63) 0.70
Bolded font indicates the risk factor survived multiple comparisons

BMI, Body mass index; DBP, Diastolic blood pressure; HDL-C, High-density 
lipoprotein cholesterol; LDL-C, Low-density lipoprotein cholesterol; SBP, 
Systolic blood pressure; WMHV, White matter hyperintensity volume; TSH, 
Thyroid-stimulating hormone; SUVR, Standard uptake value ratio; APOE, 
Apolipoprotein E
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hospital-based cohort may have recruitment or survival 
bias, which has been observed to be associated with 
higher effect sizes for sex differences in cerebrovascular 
disease [3].

In conclusion, our study provides valuable insights 
into the complex interplay between sex, modifiable risk 
factors, and clinical dementia outcomes in the con-
text of CSVD. Older females appear to have an acceler-
ated increase in cerebrovascular burden as they age, and 
subsequently are more vulnerable to clinical dementia 
decline due to CSVD. This finding could enhance the 
development of early interventions aimed at slowing cog-
nitive decline by prompting researchers and clinicians to 
consider males and females separately. Our findings also 
suggest that females are more susceptible to the cerebro-
vascular consequences of type 2 diabetes. These findings 

emphasize the importance of considering sex when 
examining the risk factors for and cognitive sequelae of 
CSVD. From a clinical perspective, controlling vascu-
lar risk factors such as hypertension is critical to reduc-
ing CSVD burden in both male and females. In females, 
interventions should particularly emphasize the impor-
tance of managing type 2 diabetes, including monitoring 
HbA1c levels. Future research should explore the under-
lying mechanisms driving these sex differences and per-
sonalized prevention and treatment strategies.

Fig. 1 Older females appear to have an accelerated increase in cerebrovascular burden as they age and are more susceptible to the cerebrovascular 
consequences of diabetes. A.) Females are observed to have a higher increase in WMHV as they age compared to males. B.) Diabetic females were associ-
ated with larger WMHV compared to non-diabetic females. There were no differences observed for males. For visualization purposes, WMHV is plotted 
versus age and grouped by sex and type 2 diabetes status. C.) Higher HbA1c levels were associated with larger WMHV for females but not males, but the 
interaction effect for HbA1c*sex did not survive multiple comparisons. WMHV = white matter hyperintensity volume
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Fig. 2 Sex-specific risk factors for WMH. Beta coefficient values from linear regression models for individual risk factors are displayed
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Table 3 WMHV is associated with longitudinal clinical dementia outcomes in females but not males. A linear mixed effects model was 
utilized to test for interaction effects between WMHV*visit time, Global18F-flutemetamol SUVR*visit time on CDR-SB
CDR sum of boxes

β (Std. error) β 95% Confidence interval Uncorrected p-value
Females
Intercept 4.69 (4.38) (-3.93, 13.30) 0.29
Age (years) -0.044 (0.044) (-0.13, 0.04) 0.32
Visit Time -0.73 (0.57) (-1.85, 0.38) 0.20
Global18F-flutemetamol SUVR 0.34 (2.17) (-3.94, 4.61) 0.88
WMHV -0.18 (0.88) (-0.75, 0.41) 0.56
Scanner Site (Site 2) 0.15 (0.87) (-1.55, 1.86) 0.86
Scanner Site (Site 3) -0.18 (0.88) (-1.91, 1.55) 0.84
Scanner Site (Site 4) 0.90 (1.92) (-2.88, 4.69) 0.64
Scanner Site (Site 5) 1.74 (2.01) (-2.23, 5.70) 0.39
Scanner Site (Site 6) -1.32 (0.73) (-2.76, 0.12) 0.073
Visit Time * Global18F-flutemetamol SUVR 3.11 (0.60) (1.92, 4.30) 5.50e-07***
Visit Time * WMHV 0.18 (0.072) (0.04, 0.32) 0.014*
Males
Intercept 0.90 (4.60) (-8.18, 9.98) 0.85
Age (years) 0.0084 (0.053) (-0.10, 0.11) 0.88
Visit Time -1.48 (-0.71) (-2.89, -0.07) 0.039*
Global18F-flutemetamol SUVR 2.68 (2.83) (-2.90, 8.27) 0.34
WMHV 0.20 (0.42) (-0.63, 1.02) 0.64
Scanner Site (Site 2) -0.83 (1.10) (-3.01, 1.35) 0.46
Scanner Site (Site 3) -1.00 (1.51) (-3.99, 1.98) 0.50
Scanner Site (Site 4) 0.39 (1.50) (-2.58, 3.35) 0.80
Scanner Site (Site 5) -0.30 (2.13) (-4.51, 3.91) 0.89
Scanner Site (Site 6) -0.31 (1.35) (-2.99, 2.36) 0.82
Visit Time * Global18F-flutemetamol SUVR 2.99 (0.72) (1.56, 4.41) 7.04e-05***
Visit Time * WMHV 0.019 (0.097) (-0.17, 0.21) 0.84
* p < 0.05, ** p < 0.01, *** p < 0.001

Fig. 3 Higher WMHV is associated with clinical dementia outcomes over two years among females but not males. A.) A significant interaction effect 
between WMHV and visit time on CDR sum of boxes was observed for females in a linear mixed effect model. The predicted slopes for a participant with 
a mean and +- 1 standard deviation of WMHV for females is plotted. B.) The predicted slopes for a participant with a mean and +- 1 standard deviation of 
WMHV for males is plotted. There was no observed interaction effect between WMHV and visit time on CDR sum of boxes score for males Follow-up visits 
were acquired approximately one year after the prior visit. WMHV = white matter hyperintensity volume
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