Abstract
1. Taurine applied to mouse brain slices evokes a long-lasting enhancement (LLE) of corticostriatal synaptic transmission, LLETAU.
2. The occurrence of LLETAU was significantly decreased in the presence of the specific antagonists at either D1 (SCH23390) or D2 (raclopride) dopamine (DA) receptors.
3. LLETAU was prevented by scopolamine, a muscarinic antagonist, and significantly suppressed by the nicotinic antagonist mecamylamine.
4. Thus, dopaminergic and cholinergic mechanisms, in concert with the taurine transporter and glycine receptors, contribute critically to the induction of corticostriatal LLETAU.
Key Words: plasticity, striatum, dopamine, acetylcholine
References
- Aizman, O., Brismar, H., Uhlen, P., Zettergren, E., Levey, A. I., Forssberg, H., Greengard, P., and Aperia, A. (2000). Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat. Neurosci. 3:226–230. [DOI] [PubMed] [Google Scholar]
- Alcantara, A. A., Mrzljak, L., Jakab, R. L., Levey, A. I., Hersch, S. M., and Goldman-Rakic, P. S. (2001). Muscarinic m1 and m2 receptor proteins in local circuit and projection neurons of the primate striatum: Anatomical evidence for cholinergic modulation of glutamatergic prefronto-striatal pathways. J. Comp. Neurol. 434:445–460. [DOI] [PubMed] [Google Scholar]
- Aosaki, T., Kiuchi, K., and Kawaguchi, Y. (1998). Dopamine D1-like receptor activation excites rat striatal large aspiny neurons in vitro. J. Neurosci. 18:5180–5190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Beani, L., Bianchi, C., Siniscalchi, A., and Tanganelli, S. (1983). Glycine-induced changes in acetylcholine release from guinea-pig brain slices. Br. J. Pharmacol. 79:623–628. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Boldyrev, A. A., Johnson, P., Wei, Y., Tan, Y., and Carpenter, D. O. (1999). Carnosine and taurine protect rat cerebellar granular cells from free radical damage. Neurosci. Lett. 263:169–172. [DOI] [PubMed] [Google Scholar]
- Calabresi, P., Centonze, D., Gubellini, P., and Bernardi, G. (1999). Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology38:323–326. [DOI] [PubMed] [Google Scholar]
- Calabresi, P., Centonze, D., Gubellini, P., Marfia, G. A., Pisani, A., Sancesario, G., and Bernardi, G. (2000a). Synaptic transmission in the striatum: From plasticity to neurodegeneration. Prog. Neurobiol. 61:231–265. [DOI] [PubMed] [Google Scholar]
- Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., and Bernardi, G. (1998). Endogenous ACh enhances striatal NMDA-responses via M1-like muscarinic receptors and PKC activation. Eur. J. Neurosci. 10:2887–2895. [DOI] [PubMed] [Google Scholar]
- Calabresi, P., Gubellini, P., Centonze, D., Picconi, B., Bernardi, G., Chergui, K., Svenningsson, P., Fienberg, A. A., and Greengard, P. (2000b). Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. J. Neurosci. 20:8443–8451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Centonze, D., Gubellini, P., Bernardi, G., and Calabresi, P. (1999). Permissive role of interneurons in corticostriatal synaptic plasticity. Brain Res. Brain Res. Rev. 31:1–5. [DOI] [PubMed] [Google Scholar]
- Centonze, D., Picconi, B., Gubellini, P., Bernardi, G., and Calabresi, P. (2001). Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur. J. Neurosci. 13:1071–1077. [DOI] [PubMed] [Google Scholar]
- Chepkova, A. N., Doreulee, N., Yanovsky, Y., Mukhopadhyay, D., Haas, H. L., and Sergeeva, O. A. (2002). Long-lasting enhancement of corticostriatal neurotransmission by taurine. Eur. J. Neurosci. 16:1523–1530. [DOI] [PubMed] [Google Scholar]
- Darstein, M., Landwehrmeyer, G. B., Kling, C., Becker, C. M., and Feuerstein, T. J. (2000). Strychnine-sensitive glycine receptors in rat caudatoputamen are expressed by cholinergic interneurons. Neuroscience96:33–39. [DOI] [PubMed] [Google Scholar]
- del Olmo, N., Galarreta, M., Bustamante, J., Martin-del-Rio, R., and Solis, J. M. (2000). Taurine-induced synaptic potentiation: Role of calcium and interaction with LTP. Neuropharmacology39:40–54. [DOI] [PubMed] [Google Scholar]
- Foos, T. M., and Wu, J. Y. (2002). The role of taurine in the central nervous system and the modulation of intracellular calcium homeostasis. Neurochem. Res. 27:21–26. [DOI] [PubMed] [Google Scholar]
- Galarreta, M., Bustamante, J., Martin, D. R., and Solis, J. M. (1996). Taurine induces a long-lasting increase of synaptic efficacy and axon excitability in the hippocampus. J. Neurosci. 16:92–102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gerfen, C. R., Miyachi, S., Paletzki, R., and Brown, P. (2002). D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J. Neurosci. 22:5042–5054. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Graybiel, A. M., Aosaki, T., Flaherty, A. W., and Kimura, M. (1994). The basal ganglia and adaptive motor control. Science265:1826–1831. [DOI] [PubMed] [Google Scholar]
- Grewal, S. S., York, R. D., and Stork, P. J. (1999). Extracellular-signal-regulated kinase signalling in neurons. Curr. Opin. Neurobiol. 9:544–553. [DOI] [PubMed] [Google Scholar]
- Haas, H. L., and Hosli, L. (1973). The depression of brain stem neurones by taurine and its interaction with strychnine and bicuculline. Brain Res. 52:399–402. [DOI] [PubMed] [Google Scholar]
- Hussy, N., Deleuze, C., Pantaloni, A., Desarmenien, M. G., and Moos, F. (1997). Agonist action of taurine on glycine receptors in rat supraoptic magnocellular neurones: Possible role in osmoregulation. J. Physiol. 502(Pt 3):609–621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerr, J. N., and Wickens, J. R. (2001). Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J. Neurophysiol. 85:117–124. [DOI] [PubMed] [Google Scholar]
- Kontro, P. (1987). Interactions of taurine and dopamine in the striatum. Adv. Exp. Med. Biol. 217:347–355. [DOI] [PubMed] [Google Scholar]
- Kontro, P., and Oja, S. S. (1988). Release of taurine, GABA and dopamine from rat striatal slices: Mutual interactions and developmental aspects. Neuroscience24:49–58. [DOI] [PubMed] [Google Scholar]
- Lima, L. (1999) Taurine and its trophic effects in the retina. Neurochem. Res. 24:1333–1338. [DOI] [PubMed] [Google Scholar]
- Liu, Q. R., Lopez-Corcuera, B., Nelson, H., Mandiyan, S., and Nelson, N. (1992). Cloning and expression of a cDNA encoding the transporter of taurine and beta-alanine in mouse brain. Proc. Natl. Acad. Sci. U.S.A. 89:12145–12149. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Malenka, R. C., and Kocsis, J. D. (1988). Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro. J. Neurosci. 8:3750–3756. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McRory, J. E., Santi, C. M., Hamming, K. S., Mezeyova, J., Sutton, K. G., Baillie, D. L., Stea, A., and Snutch, T. P. (2001). Molecular and functional characterization of a family of rat brain T-type calcium channels. J. Biol. Chem. 276:3999–4011. [DOI] [PubMed] [Google Scholar]
- Oja, S. S., and Saransaari, P. (1996). Taurine as osmoregulator and neuromodulator in the brain. Metab. Brain Dis. 11:153–164. [DOI] [PubMed] [Google Scholar]
- Partridge, J. G., Apparsundaram, S., Gerhardt, G. A., Ronesi, J., and Lovinger, D. M. (2002). Nicotinic acetylcholine receptors interact with dopamine in induction of striatal long-term depression. J. Neurosci. 22:2541–2549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ruotsalainen, M., and Ahtee, L. (1996). Intrastriatal taurine increases striatal extracellular dopamine in a tetrodotoxin-sensitive manner in rats. Neurosci. Lett. 212:175–178. [DOI] [PubMed] [Google Scholar]
- Saransaari, P., and Oja, S. S. (2000). Taurine and neural cell damage. Amino Acids19:509–526. [DOI] [PubMed] [Google Scholar]
- Sarkar, H. K., Wright, E. M., Boorer, K. J., and Loo, D. D. (2003). Electrophysiological properties of the mouse Na+/Cl(−)-dependent taurine transporter (mTauT-1): Steady-state kinetics: Stoichiometry of taurine transport. Adv. Exp. Med. Biol. 256:197–204. [DOI] [PubMed] [Google Scholar]
- Sergeeva, O. A., Chepkova, A. N., Doreulee, N., Eriksson, K. S., Poelchen, W., Monnighoff, I., Heller-Stilb, B., Warskulat, U., Haussinger, D., and Haas, H. L. (2003). Taurine-induced long-lasting enhancement of synaptic transmission in mice: Role of transporters. J. Physiol. 550:911–919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sergeeva, O. A., and Haas, H. L. (2001). Expression and function of glycine receptors in striatal cholinergic interneurons from rat and mouse. Neuroscience104:1043–1055. [DOI] [PubMed] [Google Scholar]
- Smith, A. D., and Bolam, J. P. (1990). The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci. 13:259–265. [DOI] [PubMed] [Google Scholar]
- Stoof, J. C., and Kebabian, J. W. (1984). Two dopamine receptors: Biochemistry, physiology and pharmacology. Life Sci. 35:2281–2296. [DOI] [PubMed] [Google Scholar]
- Sturman, J. A. (1993). Taurine in development. Physiol. Rev. 73:119–147. [DOI] [PubMed] [Google Scholar]
- Sweatt, J. D. (2001). The neuronal MAP kinase cascade: A biochemical signal integration system subserving synaptic plasticity and memory. J. Neurochem. 76:1–10. [DOI] [PubMed] [Google Scholar]
- Taylor, C. A., Tsai, C., and Lehmann, J. (1988). Glycine-evoked release of [3H]acetylcholine from rat striatal slices is independent of the NMDA receptor. Naunyn Schmiedebergs Arch. Pharmacol. 337:552–555. [DOI] [PubMed] [Google Scholar]
- Yadid, G., Pacak, K., Golomb, E., Harvey-White, J. D., Lieberman, D. M., Kopin, I. J., and Goldstein, D. S. (1993). Glycine stimulates striatal dopamine release in conscious rats. Br. J. Pharmacol. 110:50–53. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yan, Z., and Surmeier, D. J. (1997). D5 dopamine receptors enhance Zn2+-sensitive GABA(A) currents in striatal cholinergic interneurons through a PKA/PP1 cascade. Neuron19:1115–1126. [DOI] [PubMed] [Google Scholar]
- Zhou, F. M., Wilson, C. J., and Dani, J. A. (2002). Cholinergic interneuron characteristics and nicotinic properties in the striatum. J. Neurobiol. 53:590–605. [DOI] [PubMed] [Google Scholar]
