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Abstract

Spatial omics technologies characterize tissue molecular properties with spatial information, 

but integrating and comparing spatial data across different technologies and modalities is 

challenging. A comparative analysis tool that can search, match and visualize both similarities 

and differences of molecular features in space across multiple samples is lacking. To address this, 

we introduce CAST (cross-sample alignment of spatial omics), a deep graph neural network-based 

method enabling spatial-to-spatial searching and matching at the single-cell level. CAST aligns 

tissues based on intrinsic similarities of spatial molecular features and reconstructs spatially 

resolved single-cell multi-omic profiles. CAST further allows spatially resolved differential 

analysis ΔAnalysis) to pinpoint and visualize disease-associated molecular pathways and cell–

cell interactions and single-cell relative translational efficiency profiling to reveal variations in 

translational control across cell types and regions. CAST serves as an integrative framework 

for seamless single-cell spatial data searching and matching across technologies, modalities and 

sample conditions.

Spatial omics technologies enable direct profiling of gene expression and molecular cell 

types in intact tissues, organs1–5 and across different modalities such as epigenomes6, 
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translatomes7 and proteomes8. Analogous to atlas integration for single-cell omics, an ideal 

spatial integration tool for spatial omics should serve as a search engine and comparative 

analyzer to search, match and visualize the similarity and differences among samples. 

Meanwhile, it should work robustly when dealing with vast numbers of cells, spanning 

various conditions and modalities. As spatial transcriptomics data contains much richer 

information than traditional staining (for example 4’,6-diamidino-2-phenylindole (DAPI), 

hematoxylin and eosin (H&E) and Nissl), transcriptomics-based registration may be more 

advantageous and accurate than established image-based registration. Additionally, image-

based registration may be compromised when the staining method, quality, resolution 

or sample size are different between the training models and query images; however, 

current transcriptomics-based spatial alignment methods9 can only handle small-scale, low-

resolution and highly similar datasets collected from the same wet-lab technology. On the 

other hand, image registration methods typically require landmark annotations and struggle 

with discrepancies in image properties. Moreover, effective full-stack spatial integration 

methods that allow accurate search-and-match of spatial omics data across technologies, 

modalities and conditions have not been achieved yet.

To address this, we introduce CAST (cross-sample alignment of spatial omics data) for 

searching, matching and visualizing the similarities and differences across spatial omics 

datasets. CAST is composed of three modules: CAST Mark, CAST Stack and CAST 

Projection (Fig. 1a,b). It leverages deep graph neural networks (GNNs) and physical 

alignment to harmonize spatial multi-omics data at the single-cell level while preserving 

cellular proximity in tissue niches. CAST can detect fine-grained common spatial features, 

perform robust physical alignment and integrate samples of different spatial modalities, 

resolutions and sizes. It is applicable across various low- and high-resolution spatial 

technologies (Visium, STARmap5, MERFISH2, RIBOmap7, Slide-seq3 and Stereo-seq4) 

and can accurately match spatial samples of different sizes and gene numbers based on 

their inherent tissue properties, without supervision nor manual annotation of the region of 

interest (ROI).

Results

CAST Mark captures common spatial signatures across samples

Representing tissue samples using graphs8 shows the potential to overcome the 

inconsistent physical coordinates caused by different magnification, individual variation and 

experimental batch effects. GNNs operate on graphs and have been recently used to learn 

representations of tissue organization of spatially resolved transcriptomics measurements10–

15; however, traditional GNN architectures suffer from the over-smoothing problem that 

limits the depth of the network, raising doubts about their capability to capture large-scale 

continuities in tissue biology14. In addition, the traditional GNN architectures cannot 

identify the common spatial features across the samples in an unsupervised manner. To 

address these limitations, we created CAST Mark, a GNN model equipped with (1) graph 

convolutional network via initial residual and identity mapping (GCNII) layers, which were 

designed to overcome the over-smoothing problem16, making the GNN learnable with 

a nine-layer depth; and (2) a self-supervised learning objective (Extended Data Fig. 1a 
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and Methods). By using the GCNII layers, CAST Mark overcomes the limited depth in 

a traditional GNN model and now has a large receptive field that enables unsupervised 

learning of spatial features using only single-cell gene expression profiles and physical 

cell coordinates as input, without requiring cell-type or tissue-region annotations. We 

further confirmed the technical advancement and performance of the CAST Mark model 

by parameter sensitivity and ablation studies (Supplementary Figs. 1–3 and Supplementary 

Information).

To evaluate the performance of the CAST Mark in learning the graph representations of 

cell locations across different samples, we first applied CAST Mark to a synthetic dataset 

consisting of one ground-truth sample (S1) from a STARmap PLUS dataset5 and a simulated 

sample (S1′) generated by applying random noise, feature dropouts and global tissue 

distortion to sample S1 (Extended Data Fig. 1b and Methods). Each cell in the simulated 

sample S1′ has a one-to-one ground-truth partner cell in sample S1. We performed k-means 

clustering on the graph embedding to examine whether CAST Mark could retain the shared 

spatial information between S1 and S1′. Although the graph structures of S1 and S1′ are 

different due to added random noise, the regional patterns are consistent across samples in 

both the physical space (Extended Data Fig. 1c) and the graph embedding space (Extended 

Data Fig. 1d). These observations are confirmed by quantitative analysis, where 20 clusters 

show a high adjusted Rand index (ARI) (averaged ARI = 0.79, ten replicates) and on average 

90% of cells in S1′ belong to the same clusters as its ground-truth partners in S1 (Extended 

Data Fig. 1e). Notably, even when increasing the number of clusters k to 100, the clustering 

results still show a considerable cross-sample consistency both by visual inspection and 

quantification (Extended Data Fig. 1e,f; averaged ARI = 0.47, averaged consistent cell 

percentage of 56%). Furthermore, despite different clustering parameters (10–100), each cell 

is still physically adjacent (average distance of 6.95 μm, smaller than the typical size of a 

cell) to the correct clusters (Extended Data Fig. 1g), suggesting the robust performance of 

CAST Mark despite sample variability.

Benchmarks of the CAST Mark GNN (Supplementary Table 1) show superior performance 

than existing methods in terms of resolution and contiguity in sample S1 (Extended Data 

Fig. 1h) and a mouse half-brain coronal sample containing ~60,000 cells (Extended Data 

Fig. 1i).

Encouraged by the cross-sample consistency of CAST Mark graph embedding trained on the 

synthetic dataset, we next examined whether CAST Mark could achieve consistent label-free 

segmentation with real biological samples. We applied CAST Mark to the 2,766-gene 

STARmap PLUS dataset5 composed of eight coronal brain slices near the hippocampus 

region (slices S1–S8) from multiple mice with different conditions, ages and strains 

(Supplementary Table 2). K-means clustering (k = 15) yielded consistent tissue-region 

identification across the eight samples (Fig. 1c), which agreed well with existing knowledge 

of mouse brain anatomy17,18. We further tested an extremely high clustering resolution by 

100-class k-means clustering (k = 100) and the results still showed remarkable consistency 

across the eight samples (Extended Data Fig. 2a), suggesting the ability of the CAST 

Mark learning scheme in resolving fine tissue architectures consistently across all samples, 

although the biological meaning of those fine clusters warrants further investigation.
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Notably, the consistent patterns of gene expression and cell-type abundance (Extended Data 

Fig. 2b–d and Supplementary Table 3) across the eight samples strongly support that CAST 

can robustly identify the concordant and biologically meaningful spatial features across 

different samples with biological and individual variations, which are further used as a 

foundation for sample alignment.

CAST Stack performs robust physical alignment across samples

As the cytoarchitecture of tissue samples falls on a spectrum between completely 

stereotypical to random, an ideal alignment method should meet the following requirements: 

(1) robust correction of local differences in batches, conditions, tissue morphology and 

experimental technologies; and (2) preservation of cellular organization inside the tissue.

As CAST Mark is capable of generating common graph embeddings for cells across 

multiple samples, we hypothesize that the similarity of cellular graph embeddings reflects 

the physical proximity of the cells in tissues and thus can be used to physically register 

one query tissue sample to the reference sample. To test this, we used the synthetic sample 

(S1′) as the query and the ground-truth sample (S1) as the reference. Given one cell in 

the query sample, we calculated the Pearson correlation (r) between the graph embeddings 

of the query cell and all the cells in the reference sample. We found that ground-truth 

pairs between S1 and S1′ show a strong correlation (average r = 0.97; Fig. 2a), while 

randomly chosen cell pairs show little correlation (average r = 0.04; Fig. 2a). And only its 

ground-truth paired cell and the closest randomly paired cells (top 0.1%) to this ground-truth 

pair exhibited a strong Pearson correlation with the query cell (Fig. 2b). When plotted in the 

physical space, cells in the reference sample that are highly correlated with the query cell are 

predominantly localized around the ground-truth reference cell, especially within the same 

tissue region (Fig. 2c and Extended Data Fig. 3a).

Based on this observation, we concluded that the cross-sample correlations of cell pairs 

could predict their probable match of tissue locations. However, due to the inherent 

anatomical diversity across samples, we would lose the cell organization if we simply 

assigned each query cell to the position with the highest similarity of the graph embedding. 

Therefore, we designed a gradient descent (GD)-based approach to minimize overall cell 

location differences while preserving tissue structure during alignment transformations, 

by maximizing the sum of similarity between each query cell and its nearest reference 

cell (Methods). Instead of building alignment by satisfying every cell at its optimum, 

CAST Stack prioritizes preserving biologically meaningful tissue structure and avoids local 

minimums possibly derived from stochastic sample variations. We designed the CAST Stack 

alignment as a two-phase process. During the first phase, only global affine transformation is 

allowed. After affine transformation roughly aligns the samples, in the second phase, CAST 

Stack utilizes B-spline free-form deformation (FFD), a powerful constrained nonlinear 

warping approach, to handle local morphological differences among tissue samples.

We then applied this soft registration strategy to the S1′–S1 query–reference pair (Fig. 

2d). Despite large structural and morphological differences introduced in S1′, the two 

samples were accurately aligned according to the high spatial correlations (Pearson r of 

graph embeddings between cells, same below unless otherwise stated) between the query 

Tang et al. Page 4

Nat Methods. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cells and their nearest neighbors in the reference slice (Extended Data Fig. 3b). After the 

soft registration, the physical distances between the ground-truth pairs (average distance of 

38 μm; Extended Data Fig. 3c) are significantly smaller than the random pairs (average 

distance of 1,133 μm; Extended Data Fig. 3c), confirming that CAST can precisely align two 

different slices into a consistent physical coordinate system.

Next, we applied CAST Stack to the eight hippocampal brain samples (S1–S8) from 

different mice with varied tissue morphologies, ages and conditions5. We selected S1 as 

the reference slice and subsequently aligned S2–S8 to S1 using CAST Stack. Similar to the 

S1′–S1 query–reference pair, cells from S2–S8 have the highest spatial correlation with cells 

from S1 at the corresponding tissue locations, especially within the same cluster of graph 

embeddings from CAST Mark (Extended Data Fig. 3d). After alignment, all the cells in 

the query samples (S2–S8) are transformed to the same physical coordinate system defined 

by the S1 reference (Fig. 2e and Extended Data Fig. 3e). The high correlation between the 

query cells with its closest physical neighbor cell in the S1 reference (Extended Data Fig. 

3e) suggests that CAST Stack properly aligns each sample through soft registration while 

preserving the cellular organization of the tissues.

To demonstrate the wide utility of CAST, we applied CAST on different spatial 

technologies, such as Visium, Stereo-seq4, MERFISH19 and Slide-seq20. Samples with 

similar size can be efficiently aligned not just within a single technology but also across 

multiple different technologies (Fig. 3a, Extended Data Fig. 4a–d and Supplementary Table 

4). Notably, samples from three different technologies can be aligned into one shared 

physical coordinate system (Fig. 3a). Additionally, we also tested the performance of CAST 

Mark and CAST Stack with limited gene panels. CAST successfully aligned two STARmap 

samples collected with a small panel of 64 genes (S64_1 and S64_2; Extended Data Fig. 4e). 

CAST also aligned samples with drastically different gene panels with limited overlapping 

genes, showcased by the successful alignment of a 64-gene sample to a 2,766-gene sample 

(S64_1 and S1; Fig. 3b).

Notably, CAST shows the capability to precisely locate a small, truncated tissue section 

(hippocampus and partial cortical region) with larger half-brain slices measured by different 

spatial technologies and size (STARmap, MERFISH and Slide-seq), without manually 

specifying the ROI nor annotating landmarks (Fig. 3c, Extended Data Fig. 4f,g and 

Supplementary Video 1).

Given the ability of CAST to precisely match partially overlapping tissue locations between 

small and large tissue slices, we explored its potential to search one query sample against 

large reference atlas datasets/databases. We utilized the STARmap S1 sample, a subset 

of mouse coronal brain section, to query against a mouse central nervous system spatial 

transcriptomics atlas21 (2,766 versus 1,022, with 931 overlapping genes, Fig. 3d). Each 

section in the atlas is annotated with the distance to bregma that describes the relative 

depth along the anterior–posterior axis of the brain, which was obtained through physical 

registration with the Allen Mouse Brain Common Coordinate Framework (CCFv3) (ref. 

18). These coronal brain sections represent different tissue morphology and anatomy of the 

mouse brain and could serve as a reference atlas for future query applications. We conducted 
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the atlas query in the following two steps (Fig. 3d). First, we conducted a coarse search by 

using CAST Stack allowing only affine transformation to align the query sample S1 to all 

coronal sections in our reference atlas using shared uniform parameters. We reasoned that 

for each depth in the reference atlas, this could allow for a quick search of the most similar 

tissue locations possible to place the query sample S1. We visualized loss values of CAST 

Stack (the sum of the adjusted Pearson distance) after alignment. From this initial screening 

run with the affine transformation, we identified three sections in the reference atlas with the 

lowest loss values, which indicates the highest similarity (Fig. 3e). The sections are located 

adjacent to each other (the distances to bregma are −1.155 mm, −1.755 mm, −2.355 mm, 

respectively) along the anterior–posterior axis. Second, we further conducted a fine search 

by applying the full CAST Stack with both affine and nonrigid B-spline transformation to 

find the best match between S1 and three hits from the coarse search phase (Fig. 3f; distance 

to bregma = −1.755 mm).

In addition to benchmarking the parameters and the computational efficiency 

(Supplementary Figs. 4 and 5), we compared CAST with the existing spatial alignment 

tool PASTE, which adopts optimal transport to perform only global affine transformation 

to align voxel-based spatial transcriptomics data9. PASTE successfully aligned the Visium 

datasets (Supplementary Fig. 6a,b) but failed to align single-cell-resolved transcriptomics 

datasets (S2–S8 with S1) (Supplementary Fig. 6c–e) or align the spatial datasets with a large 

number of cells or voxels (Supplementary Table 5).

Identifying disease/injury-associated spatial features

Traditional single-cell analysis workflows can be adapted to find significant differences 

between samples, such as cell-type abundance, differential gene expression and cell–cell 

interactions (CCIs) in the spatial transcriptomics data5; however, by preserving single-cell 

resolved spatial relationships, it is possible to interrogate the continuous spatial gradients 

of such differences in cellular neighborhoods across multiple samples with unified tissue 

coordinates22 (Fig. 4a). Here, enabled by the physical alignment of CAST Stack, we further 

introduce a new spatial omics analysis strategy, delta-sample analysis (ΔAnalysis; Methods), 

to uncover comparative spatial heterogeneity across tissue samples: (1) given a cell and a 

physical radius (R), we first defined a cell-centered neighborhood, termed the spatial niche; 

(2) we then analyzed the local difference of interrogated features between samples within 

R, such as cell abundance (ΔCell), gene expression (ΔExp), cell–cell adjacency (ΔCCA) 

and CCI (ΔCCI, for example ligand–receptor interactions), which can be visualized as 

spatial gradient maps (Fig. 4a); and (3) by aggregating the local Δ features of single cells 

throughout the replicates and samples, we conducted statistical analysis at a single-cell level 

to test whether there was a significant difference of spatially resolved features between 

samples.

Next, we demonstrate ΔAnalysis on S1–S8, which are collected on four TauPS2APP 

Alzheimer’s disease (AD) mice and four age-matched wild-type mice (Fig. 4a).

To unbiasedly uncover the disease-associated loci, we first clustered the genes based on their 

similarity of ΔExp spatial profiles across all disease samples (Fig. 4b). We observed that 

gene clusters C1, C2 and C3 displayed relatively high correlation of ΔExp with the amyloid 

Tang et al. Page 6

Nat Methods. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



beta (Aβ) plaque and p-tau (Fig. 4b), which hinted that these gene modules may associate 

with AD. Next, we plotted the heterogenous ΔExp landscape of the C1–C3 as contour maps 

(Fig. 4c) and further defined the hot-zones as the loci with the highest differential expression 

of these gene clusters (Methods). Notably, the C1 hot-zone contained remarkable Aβ plaque 

enrichment (Fisher’s exact test and odds ratio: 13 months, 15.8 and 16.48, respectively; and 

8 months, 10.87 and 16.63, respectively) and C1 genes were over-expressed in the cells 

close to the Aβ plaque (0–10 μm group; Fig. 4c, Extended Data Fig. 5a and Supplementary 

Table 6). In contrast, C3 hot-zone was enriched with p-tau (Fisher’s exact test and odds 

ratio: 13 months, 1.98 and 5.78 months, respectively; and 8 months, 3.43 and 2.56, 

respectively) and C3 genes were upregulated in the cells with high p-tau values (p-tau value 

> 10 group; Fig. 4c, Extended Data Fig. 5b and Supplementary Table 6). The C1 and C3 hot-

zones were also enriched with microglia and oligodendrocytes, respectively (Fig. 4d). Also, 

the C2 hot-zone was mainly enriched with astrocytes, whose expression was upregulated 

in the 20–40 μm vicinity of Aβ plaques and spatially associated with the immediate 

intensity group of p-tau. Meanwhile, the Gene Ontology (GO) analysis of these three gene 

modules (Fig. 4e) showed that these genes are related to cell migration (GO:0016477; 

shared by C1, C2 and C3), apoptotic process (GO:0006915; unique to C1), regulation 

of response to wounding (GO:1903034; unique to C2) and regulation of oligodendrocyte 

differentiation (GO:0048713; unique to C3). Consistent with a previous publication5, these 

observations revealed the disease association of microglia, oligodendrocytes and astrocytes, 

which were further validated by the cell-type-specific ΔExp and ΔCell (Extended Data 

Fig. 5c–i, Supplementary Fig. 7 and Supplementary Information). We further investigated 

disease-associated CCA and CCIs23, which revealed Aβ-plaque-associated changes of the 

glial cell adjacency network and ligand–receptor interactions (ligand Apoe in microglia or 

astrocytes–Trem2 receptor in microglia24–27 and ligand Mfge8 in astrocyte–Itgb5 receptor in 

microglia28) along disease progression (Fig. 4f–h and Extended Data Fig. 5c,j).

Beyond the disease versus control demonstration to delineate the spatial and temporal 

changes during disease progression, we next applied CAST and ΔAnalysis to the axolotl 

brain regeneration dataset profiled by Stereo-seq29. This axolotl brain dataset contains 

coronal slices of the axolotl brain with experimentally introduced injuries on one 

hemisphere, while the other hemisphere remained intact and healthy as the control at 

different days post-injury (DPI) along the brain regeneration process. We performed CAST 

alignment to physically align the injured brain hemisphere to the healthy brain hemisphere 

within each sample (Extended Data Fig. 6a,b). Afterwards, the ΔAnalysis (radius of 100 in 

initial pixel units in the dataset, 43 μm as indicated by the scale bar in the initial study) 

was applied to each aligned sample to investigate the injury-associated spatial molecular 

patterns.

With the ΔCell analysis, we observed cell types with relatively decreased and increased 

cell counts in the injured region, such as the decreased Nptx+ lateral pallium excitatory 

neurons (nptxEX) and the increased reactive ependymoglial cells (reaEGC) at the 2DPI 

stage (Supplementary Fig. 8a), consistent with an initial report29. Concordantly, the ΔExp 

screening also revealed the decreased Nptx1 (marker gene for nptxEX cells) and increased 

S100a10 (marker genes for reaEGCs) patterns in the lesion region of 2DPI stage. To 

systematically discover injury-associated gene programs, we next clustered the genes based 
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on the spatial profiles of the ΔExp across all samples (Extended Data Fig. 6c,d). By 

screening averaged ΔExp profiles in each gene, we identified two gene clusters with 

increased gene expression (cluster 6 and 9). Furthermore, the averaged ΔExp of the two 

clusters showed a spatially confined expression pattern around lesion sites (Extended Data 

Fig. 6e). We thus annotated them as injury-associated genes for downstream analyses. 

Cluster 6 enriched with previously reported injury-associated genes, such as S100a10, Nes, 
Ctsl, Tnc, Gfap and Krt18, whereas cluster 9 contained lots of ribosomal genes, such as 

Rps2, Rps7 and Rps18. As reflected by the GO analysis (Extended Data Fig. 6f), cluster 

6 and 9 genes are functionally enriched in ribosome biogenesis (GO:0042254; shared 

by cluster 6 and 9), regulation of apoptotic process (GO:0042981; unique to cluster 6) 

and regulation of RNA splicing (GO:0043484; unique to cluster 9), suggesting potential 

upregulated roles of post-transcriptional gene regulation, including translational control in 

tissue regeneration. In addition, we visualized a few examples of newly identified injury-

associated genes, such as the galectin 1 gene Lgals1, actin-binding protein Tagln2, and 

ribosomal proteins Rps7 and Rps18, which displayed a strong increased pattern in the lesion 

region across all DPI time points (Supplementary Fig. 8b).

Overall, the spatial gradient obtained through our ΔAnalysis reveals the spatial heterogeneity 

of cell-type composition, gene expression and cell–cell communications in diseased 

or injured samples versus controls, which enables us to analyze disease pathology or 

regeneration process at a higher spatial resolution.

CAST Projection reconstructs spatial multi-omics datasets

Beyond performing ΔAnalyses, consistent spatial coordinates generated by CAST Stack 

further allow us to integrate samples with different spatial omic modalities. Here, we 

introduce CAST Projection, an unsupervised, label-free method to project single cells from 

query samples onto a reference sample toward spatially resolved single-cell multi-omics 

(Fig. 5a). To achieve this, it assigns single cells from the query samples to the reference 

sample with the closest physical location and the most similar gene expression profile (for 

example the same cell type and cell state). Specifically, we first conducted Combat30 and 

Harmony31 (Methods) single-cell data integration of the query and reference samples across 

different omic modalities to generate a shared low-dimensional latent space, where cosine 

distance, a widely used metric in single-cell analysis32–34, is used to measure the similarity 

of cells across modalities. Given one reference cell, CAST Projection then searches for 

the cell with the closest cosine distance from the query sample within a confined physical 

radius as the matched cell pair (Methods). With well-aligned samples from CAST Stack, we 

can easily project the cells from multiple query samples to a shared reference sample with 

identical tissue coordinates.

We first evaluated the performance of CAST Projection using four control samples (S1–S4). 

When performing projection from S4 (query) to S1 (reference) (Fig. 5b and Supplementary 

Video 2), the Euclidean distance of assigned cell pairs indicated that most of the cells in 

the query slice were assigned to the reference slice with small distances (median distance of 

72 μm; Fig. 5c). Meanwhile, the cell types of reference cells were highly concordant with 

their assigned query cells, shown by the confusion matrix of cell type assignments (91% 
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matched labels; Fig. 5d–f and Extended Data Fig. 7a), which further supports that CAST 

correctly projects single cells from one tissue slice to another with the accurate match of 

spatial location and gene expression profiles.

Using CAST Projection, we finally integrated four biological samples (S1–S4) into one 

spatial common coordinate framework (Extended Data Fig. 7b–d) in which every single 

cell consists of four gene expression profiles (Fig. 5g). Gene expression profiles showed 

consistent spatial patterns across S1–S4 before and after projection, such as Snap25 
(Fig. 5g), Mobp and Tshz2 (Extended Data Fig. 7e). Notably, experimental flaws (for 

example tissue distortion, slice fracture and missing imaging tiles) in individual slices 

do not significantly harm the performance of CAST and can be well compensated for 

by aggregating information from multiple samples through the spatial and single-cell 

integration of the CAST Projection process (Fig. 5g and Extended Data Fig. 7e).

Next, we examined whether spatial constraints are necessary by comparing against an 

alternative projection strategy of matching query cells with each reference cell solely relying 

on single-cell cosine distance without spatial constraints (Fig. 5c and Supplementary Fig. 

9). Although this strategy generated comparable results in terms of matching cell types, the 

projection plots and the physical distance histograms showed that the projections were much 

further away from the reasonable locations compared to the CAST Projection, pointing 

out the importance of the spatial constraints. Similarly, CAST Projection with spatial 

constraints outperformed existing single-cell-to-spatial integration tools, such as Tangram35 

and Cell2Location36 (Supplementary Fig. 10a,b). Both demonstrations collectively suggest 

that direct spatial-to-spatial alignment may be closer to the ground truth for spatial 

multi-omic integration in comparison with existing single-cell-to-single-cell or single-cell-

to-spatial approaches.

Moreover, when replacing the integration embedding with the embedding generated 

by Seurat CCA37, MNN34 or LIGER38, CAST Projection also displayed satisfactory 

performance (Supplementary Fig. 10c–e), which indicates the flexibility of the CAST 

Projection. Furthermore, CAST Projection can also be applied across different major spatial 

omics technologies, including Visium, MERFISH, Slide-seq and Stereo-seq (Extended Data 

Fig. 7f and Supplementary Table 4).

Spatially resolved single-cell translation efficiency

To demonstrate the capability of CAST Projection to integrate different modalities of 

spatial omic measurements, we applied CAST Projection for four brain samples whose 

transcriptomes and translatomes were profiled respectively with STARmap and RIBOmap 

technologies at single-cell resolution7 (Fig. 6a). While STARmap measures the cellular RNA 

expression with spatial information, RIBOmap selectively profiles the ribosome-bound RNA 

to probe protein translation in situ.

After performing joint cell typing and region segmentation using CAST Mark for the 

four brain samples (Fig. 6b,c, Extended Data Fig. 8a–e and Methods) and CAST Stack 

alignment, we applied CAST Projection to project the STARmap cells to the RIBOmap cells 

(Fig. 6a). To validate the integration performance, we compared cell-type correspondence 
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between query and reference cells, all of which showed accurate integration results 

(averaged percentage of matched labels of 85%; Extended Data Fig. 8f). After CAST 

Projection generated integrated tissue samples in which each cell contained both RIBOmap 

and STARmap measurements, we further defined single-cell relative translation efficiency 

(scRTE) as the normalized ratio of RIBOmap reads divided by STARmap reads in each cell 

(Fig. 6d and Methods).

By profiling scRTEs across all genes, we sought to analyze the spatial heterogeneity of 

scRTEs across cell types and tissue regions. To this end, we first grouped genes into gene 

modules based on their mean expression profile across different cell types, which resulted in 

11 gene modules (M1–M11; Extended Data Fig. 9a,b). We then conducted cell-type-specific 

scRTE analysis within each cell type with gene modules that had adequate expression: M1–

M5 and M9 in neurons, M6 in astrocytes, M7 in microglia, M8 in oligodendrocytes, M10 

in vascular cells and M11 in astro-ependymal cells (Supplementary Table 7), which revealed 

widespread cell-type- and tissue-region-dependent translational regulation.

In oligodendrocytes, we detected dramatically different scRTE levels of M8 genes 

between fiber tracts and other regions, which involve axon ensheathment, nervous system 

development and myelination. For example, Mbp, Plekhb1, Ptma and Qdpr showed 

significantly high scRTE levels in fiber tracts, in contrast, Fth1 showed relatively low scRTE 

levels (Fig. 6e and Extended Data Fig. 10a). The differential translational regulation of these 

genes in the fiber tracts versus other regions indicates regional specialization of protein 

synthesis to support oligodendrocyte functions (for example myelination). In astrocytes, 

Atp1a2 showed higher scRTE levels in the thalamus region (Fig. 6f and Extended Data 

Fig. 10b). In telencephalon interneurons, the translation elongation factor Eef1a1 had higher 

scRTE levels in the thalamus than other regions, whereas the Kif5a exhibited lower levels 

in the thalamus (Fig. 6g and Extended Data Fig. 10c). In telencephalon-projecting neurons, 

Cplx2 and Ppp1r2 both showed lower levels in the striatum region (Fig. 6h and Extended 

Data Fig. 10d). These results support the heterogeneity of translation efficiency across 

different cell types or anatomical regions and the necessity to investigate messenger RNA 

translation regulation with both single-cell and spatial resolutions in future studies.

Discussion

In summary, we demonstrated that CAST enables search-and-match across samples based 

on their spatially resolved molecular similarities while uncovering and visualizing the 

variability driven by spatial differences. Such multi-technology spatial–spatial integration 

will benefit users to combine the strengths of different spatial technologies by cross-

reference across various spatial resolutions and gene panels. Meanwhile, CAST also shows 

the capability for potential atlas query applications. With CAST, users could input the ROI 

from one tissue slice and search large reference spatial omics datasets for the best-matching 

tissue location for their sample.

With well-aligned samples from CAST Stack, ΔAnalysis reveals spatially heterogeneous 

patterns of different molecular characteristics, thereby enabling identification of disease 

hallmark-associated gene clusters without the need of cell-type and tissue-label annotations, 
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which opens new perspectives toward a deeper understanding of disease, injury and 

regeneration mechanisms. We also integrated a spatially resolved translatome (RIBOmap) 

and transcriptome (STARmap) to uncover the spatial translation efficiency landscape of 

brain tissues at the single-cell level.

We note that the performance of CAST ΔAnalysis depends on the accuracy of tissue 

alignment. Thus, it is critical for the users to pay attention to the Pearson similarity scores 

provided in the CAST Stack results (Extended Data Fig. 3b) and filter misaligned cells and 

regions when needed for quality control. Meanwhile, increasing biological replicates can 

reduce the variations from individual samples and increase the confidence of cross-condition 

comparison (for example disease versus control). Furthermore, the choice of radius in the 

cell-centered neighborhood may influence the biological focus of ΔAnalysis (large regional 

changes versus local changes). Additionally, due to the warping introduced during the CAST 

Stack alignment, the ΔCell from ΔAnalysis may represent a relative change of local cell-type 

composition rather than absolute change of cell densities. If needed, the absolute cell density 

analysis could be performed before alignment.

CAST provides a comprehensive and modular framework for the integration and differential 

analyses of spatial omics data across biological replicates, measurement modalities and 

disease conditions with both spatial and single-cell resolutions.

Methods

Data preprocessing

In all the spatial omics datasets used, we normalized the sum of the raw read counts of 

each cell to 1 × 104 (referred to as norm1e4). We then applied a log2 transformation to the 

normalized counts (referred to as log2_norm1e4). Finally, the expression values were scaled 

without zero-centering (referred to as ‘scale’). Each data transformation was stored as an 

Anndata39 layer.

CAST Mark algorithm

Given a sample with M cells, the corresponding dataset is composed of each cell’s 

spatial coordinates Ψ ∈ ℝM × 2 (x and y coordinates) and the feature expression matrix 

X ∈ ℝM × N N indicates the feature dimension, for example gene expression panel size). 

For each tissue sample, we first constructed the tissue graph by performing Delaunay 

triangulation using the spatial coordinates, resulting in an adjacency matrix A ∈ ℝM × M.

The CAST Mark GNN is composed of L GCNII layers16 after an optional single-layer 

perceptron encoder. The perceptron encoder serves as an option to reduce feature dimension 

and thus reduces the demand for computational resources without large compromise in 

performance. For each layer l l = 1,2, …, L − 1 ,

H(l + 1) = σ 1 − αl D− 1
2AD− 1

2 H(l) + αlH(0) 1 − βl In + βlW l
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Where σ ⋅  is a nonlinear activation function (by default, ReLU). Â is the adjacency 

matrix with self-loops, D is its diagonal degree matrix. H 0  is the initial node features 

(for example gene expression for each cell), while H l  is the feature for layer l . αl and βl are 

hyperparameters for which we used their default values in the DGL package40.

We utilized a self-supervised CCA learning objective41 to train the network, where for 

each sample, we first applied random node feature masks and random edge masks to the 

initial graph G to generate two augmented views of G:G1 = X1, A1 , G2 = X2, A2 , providing 

a mechanism to tolerate the intrinsic and sample-level stochasticity of gene expression and 

spatial locations of cells at microscopic scales. The CAST Mark GNNεθ is subsequently 

employed in parallel to create node embeddings for the two augmented views: H1 = εθ X1, A1

and H2 = εθ X2, A2 . Then we normalized H1 and H2 by

H = H − μ(H)
σ(H) M

where μ is the mean value of each feature in the given matrix, σ indicates the s.d. of the 

values in each feature and M is the number of cells. The normalized H1 and H2 are used for 

the CCA-based self-learning objective. The objective function is:

ℒ = H1 − H2 F
2 + λ H1

TH1 − I F
2

+ H2
TH2 − I F

2

where the / is the identity matrix and λ is a non-negative hyperparameter.

In this study, we used L = 9 by default. After the training process, the final graph embedding 

of the original graph G is H init = εθ X, A .

Performance evaluation.—We used Pearson correlation to evaluate the similarity of 

the graph embeddings. We used the ARI and the percentage of consistent cells between 

corresponding clusters to evaluate the clustering performance.

CAST Stack algorithm

To align the spatial coordinates of samples while preserving cell organization,CAST Stack 

performs alignment using a gradient-descent-based rigid alignment phase followed by a 

nonrigid alignment phase to achieve a proper transformation.

Rigid alignment.—Affine transformation was used for rigid registration. CAST allows 

translation, rotation, scaling and reflection transformations, but disallows shear mappings. 

We set the initial coordinates of the M cells in the query sample as Ψ0 = xi
0, yi

0 , i = 1, …, M. 

For every optimization iteration p p = 1, …, P , the transformed coordinates were defined 

as Ψp = xi
p, yi

p Ψ = xi, yi  refers to Ψp = xi
p, yi

p . The affine transformation algorithm can be 

written as:
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Ψ = Taffine Ψ0 = AΨ0 + b

where T affine is the affine transformation function taking the transformation matrix A and the 

translation vector b as parameters:

A = cosϕ −sinϕ
sinϕ cosϕ

a 0
0 d = acosϕ −dsinϕ

asinϕ dcosϕ
b =

b1

b2

We reshape A, b into a single five-dimensional vector θ containing the five affine 

transformation parameters a, d, ϕ, b1 and b2:

θ =

a
d
ϕ
b1

b2

Consequently, the affine transformation function can be formally noted as T affine Ψ0; θ .

To automatically find a proper transformation, GD was performed to optimize the affine 

transformation parameter vector θ.

The loss function J is identified as the sum of the adjusted Pearson distance Ji between each 

query cell i and its nearest reference cell:

J =
i = 1

M
Ji

We first calculated the Pearson correlation matrix between query and reference samples 

using the CAST Mark graph embedding. ri is the Pearson correlation value between each 

query cell i and its nearest reference cell. To ensure the Pearson distance has a minimum 

value of zero, we subtract the ri from the maximum value of the Pearson correlation matrix, 

thereby obtaining the adjusted Pearson distance value.

Ji = (maxr) − ri

Optimization steps are formulated as:
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θt + 1 = θt − α∇θJ

∇θJ =

∂J
∂θ1

…
∂J
∂θk

…
∂J
∂θs

∂J
∂θk

=
i = 1

M ∂J
∂Ψi

∂Ψi
∂θk

where α is a weighting parameter of the GD. The ∂J
∂Ψi

 is the partial derivative of the J with 

respect to coordinate variable Ψi:

∂J
∂Ψi

= ∂J
∂xi

∂J
∂yi

The ∂Ψi
∂θk

 is the partial derivative of the coordinate variable Ψi with respect to θk:

∂Ψi
∂θk

= ∂xi
∂θk

∂yi
∂θk

∂Ψi
∂θk

=

xicosϕ xisinϕ
−yisinϕ yicosϕ

−dyicosϕ − axisinϕ axicosϕ − dyisinϕ
1 0
0 1

Non-rigid alignment.—The FFD based on the B-spline method is used for the deformable 

transformation42. To define a spline-based FFD, we first generated a mesh grid for the 

spatial slice. Given the number of the control points s in each dimension, the mesh spacings 

gx and gy are calculated by:

gx = mx
s − 1, gy = my

s − 1

where mx and my represent the maximum coordinate of the slice. Ω indicates s × s
control points ωi, j in the mesh grid with spacing gx, gy, respectively. All the cells 

(M cells) in a given query sample before B-spline alignment are identified as 

Ψ0 = xℎ
0, yℎ

0 ∣ 0 ≤ xℎ
0 ≤ mx, 0 ≤ yℎ

0 ≤ my , ℎ = 1, …, M. Similarly, the B-spline transformed 

coordinates are Ψp = xℎ
p, yℎ

p  (where, Ψ = xℎ, yℎ  indicates Ψp = xℎ
p, yℎ

p ). The B-spline 

transformation matrix TB‐spline for each control point is written as:

Ψ = TB‐spline Ψ0 =
l = − 2

1

m = − 2

1
Bl(u)Bm(v)ωi + l, j + m
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Where i = x0/gx , j = y0/gy , u = x0 − i × gx, v = y0 − j × gy and where Bl and Bm represents 

the l-th and m-th basis function of the B-spline, respectively:

B−2(u) = (1 − u)3
6

B−1(u) = u3
2 − u2 + 2

3
B0(u) = 1

6 −3u3 + 3u2 + 3u + 1

B1(u) = u3
6

Similarly, the formula of the GD-based FFD is written as:

ωt + 1 = ωt − α∇ωJ

∇ωJ =

∂J
∂ω0, 0

⋯ ∂J
∂ω0, s − 1

⋮ ⋱ ⋮
∂J

∂ωs − 1, 0
⋯ ∂J

∂ωs − 1, s − 1

∂J
∂ωi, j

=
ℎ = 1

M ∂J
∂Ψℎ

∂Ψℎ
∂ωi, j

where α is a weighting parameter of the GD. ∂J
∂ψℎ

 is the partial derivative of the J with 

respect to coordinate variable Ψℎ:

∂J
∂Ψℎ

= ∂J
∂xℎ

∂J
∂yℎ

∂Ψℎ
∂ωi

 is the partial derivative of the coordinate variable Ψℎ with respect to ωi, j, which is equal 

to ∑l = − 2
1 ∑m = − 2

1 Bl u Bm v .

CAST Projection algorithm

We assume that a given cell will be the most similar to the cells with close distance 

in physical space and low-dimensional feature space. Thus, to project the features of the 

cells into a low-dimensional space, CAST Projection employs a sequential combination of 

Combat30 and Harmony31 integration for samples with different modalities. Cosine distance 

is used to measure the similarity of cell features in the integrated embedding. To find the 

candidate cells for a given reference cell, CAST first identifies the candidate query cells 

within a radius of the reference cell. As different cell types exhibit varying cell distances 

in the space, CAST calculates the cell-type-specific cell average distance based on the 

Delaunay triangulation graph. By default, twice the averaged distance is utilized (in AD 

samples, 1.5 × cell distance is used, while in RIBOmap-STARmap, 3 × the distance is used). 
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Among the candidate query cells, CAST identifies the cell with the closest cosine distance to 

project.

Simulation datasets

To generate a dataset with ground-truth cell partners across samples, we took S1 from the 

STARmap PLUS AD dataset as our reference and generated one simulated sample based on 

S1, where each cell in the synthetic sample corresponded to a ground-truth partner in the S1 

sample. The simulated sample was generated by the following steps:

1. Physical location noise (nonlinear): Gaussian Process Warp43 was used 

to perturb the spatial coordinates of the reference sample using the 

following parameters: noise_variance = 1 × 105; kernel_variance = 1 × 105; 

kernel_lengthscale = 1.0; mean_slope = 1.0; and mean_intercept = 0.1.

2. Global spatial coordinates distortion (linear): the tissue sample was further 

changed by scaling and rotation transformations (x axis, 40%; y axis, 50%; and 

rotation, 30∘)

3. Gene expression noise: we applied Gaussian noise (μ = 0, σ = 0.2) to the log2

norm1e4 gene expression matrix.

4. Gene feature dropout: we randomly replaced 10% of the values in the expression 

matrix using zeros.

5. Cell dropout: we randomly dropped 10% of cells in the simulated sample, making 

sure that the graph structures would be altered.

The numbers of samples per box in Fig. 2b are 79,749, 788,629, 

1,736,756,1, 736,756,4, 341,890,8, 683,780,8, 683,780,8, 692,641, 8,683,780,8, 683,780,8, 692,641,8,
683,780,8, 683,780
and 8,692,641 for percentile groups 0.1,1, 3,5, 10,20,30,40,50,60,70,80,90 and 100, respectively.

Region marker gene detection

We calculated the average gene expression (log2 norm1e4) in each region, which represents 

the gene expression abundance. Then, z-scores of these averaged values were calculated 

across all regions to quantify the degree to which expression levels vary across different 

regions21. By considering these two features and comparing them with the databases17, we 

identified the region marker genes (Supplementary Table 3) with help from the experts.

Querying tissue locations in spatial brain atlases using the ‘search-and-match’ strategy

We utilized the STARmap S1 sample, a subset of mouse coronal brain section that mainly 

contains the hippocampus region, to query against a comprehensive molecular spatial atlas 

of the mouse CNS21. The query was conducted following a two-step process. In the first 

step, we performed a coarse search against all candidate slices of all depths in the spatial 

atlas using only affine transformation to identify slices from the reference dataset with tissue 

location similarities. We assessed possible matching tissue locations using the CAST Stack 

loss values. We identified three hit slices in the reference atlas with significantly lower loss. 
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In the second step, we performed a high-resolution alignment using the full CAST Stack 

(both affine and B-spline) for the query slice against the three hit slices. The reference slice 

with the lowest loss was determined to be the best match.

Delta-sample analysis

ΔAnalysis was used to discover the variance driven by spatial differences across conditions. 

With the well-aligned samples, given one neighborhood (niche), we could get the cells and 

their molecular characteristics in this neighborhood with different conditions. For each cell, 

we defined a neighborhood as all the neighboring cells within a default 50 − μm radius from 

its center. By comparing the associated neighborhoods of aligned samples, we obtained delta 

statistics for molecular features such as gene expression and cell type abundance at a local 

resolution on the global tissue slice. After screening all cells in the sample, we obtained a 

global spatial gradient map of the differences in molecular features between conditions. In 

this study, we used these molecular features in each neighborhood:

Cell type abundance.—This means the cell counts of a certain cell type. 

The ΔCell is the difference of the cell type abundance in each comparison. 

For example, for one of the combinations (S8–S3) in the 13-month comparison, 

ΔCelli Oligo = Cellc1 Oligo − Cellc2 Oligo , where Cellc1 Oligo  is the abundance of the 

oligodendrocytes in the disease sample S8, while Cellc2 Oligo  is the abundance of the 

oligodendrocytes in the control sample S3. The strategy was applied for gene expression, 

CCAs and CCIs.

Gene expression.—ΔExp is the difference of the average gene expresion (log2_norm1e4) 

in each comparison. The spatial amyloid plaque-induced genes (PIGs) are identified by the 

following criteria: (1) ΔExp > 0.1; (2) the spatial correlation (Pearson r) between the ΔExp
and plaque score is greater than 0.1; and (3) the false discovery rate values of the Wilcoxon 

rank sum test for the differential expression analysis is < 0.1.

Cell–cell adjacencies.—△ CCA is defined as the difference of the CCA value of the 

given cell type pairs. The CCA value between cell type A and B is defined as the number of 

A–B edges within a two-hop neighborhood on the Delaunay tissue graph.

Cell–cell interactions.—ΔCCI is defined as the difference of the CCI degree of a ligand–

receptor pair in each comparison derived as in CellPhoneDB44. The CCI degree is calculated 

by Squidpy (v.1.2.2)45 with the normalized counts (norm1e4).

Plaque score.—This is the sum of the plaque area in each niche. We filtered plaques with 

the area less than 300 pixels ( 30μm2) in the image.

Tau score (value).—This is the sum of the tau rate in the cells. The tau rate is defined as 

the ratio between the tau area and the cell area in each cell.
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To interrogate the spatially resolved molecular differences among different age groups, we 

used two comparisons: 8-month disease and control (8 months), 13-month disease and 

control (13 months; Fig. 4a).

Hot-zone visualization.—The contour map visualization was adopted to visualize 

the spatial gradients of ΔAnalysis features and highlight the loci with locally enriched 

differences across conditions in an unsupervised, label-free way. For a given ΔAnalysis 

feature, radial basis function interpolation was used to generate the contour lines (Rbf 
function in the SciPy package and contour function in the matplotlib package). The 

hot-zones were defined as the loci surrounded by the contours (by default, the top 20% 

percentile contour).

scRTE analysis

To measure the translation efficiency among cells regardless of the different expression 

distributions due to the different technologies or samples, we introduced the scRTE metric 

for each cell as the following formula (scTE represents single cell translation efficiency):

scTEi, j = log2
RIBOi, j

STARRi, j

scRTEi, j = scTEi, j − μi
σi

where RIBOij and STARi, j are the RIBOmap and STARmap normalized counts (norm1e4) of 

the gene i in cell j. The μi and σi are the average value and s.d. of the scTEij of the gene i
across all cells. The scRTEEi, j is the z-score of the scTEi, j over all cells.

Once we calculate the scRTE values of each cell in a given gene, scRTE levels at different 

locations may not be consistent. To detect the spatial variability of the scRTE levels in 

each gene, we used the s.d. of the scRTE values of each gene to measure the degree 

of heterogeneity for each gene. Meanwhile, the Kruskal–Wallis test was used to evaluate 

whether the scRTE levels are significantly different between the cell types or regions. As 

the STARmap sample in Mouse 2 is truncated at the hypothalamus, cortical subplate and 

olfactory cortical regions, our analysis focuses solely on the overlapping region within the 

Mouse 2 sample.

Although scRTE is not the absolute ratio of ribosome-bound RNA versus the total RNA 

as RIBOmap and STARmap were measured from two different samples using different 

technologies, it reflects the rank of relative translational levels compared to other cells in the 

dataset. We reason that scRTE is a more robust metric across samples while reflecting spatial 

heterogeneity of translation efficiency.

Region segmentation of mouse half-brain datasets

We first performed CAST Mark training on the normalized expression (norm1e4) with 

Combat batch correction30 of 1,082 highly variable genes across all four half-brain samples. 

We then performed k-means (k = 20) clustering on the CAST Mark graph embedding. 

Among the 20 clusters, we selected the most under-segmented cluster (region 3) and further 

Tang et al. Page 18

Nat Methods. Author manuscript; available in PMC 2024 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subclustered region 3 into 10 subclusters, yielding a total of 29 clusters. We then visually 

examined all 29 regions. Using the Allen Brain Atlas17,18 as the reference, we merged over-

segmented regions consistent with established brain anatomy. We also separated physically 

segregated areas belonging to the same k-means cluster into two regions (HY, hypothalamus 

and LH, lateral habenula). Consequently, we confirmed a total of 23 brain subregions. 

Finally, we concluded these 23 brain subregions into 10 top-level brain regions based on the 

Allen Brain Atlas.

Gene clustering

The gene expression (log2_norm1e4) of the four samples were first averaged across the 

cell types within each sample, respectively. Subsequently, the average expression values 

were standardized by calculating the z-score within each sample. Eight hundred eighty-four 

highly abundant genes with sufficient expression and scRTE values in each sample were 

used in this analysis. The standardized vectors for RIBOmap and STARmap were jointly 

clustered with the Louvain algorithms from Seurat (v.4.0.3). We then used ComplexHeatmap 

(v.2.10.0) to visualize the clusters. For the gene clustering based spatial pattern (ΔExp 

spatial pattern), the Pearson correlation matrix between the genes was first calculated. Then 

the matrix was used for Leiden clustering (Scanpy46, v.1.9.1).

Enrichment analysis

To identify the enriched GO and KEGG pathway terms, gprofiler2 (v.0.2.1) was applied for 

the enrichment analysis. The enriched terms were further visualized by the EnrichmentMap 

plugin in Cytoscape (v.3.9.1). For visualization, clusters containing fewer than five nodes 

were excluded. For the spatially resolved PIGs, the GO and KEGG pathway enrichment 

analyses were conducted with clusterProfiler (v.3.18.1)47.

Benchmark with PASTE alignment

We used the pairwise_align (GPU mode) and center_align (CPU mode; not available in GPU 

mode) in PASTE to run the alignment tasks of different samples with default parameters. 

The NVIDIA RTX A5000 (24 GB VRAM) GPU was used in the task. We only presented 

the available results for the eight AD sample and Visium datasets (Supplementary Fig. 6), 

as PASTE was unable to execute the half-brain alignment tasks due to memory limitations 

(limited to CPU 80 GB RAM).

For the Visium dataset, we set min_counts = 15 in the function sc.pp.filter_genes and 

min_counts = 100− in the function sc.pp.filter_cells to filter the low-expressed genes and 

voxels. The reference slice was Visium1 (Mouse Brain Coronal Section 1) and the query 

slice was Visium2 (Mouse Brain Coronal Section 2). Raw expression data was used. Default 

values of parameter numItermax and α were used for the function pairwise_align.

For the eight AD sample dataset, we set min_counts = 200 in the function sc.pp.filter_cells 

to filter the low-expressed genes. The raw expression data was used. Default values 

of parameters were used for the function pairwise_align and center_align. In pairwise 

alignment tasks, S1 was used as the reference slice and other slices were used as the query 

slices.
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Reporting summary

Further information on research design is available in the Nature Portfolio Reporting 

Summary linked to this article.

Data availability

The RIBOmap and STARmap datasets are available from (RIBOmap_mouse1, 

STARmap_mouse1 and RIBOmap_mouse2) https://singlecell.broadinstitute.org/single_cell/

study/SCP1835 and (STARmap_mouse2) https://singlecell.broadinstitute.org/single_cell/

study/SCP2203). The AD STARmap PLUS datasets (S1–S8, S64_1 and 

S64_2) are publicly available at https://singlecell.broadinstitute.org/single_cell/study/

SCP1375/. The mouse brain atlas dataset used is available at https://

singlecell.broadinstitute.org/single_cell/study/SCP1830. The two Visium datasets (Mouse 

Brain Coronal Section 1 (FFPE) and Mouse Brain Coronal Section 2 

(FFPE)) are available from https://www.10xgenomics.com/resources/datasets/mouse-brain-

coronal-section-1-ffpe-2-standard and https://www.10xgenomics.com/resources/datasets/

mouse-brain-coronal-section-2-ffpe-2-standard. The MERFISH dataset (co1_slice37 in 

co1_sample13) is available from https://doi.brainimagelibrary.org/doi/10.35077/act-bag. 

The Slide-seq dataset (slice042) is available from https://docs.braincelldata.org/downloads/

index.html. The two Stereo-seq MOSTA datasets (E16.5_E2S5 and E16.5_E2S6) are 

available from https://db.cngb.org/stomics/mosta/download/.

Code availability

The code and demos of CAST have been deposited to GitHub at (https://github.com/

wanglab-broad/CAST) and Zenodo (https://zenodo.org/doi/10.5281/zenodo.12215314 (ref. 

48)). The implementation of CAST, as well as the tutorials, are available in the demo 

pipeline files and CAST document page (https://cast-tutorial.readthedocs.io/en/latest/).
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Extended Data

Extended Data Fig. 1 |. CAST Mark identifies the common spatial features between the 
simulated and real samples.
a, The schematic workflow of the self-supervised learning framework used in CAST Mark. 

b, The simulation strategy to generate the simulated dataset S1’ from the real sample 

S1 (8 month, control) in STARmap PLUS dataset (Methods). c, The k-means (k = 20) 

clustering results of the graph embedding generated by CAST Mark. Different colors in 

the cells indicate different clusters of the graph embedding. d, The t-SNE visualization of 
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the spatial embedding labeled with samples (left) and k-means clusters (k = 20, right). e, 

The clustering performance adjusted Rand index (ARI) and the percentage of the consistent 

cells in different numbers of the clusters (k). Each box contains 10 technical replicates 

using different random seeds. f, The k-means (k = 100) clustering results of the spatial 

embedding generated by CAST Mark. g, The distance distribution of the cells in different 

k-clusters and non-distribution groups (sample size = 8,789 for each group). The distance 

indicates each cell in the simulated sample S1’ to the closest one with the same cluster in 

the S1 sample. In the boxplots of e and g, the middle line indicates the median; the first 

and third quartiles are shown by the lower and upper lines, respectively; the upper and lower 

whiskers extend to values not exceeding 1.5 times the IQR. h, Enabled by a deep GNN and 

a self-supervised CCA objective, CAST Mark outperforms existing GNN-based methods 

(SpaGCN, STAGATE, GraphST) in tissue segmentation tasks at a ~ 9,800-cell scale. 

Segmentation results were colored by clusters, shown along with brain annotation from the 

Allen Institute17,18. i, Tissue segmentation was performed on a STARmap dataset collected 

on a single coronal slice of mouse half brain7. The performance of CAST Mark scales 

up to the ~60,000-cell scale (a typical coronal slice of mouse half brain), outperforming 

SpaGCN11, while GraphST and STAGATE fail to handle this large dataset (5,413 genes) at 

single-cell resolution.
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Extended Data Fig. 2 |. CAST Mark identifies consistent regions across age, strain, and disease 
conditions.
a, The k-means (k = 100) clustering result of graph embeddings generated by CAST Mark 

in the samples S1–S8. Different colors in the cells indicate the different clusters of the 

embedding. b, The bar plots show the consistent cell proportions of each cell type in each 

sample (Ordered from S1 to S8) and region. Astro, astrocyte; CA1, CA1 excitatory neuron; 

CA2, CA2 excitatory neuron; CA3, CA3 excitatory neuron; CTX-Ex, cortex excitatory 

neuron; DG, dentate gyrus; Endo, endothelial cell; Inh, inhibitory neuron; Micro, microglia; 
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Oligo, oligodendrocyte; OPC, oligodendrocyte precursor cell; SMC, smooth muscle cell. c, 

The z-score of the mean value of the log2_norm1e4 (Methods) profiles of region marker 

genes (Supplementary Table 3) in each region (Ordered from S1 to S8) shows that CAST 

Mark identifies consistent regions across multiple samples. d, The gene expression of region 

markers Cux2 (L2/L3), Prox1 (DG), Tenm3 (CA1) and Tshz2 (RSP) across 8 samples 

(Ordered from S1 to S8). The region marker genes are validated by the ISH images from the 

Allen Brain Atlas17.

Extended Data Fig. 3 |. Pearson correlation of CAST Mark graph embedding between cells is a 
robust similarity metric for cell locations across samples.
a, Given the query cell in the query slice (simulated dataset S1’), the cells in the reference 

sample (S1) are colored by Pearson’s correlation of the graph embedding between the 
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reference cell and the given query cell in the query sample (S1’). b, Left panel, the 

coordinates of the S1 and the S1’ after alignment (same as Fig. 2d). Right panel, each 

cell in the query sample is colored by Pearson correlation of the graph embedding between 

itself and its closest pair in the reference sample. c, The boxplots show the significantly 

closer physical distances (One-way ANOVA; p-value < 2.2e-16) of the correct cell pair 

(ground truth, mean = 37.82 μm, sample size = 8,789) than the ones in random cell pairs 

(Random, mean = 1133.49 μm, sample size = 8,789). d, Given a query cell in the query 

sample (S2–S8), the cells in the reference sample (S1) are colored by Pearson’s correlation 

of the graph embedding between the reference cells and the given query cell. Cells with high 

Pearson’s correlation in the reference sample show similar relative spatial locations to the 

query cell. In the bottom panel, cells in the query samples are colored by tissue region labels 

produced by CAST Mark (same as Fig. 1c for visualization). e, The boxplots show the high 

Pearson correlation of the graph embedding between the cells in query samples (S1’ and 

S2–S8) and the reference cell with the closest physical distance in the reference sample (S1). 

Average Pearson r: 0.99 (S1’, n = 8,789), 0.95 (S2, n = 8,506), 0.94 (S3, n = 9,428), 0.93 

(S4, n = 8,034), 0.82 (S5, n = 8,202), 0.88 (S6, n = 8,186), 0.91 (S7, n = 9,634) and 0.92 

(S8, n = 10,372). In the boxplots in c and e, the middle line indicates the median; the first 

and third quartiles are shown by the lower and upper lines, respectively; the upper and lower 

whiskers extend to values not exceeding 1.5 times the IQR.
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Extended Data Fig. 4 |. CAST has wide utility across various spatial technologies.
a-g, CAST automatically searches and matches shared tissue anatomy in different 

technologies at high spatial resolution: a, Visium (Visium1: Mouse Brain Coronal 

Section 1; Visium2: Mouse Brain Coronal Section 2); b, Stereo-seq4; c, STARmap 

(STARmap_mouse17) versus Slide-seq20; d, STARmap (STARmap_mouse1) versus 

MERFISH19; e, Two STARmap samples with limited gene panels5 (both have 64 

genes); f, STARmap versus STARmap. STARmap_small is S1 and STARmap_large is 

STARmap_mouse1; g, STARmap (S1) versus Slide-seq. i, joint k-means clustering results 
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of CAST Mark graph embeddings of two samples, colored by joint clusters. ii,iii, spatial 

coordinates of the query sample (colored pink) and the reference sample (colored blue) 

before (ii) and after (iii) alignment. iv,v, aligned samples colored by joint k-means clustering 

results of the graph embeddings (iv panel, 2D visualization; v panel, 3D visualization).

Extended Data Fig. 5 |. ΔAnalysis identifies the spatial changes of molecular characteristics 
between disease and normal conditions.
a,b, The ΔExp profiles of genes within each cluster in different cell groups. The cells are 

grouped by their distances to the nearest Aβ plaque (a) and by their tau values (b). c, 
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The niche centers (cell) colored by the different regions. d, The spatial gradient map (S8 

coordinates) shows the ΔExp of the Ctsb gene in microglia and 13 mos comparison (S8 − 

(S3 + S4) / 2). The disease sample shows the Ctsb gene expression in microglia cells of S8, 

while the control one shows the average values of S3 and S4. The size of dark green dots 

indicates the Aβ plaque area. The dash lines indicate different CAST Mark regions (c). e, 

The average delta gene expression (ΔExp) of the plaque-induced genes in different regions, 

cell types and comparisons. The average spatial correlation (Pearson r) between the overall 

(gene expression in all cells) ΔExp and the Aβ-plaque score are listed aside. The values 

of 4 combinations in each comparison are averaged (13 mos comparison: S7 – S3, S7 – 

S4, S8 – S3, S8 – S4; 8 mos comparison: S5 – S1, S5 – S2, S6 – S1, S6 – S2). f, The 

ΔExp of the Ctsb gene in microglia and 13 mos comparison (S7 − (S3 + S4) / 2, R = 50 

μm; S8 − (S3 + S4) / 2, R from 5 μm to 200 μm). For visualization, the ΔExp pattern in 

d (top) is also displayed here. g, The scatter plots show the overall ΔExp of each gene and 

its spatial correlation with Aβ plaque score in different comparisons. Venn diagrams show 

the overlap of the identified plaque-induced genes with the ones identified in initial study. h, 

The average spatial correlation (Pearson r) between the ΔExp of each plaque-induced gene 

and the Aβ-plaque score. Similar to e, the values of 4 combinations in each comparison are 

averaged. i, The GO enrichment analysis of the plaque-induced genes. j, Analogous to d, the 

ΔCCI pattern of the Apoe (Micro) - Trem2 (Micro) in 13 mos comparison (S7 − (S3 + S4) / 

2).
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Extended Data Fig. 6 |. Alignment and ΔAnalysis results between injured and normal brain 
hemispheres during axolotl tissue regeneration.
a, An example of injured versus normal brain hemispheres before and after alignment. i,ii, 
CAST was applied to separate injured and healthy hemispheres. iii, cell-type profiles of the 

sample reported by Wei et al.29 iv, visualization of aligned injured and intact hemispheres. 

b, Alignment results across different DPI stages. The aligned result of sample 2DPI_2 is also 

used in a. c, UMAP clustering results of the ΔExp spatial patterns across all aligned slices. 

d, UMAP of the averaged ΔExp of each gene across all samples. e, The averaged ΔExp 
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profiles (log2_norm1e4) of Clusters 6 and 9 across all stages. f, Comparative GO analysis of 

the genes in Clusters 6 and 9.

Extended Data Fig. 7 |. CAST Projection accurately preserves gene expression and spatial 
relationships in cells across samples.
a, UMAP of Combat30 and Harmony31 integrated embedding across S1–S4 samples (control 

samples) shows that the 4 samples are well integrated in different clusters. Different colors 

represent different samples. b, Confusion matrix of the projection performance (S2 to S1, 

True positive rate (TP) = 0.88; S3 to S1, TP = 0.91). The cell types with more than 
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10 cells in the reference sample are visualized. c, Left panel: The distribution of the 

physical distance in the spatial single-cell projection of the S2 to S1 (top) and S3 to S1 

(bottom). Right panel: Schematic for CAST Projection results. Dashed lines (100 randomly 

sampled alignment pairs for visualization) connect cells from the query sample (top panel: 

S2, bottom panel: S3) with its destination cell in the reference sample (S1). d, CAST 

Projection assignment examples between S2 to S1 (left panel) and S3 to S1 (right panel) 

in the UMAP plots (top, S2 and S3, light red; S1, blue) and real samples (bottom, the 

colors of the cells are colored by cell types). e, Mobp and Tshz2 gene expression (raw 

count) profile in the original samples (top, S2–S4) and projected samples (bottom). f, CAST 

Projection is applicable across major spatial technologies and organs. i, Visium (Visium1: 

Mouse Brain Coronal Section 1; Visium2: Mouse Brain Coronal Section 2); ii, Stereo-seq; 

iii, STARmap (STARmap_mouse1) versus Slide-seq; iv, STARmap (STARmap_mouse1) 

versus MERFISH. CAST Projection preserves original single-cell resolution on mouse half 

brain and whole mouse embryo samples. Dashed lines (200 randomly sampled assignment 

pairs for visualization) connect cells from the query sample with its destination cell in the 

reference sample. In ii, the cells are colored by cell labels in the initial study.
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Extended Data Fig. 8 |. Integration of spatially resolved single-cell ribosome profiling and gene 
expression profiling.
a,b, UMAP visualization of the Integrated RIBOmap and STARmap datasets. Each cell 

is colored by datasets (a) or cell type (b). c, Cell type profiles of Mouse 1 STARmap, 

Mouse 2 RIBOmap and Mouse 2 STARmap samples. d,e, Tissue region (e) and sub-region 

(d) profiles of samples generated using CAST Mark. The hierarchy of tissue regions are 

shown in the legends (right panel, d). HY, hypothalamus; LH, lateral habenula; MH, medial 

habenula; NLOT, nucleus of the lateral olfactory tract; PIR2, piriform area, pyramidal layer; 

PIR3_EP, piriform area, polymorph layer and endopiriform nucleus; RT, reticular nucleus of 

the thalamus; TH, thalamus; V3, third ventricle; VL, lateral ventricle. f, Confusion matrix of 

the projection results (Mouse 1, True positive rate (TP) = 0.84; Mouse 2, TP = 0.86).
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Extended Data Fig. 9 |. Gene modules identified by co-clustering of RIBOmap and STARmap 
data in four samples.
a, Genes are clustered into 11 distinct clusters by co-clustering of RIBOmap and STARmap 

data in four samples (z-score expression). Example genes shown in Fig. 6e–h are marked 

below the gene modules they belong to. b, Enriched GO terms in each gene module are 

grouped by terms and colored by gene modules. In the enrichment map, nodes represent the 

enriched GO terms, while the size of the node corresponds to the number of genes in the GO 

terms. The edges between nodes indicate the overlapping genes between the GO terms.
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Extended Data Fig. 10 |. Examples of the cell-type specific scRTE patterns across different genes.
a-d, Spatially resolved and cell type specific scRTE profiles in Mouse 2. Cells of the 

annotated cell type (above) and with available scRTE values are colored by scRTE levels, 

other cells are colored gray. The boxplots with Kruskal-Wallis tests are used to evaluate 

the differences across the groups. The middle line indicates the median; the first and third 

quartiles are shown by the lower and upper lines, respectively; the upper and lower whiskers 

extend to values not exceeding 1.5 times the IQR.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Schematic overview of CAST.
a, The principles of the three modules in CAST. b, The applications enabled by the three 

modules of CAST. c, CAST Mark identifies consistent regions across multiple samples. The 

k-means (k = 15) clustering results of the graph embedding generated by CAST Mark across 

the samples S1–S8 in the STARmap PLUS dataset (Supplementary Table 2), in comparison 

with the Allen Brain Atlas17,18. Different colors in the cells indicate the different clusters 

of the graph embedding. UMAP, Uniform Manifold Approximation and Projection; CTX, 

cerebral cortex; RSP, retrosplenial area; WM, white matter; DG, dentate gyrus; CAslm, 

CA stratum lacunosum-moleculare; CA1–3, hippocampal CA1–3 region; L2/3, L4, L5, L6, 

cortical layers 2/3, 4, 5 and 6, respectively.
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Fig. 2 |. CAST Stack automatically aligns tissue samples from biological replicates.
a, The boxplot shows a significantly higher (one-way analysis of variance (ANOVA); P 
< 2.2 × 10−16) Pearson correlation of graph embedding of the ground-truth cell pairs 

(ground-truth, mean of 0.97, n = 8,789) than the ones in the random distribution (random, 

mean of 0.04, n = 8,789) between samples S1′ and S1. b, For each query cell in the 

query sample (S1′), the CAST Mark embedding Pearson correlation (r) between this query 

cell and randomly paired cells as well as its ground-truth pair in the reference sample S1 

is calculated. The horizontal axis indicates the distance percentile (%) of the randomly 
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paired cell to the ground-truth pair. For example, 0.1 indicates the percentile group 0–0.1%, 

whereas 100 indicates the percentile group 90–100%. In the boxplots (a,b), the middle line 

indicates the median; and the first and third quartiles are shown by the lower and upper 

lines, respectively; the upper and lower whiskers extend to values not exceeding 1.5 × 

interquartile range (IQR). The number of samples is detailed in the Methods. c, Given the 

query cell in the query sample (simulated dataset S1′), the cells in the reference sample 

(S1) are colored by Pearson correlation of the graph embedding between the reference cells 

and the given query cell. d, Schematic demonstration of the CAST Stack alignment process. 

The alignment process of the simulated dataset S1′ (query sample) and S1 (reference 

sample) is visualized. e, CAST Stack aligns eight samples (S1–S8) into a consistent physical 

coordinate system. Cells are colored by tissue region labels generated by CAST Mark, the 

same as is shown in Fig. 1c.
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Fig. 3 |. CAST aligns tissue samples across spatial technologies regardless of different tissue areas 
and gene panel sizes.
a, CAST integrates three samples of Slide-seq20, MERFISH19 and STARmap 

(STARmap_mouse1 (ref. 7)), respectively, generating a shared physical coordinate system. 

(i) Thejoint k-means clustering results of CAST Mark graph embeddings of STARmap 

(left), Slide-seq (middle) and MERFISH (right), colored by joint clusters. (ii,iii) Spatial 

coordinates of the samples before (ii) and after (iii) alignment. (iv,v) Aligned samples 

colored by joint k-means clustering results of the graph embedding (two-dimensional 
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visualization (iv) and three-dimensional visualization (v)). b, CAST Stack aligns the 

samples with different gene panels and different probe designs. STARmap_64 (left) is S64_1 

(ref. 5) (Supplementary Table 2) and STARmap_2766 (right) is S1. The two samples share 

only 64 genes. The panel order is the same as in a. c, CAST automatically searches and 

matches a small slice (left) to a big slice (right) across technologies at high spatial resolution 

(STARmap (S1) versus MERFISH19). The panel order is the same as in a. d, The flowchart 

shows the two-step strategy to align query sample S1 (same as Fig. 1c for visualization) 

to the reference atlas. e, The loss value (the sum of the adjusted Pearson distance) is used 

as a score to screen for possible hits (only perform affine transformation). A score funnel 

is formed around the ground-truth slicing depth (calculated as the distance to bregma), 

indicating the possible matching tissue slices are sliced at the depth range of −1.155 mm 

to −2.355 mm. f, The complete CAST Stack alignment with optimized parameters were 

performed among the screened hits to identify the most matching tissue locations of the 

query sample. Final CAST Stack alignment results (right) are shown along with loss values 

(left). The aligned result of well11 is also displayed in d.
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Fig. 4 |. Delta-sample analysis detects disease-associated spatial features.
a, ΔAnalysis is performed to interrogate the spatial differences between different conditions 

(Supplementary Table 2). b, The UMAP of the ΔExp (R = 20 μm) spatial-pattern-based 

clustering results (left), paired with the Pearson correlation (r) of the ΔExp with the Aβ 
plaque score (middle) and p-tau score (right) across all disease samples. c, Cell type, Aβ 
plaque (dark green dots) and p-tau (pink) profile of S8 (left). Averaged ΔExp of C1 (middle) 

and C3 (right) genes paired with the contour lines (middle and right). The zoomed-in 

sections show the details of the cell type, Aβ plaque and p-tau in S8, as well as the averaged 
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ΔExp (log2_norm1e4) of C1, C2 and C3 genes in the same ROI. The size of the dark 

green dot indicates the area of Aβ plaques. The following heatmaps show the averaged 

scaled ΔExp profile of three clusters within each cluster in different cell groups. The cells 

are grouped by their distances to the nearest Aβ plaque (left) and their tau values (right). 

Astro, astrocyte; CA1, CA1 excitatory neuron; CA2, CA2 excitatory neuron; CA3, CA3 

excitatory neuron; CTX-Ex, cortex excitatory neuron; Endo, endothelial cell; Inh, inhibitory 

neuron; Micro, microglia; Oligo, oligodendrocyte; OPC, oligodendrocyte precursor cell; 

SMC, smooth muscle cell; LHb, lateral habenula. d, Dot plots show the difference in cell 

type ratios between the hot-zone of the C1, C2, C3 and their non-hot-zone groups. The 

dot size indicates the cell count number in the hot-zone. e, GO enrichment analysis of the 

C1–C3. f, The ΔCCI (R = 50 μm) pattern of the Apoe (Micro) - Trem2 (Micro) in the 

13-month comparison (S8 – (S3 + S4)/2). The size of dark green dots shows Aβ plaque area. 

The dash lines indicate the different CAST Mark regions. g, The ΔCCI pattern of selected 

ligand–receptor pairs in different regions and comparisons. The dot size indicates the spatial 

correlation between ΔCCI and Aβ plaque. h, The average spatial correlation (Pearson r) 
between the ΔCCA (R = 50 μm) and the Aβ plaque score as well as p-tau scores (Methods) 

are displayed. The values of four combinations in each comparison are averaged (13-month 

comparison, S7 – S3, S7 – S4, S8 – S3 and S8 – S4; 8-month comparison, S5 – S1, S5 – S2, 

S6 – S1 and S6 – S2).
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Fig. 5 |. CAST Projection enables single-cell integration of spatial omics data across multiple 
samples.
a, Strategy of the spatially and single-cell resolved cell assignment used by CAST 

Projection. b, Schematic for CAST Projection results. Dashed lines (100 randomly sampled 

assignment pairs for visualization) connect cells from the query sample (S4) with its 

destination cell in the reference sample (S1). Colors represent cell types. c, The distribution 

of the physical distances in the spatial single-cell projection of the S4 to S1. The blue is 

the CAST Projection strategy, while the yellow is the strategy that projects the query cell 

with the closest cosine distance to each reference cell without spatial constraints (same 

as Supplementary Fig. 9). d, UMAP of the batch-corrected latent space across S1–S4 

samples (control samples). Colors follow figure legends in b. e, Confusion matrix of CAST 

Projection (S4 to S1, true positive rate of 0.91). To analyze cell types with an adequate 
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sample size, we filtered out those that have fewer than ten cells in the reference sample. 

f, CAST Projection assignment examples from S4 (query sample, pink) to S1 (reference 

sample, blue) in the UMAP plot (top) and spatial coordinates (bottom; colors follow figure 

legends in b). g, CAST Projection reconstructs one sample with multiple datasets. Cells are 

colored by cell types (left) (colors follow figure legends in b); the Snap25 gene expression 

(raw count) profiles (right) in the original samples (top, S2–S4) and projected samples 

(bottom).
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Fig. 6 |. Single-cell resolved spatial–spatial integration of transcriptomics and translatomics 
reveals the ubiquitous heterogeneity of translation efficiency across cell types and brain regions.
a, Schematic workflow for calculating scRTE profiles of the mouse brain. The four-sample 

dataset is composed of two adjacent half-brain slices taken from two different mice. Of 

the two adjacent slices, one was measured by RIBOmap and the other was measured by 

STARmap. b,c, Cell type and molecular tissue region profiles of the Mouse 1 RIBOmap 

sample (reference sample used in CAST Projection). AC, astrocyte; CHOR_EPEN, 

astro-ependymal cell; CHO_PEP, cholinergic, monoaminergic and peptidergic neuron; 
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DE_MEN, di/mesencephalon neuron; INH, telencephalon interneuron; MLG, microglia; 

OLG, oligodendrocyte; PVM, perivascular macrophage; TEPN, telencephalon-projecting 

neuron; VAS, vascular cell. d, scRTEs were calculated using the formula. e–h, Spatially 

resolved and cell-type-specific scRTE profiles in Mouse 1. Cells of the annotated cell type 

with available scRTE values are colored by scRTE levels, other cells are colored gray. The 

boxplots with Kruskal–Wallis tests were used to evaluate the differences across the groups. 

The middle line indicates the median; the first and third quartiles are shown by the lower and 

upper lines, respectively; and the upper and lower whiskers extend to values not exceeding 

1.5 × IQR.
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