
Cole et al., Sci. Adv. 10, eadl6464 (2024)     1 November 2024

S c i e nc  e  A d v anc   e s  |  R e s e arc   h  A r t i c l e

1 of 19

I M M U N O L O G Y

Spatial multiplex analysis of lung cancer reveals that 
regulatory T cells attenuate KRAS-G12C 
inhibitor–induced immune responses
Megan Cole1, Panayiotis Anastasiou1, Claudia Lee2, Xiaofei Yu3,4,5, Andrea de Castro1,  
Jannes Roelink3, Chris Moore1, Edurne Mugarza1, Martin Jones6, Karishma Valand1,  
Sareena Rana1, Emma Colliver2, Mihaela Angelova2, Katey S. S. Enfield2, Alastair Magness2,  
Asher Mullokandov1, Gavin Kelly7, Tanja D. de Gruijl4,5,8, Miriam Molina-Arcas1,  
Charles Swanton2,9, Julian Downward1*†, Febe van Maldegem1,3,4,5*†

Kirsten rat sarcoma virus (KRAS)–G12C inhibition causes remodeling of the lung tumor immune microenvironment and 
synergistic responses to anti–PD-1 treatment, but only in T cell infiltrated tumors. To investigate mechanisms that 
restrain combination immunotherapy sensitivity in immune-excluded tumors, we used imaging mass cytometry 
to explore cellular distribution in an immune-evasive KRAS mutant lung cancer model. Cellular spatial pattern 
characterization revealed a community where CD4+ and CD8+ T cells and dendritic cells were gathered, suggesting 
localized T cell activation. KRAS-G12C inhibition led to increased PD-1 expression, proliferation, and cytotoxicity 
of CD8+ T cells, and CXCL9 expression by dendritic cells, indicating an effector response. However, suppres-
sive regulatory T cells (Tregs) were also found in frequent contact with effector T cells within this community. 
Lung adenocarcinoma clinical samples showed similar communities. Depleting Tregs led to enhanced tumor control 
in combination with anti–PD-1 and KRAS-G12C inhibitor. Combining Treg depletion with KRAS inhibition shows 
therapeutic potential for increasing antitumoral immune responses. 

INTRODUCTION
Recent years have seen a transformation in the treatment of non–
small cell lung cancer (NSCLC), with the introduction of immune 
checkpoint blockade, which has increased survival rates of patients 
with a previously poor prognosis. Despite this, only a subset of pa-
tients responds, and many responders acquire resistance over time 
(1, 2). In 2021, a further breakthrough occurred when the Kirsten 
rat sarcoma virus (KRAS) inhibitor sotorasib was approved for the 
treatment of locally advanced or metastatic KRAS-G12C mutant 
NSCLC. This followed successful clinical trials where 80% of pa-
tients achieved temporary disease control following sotorasib treat-
ment. However, despite a modest improvement in progression-free 
survival, sotorasib gave no improvement in overall survival com-
pared to docetaxel (3), demonstrating its limitations for use as a 
monotherapy. Therefore, strategies for combination with other thera-
pies are being urgently sought (4, 5).

The importance of the immune system in the response to KRAS-
G12C inhibition was revealed when Canon et al. (6) showed that 
T cell presence was essential for durable responses in subcutaneous 
tumors of the colon cancer model CT26 treated with sotorasib. In 

addition, Briere et  al. (7) using the same model demonstrated a 
switch in the tumor microenvironment (TME) from immunosup-
pressive in the vehicle setting, with high presence of M2 macro-
phages and myeloid-derived suppressor cells, to favoring antitumoral 
immune response following KRAS-G12C inhibition with adagrasib, 
another clinically approved KRAS-targeted drug. CT26 tumors show 
an immune hot TME (i.e., high T cell infiltration rates) and are 
responsive to single-agent immune checkpoint inhibition (ICI). 
Similar to the proinflammatory responses observed in this colon 
cancer model (6, 7), our previous work also revealed remodeling of 
the TME following KRAS-G12C inhibition in multiple lung tumor 
models, including the immune cold orthotopic Lewis lung murine 
NSCLC tumor model that was genetically engineered to disrupt the 
NRAS gene, avoiding redundancy in RAS signaling (3LL ΔNRAS, 
here referred to as 3LL in short) (8, 9). We found that oncogenic KRAS 
suppresses interferon signaling within the tumor cells via MYC, 
leading to a proinflammatory cascade upon KRAS inhibition (9). 
KRAS-G12C inhibitors were also shown to synergize well with ICI 
in lung cancer models, but only in immune hot TME settings (8, 10). 
These findings highlight that while KRAS-G12C inhibitors specifi-
cally target tumor cells, this results in profound secondary effects on 
the TME and T cells are crucial for durable responses.

Our previous analysis established that following seven consecu-
tive days of treatment with the KRAS-G12C inhibitor MRTX1257, 
although 3LL tumor growth was inhibited, tumors did not regress, 
indicating that KRAS-G12C inhibitors alone are not sufficient to 
cause tumor regression in this model (9). Combination of this KRAS-
G12C inhibitor with anti–programmed cell death protein 1 (PD-1) 
therapy did not increase responses in this model (8). This is reflec-
tive of the failure to see a beneficial effect on response of combined 
KRAS inhibition and PD-1 blockade in the clinical setting, either 
due to combination toxicities or lack of efficacy (11). The unmet need 
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for new combinatorial treatment options that improve T cell–mediated 
antitumoral immune responses in immune cold tumor models has 
hence become increasingly clear. We therefore used the 3LL immune-
evasive orthotopic lung tumor model, in which effector immune cells 
are excluded from the tumor, to seek more effective therapeutic 
combinations with KRAS-G12C inhibition.

We used imaging mass cytometry (IMC) to analyze the makeup 
of these tumors in situ. This method is particularly useful for study 
of the TME due to its ability to capture up to 40 markers simulta-
neously. Spatial information remains intact, meaning that cell pheno-
types can be analyzed in the context of their spatial neighbors (12). 
Obtaining spatial information is essential when studying the TME, 
as it provides insight into the cellular interactions dictating local 
immune activation or suppression, as mechanisms of immune re-
sponse or resistance to treatment, and has been shown to improve 
prediction of clinical outcomes compared to cell frequency alone in 
patients with NSCLC (13).

Here, we present data on the identification of neighborhood 
communities through single-cell spatial analysis to investigate which 
cellular interaction patterns may restrain antitumoral immune re-
sponses in the 3LL tumor model. A community resembling a T cell 
activation hub was identified, where regulatory T cell (Treg) inter-
actions may play a key role in dampening antitumoral immune 
responses following KRAS-G12C inhibition. In parallel, cellular 
community analysis of treatment-naïve human lung adenocarcinoma 
(LUAD) patient samples from the TRAcking Cancer Evolution 
through therapy (Rx) (TRACERx) IMC cohort (14) suggested that 
similar local Treg control may be restraining immune responses in a 
subset of patients.

Together, this led us to explore the effect of combining KRAS-
G12C inhibitor with a Treg depleting anti–cytotoxic T lymphocyte–
associated protein 4 (CTLA-4) antibody in the in vivo orthotopic 
setting, where markedly improved responses were noted. This opens 
up the perspective of combining KRAS-G12C inhibitors with Treg 
targeting to improve durable response rates.

RESULTS
Introduction to spatial communities and validation
Our previous IMC analyses on 3LL lung tumors have shown that 
there are clear patterns in the arrangements of cells in the lung cancer 
tissues and changes to those patterns occur in response to KRAS-
G12C inhibition (9). For example, we saw one subset of macrophages 
lining the tumor-normal interface, while another type of macrophages 
was intermixed with the tumor cells. Effector cells such as T cells and 
B cells were excluded from the tumor domain, while treatment with 
KRAS-G12C inhibitor MRTX1257 induced movement of T cells and 
antigen-presenting cells into the tumor domain. We also noted that 
the phenotypes of cells differed depending on their location in the 
tissue and hypothesized that the local neighborhood is likely to 
strongly influence the activation or inhibition of immune cells. 
Therefore, we adopted a cellular community analysis to cluster cells 
based on the composition of their local neighborhood [adapted with 
modifications from (15)]. Analysis focused on two previously pub-
lished datasets (8, 9), both generated from an in vivo experiment 
in which the Lewis lung (3LL) carcinoma model was treated with 
the KRAS-G12C inhibitor MRTX1257 or vehicle for 7 days before 
harvesting of the lungs. The tumors were stained with two partially 
overlapping antibody panels to give two datasets, with the dataset 2 

panel being more T cell oriented (fig. S1, A and B). The cell typing 
was derived from our previous analyses and based on lineage markers 
only but independent of maturation or activation markers. Notably, 
the subsequent cellular communities were therefore blind to cell 
phenotypes.

We identified neighbors by a 15-pixel expansion of the cell 
boundary through segmentation in CellProfiler. A 15-pixel radius 
was chosen as it depicts the average size of a cell, and, therefore, cells 
identified as neighbors would be those “up to one cell away.” As a 
result, neighborhoods were not equal in cell number but, instead, 
reflected the local density surrounding each cell. Louvain clustering 
using Rphenograph was then run on the neighbor proportion infor-
mation per cell to identify recurring spatial patterns in the tissue, 
labeled “spatial communities” or just “communities” in short (Fig. 1A). 
Graph building with a k-nearest neighbor input value of 250 yielded 
62 communities for dataset 1; these were agglomerated to 30 and 
subsequently 18 communities. Agglomeration merged the commu-
nities with the lowest cell diversity, representing mainly small varia-
tions in the tumor cell neighbors (e.g., agglomerated community 3), 
while the highly diverse communities, such as those with a high pro-
portion of immune cells, remained stable (Fig. 1B and fig. S1C). We 
were most interested in the immune-dominated communities for 
this analysis and therefore decided that 18 communities were opti-
mal to carry forward for our investigation into antitumoral immune 
response.

To determine whether our method to identify spatial communi-
ties was robust to altered clustering input conditions, we also ran 
Rphenograph clustering on the neighborhood information for all 
cells in dataset 1 with a k-input value of 350. Dimensionality reduc-
tion using t-distributed stochastic neighbor embedding (tSNE) of 
the 62 communities identified from k-input value of 250 and the 47 
communities identified from a k-input value of 350 revealed very 
similar patterns of community phenotypes (Fig. 1C). In addition, 
there were multiple overlaps between communities identified using the 
different k values for clustering, suggesting matching phenotypes.

The 254 communities identified from neighbor clustering of data-
set 2 using a k-input of 250 were also agglomerated to 18 communities 
to enable parallel analysis with the communities identified in data-
set 1. The communities in both datasets varied largely in size, with 
some containing fewer than 2000 cells and others comprising over 
50,000 cells (Fig. 1, D and E). There was also differing heterogeneity 
of these spatial groups, with some being dominated by a single cell 
type, such as tumor cells in community 3 from dataset 1 and com-
munity 9 from dataset 2, while others comprised a mixture of various 
cell types in more balanced proportions (fig. S1, D and E).

Datasets 1 and 2 were based on different antibody panels and 
therefore not identifying all the same cell types. For example, lack of 
markers epithelial cellular adhesion molecule and platelet endothelial 
cell adhesion molecule-1 for dataset 2 meant that endothelial and 
epithelial cells could not be identified and, thus, a large number of 
cells were labeled as “unclassified.” Nevertheless, a separate community 
clustering analysis on both datasets based on shared cell types only 
demonstrated that the method to generate communities was stable 
to altered input data (fig. S1F).

Tissue architecture reflected in spatial communities
As the spatial communities are based on local neighborhoods but 
these local neighborhoods are likely to be different within different 
regions of the tissue, we further explored the link with tissue 
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Fig. 1. Clustering of cells based on their neighbors yield spatial communities. (A) Workflow of generating spatial communities using the data generated from lung 
tissue slices. (B) Cluster tree of 62 communities generated using Rphenograph with a k-input value of 250, agglomerated to 30 communities and subsequently agglomerated 
again to 18 communities, where each circle represents a community and lines indicate communities that were merged during agglomeration. (C) tSNE plot of 62 communities 
generated with a k-input value of 250 and 47 communities generated with a k-input value of 350 into Rphenograph using dataset 1, where tSNE analysis was run on the 
basis of the proportion of each cell type contributing to each community. (D and E) Eighteen spatial communities generated from clustering based on neighbor proportions 
of each cell type for (D) dataset 1 and (E) dataset 2, with the size of each bar representing cell count of that community and colors indicating the contribution of each cell 
type. Bars are ordered by decreasing tumor cell count. NK, natural killer; DN, double negative.
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architecture. For dataset 1, we also had information about the three 
tissue domains that each cell had been assigned to during image seg-
mentation, i.e., tumor, normal, and interface (9). As the communities 
had a nonrandom distribution across the domains, we visualized the 
distribution of each community relative to the cross section through 
the tissue to further expand on this spatial organization of the com-
munities (Fig. 2A). For example, in the vehicle setting, community 
18, with high endothelium and B cell portion, was restricted to the 
normal nontumor region as its cell count diminished going into the 
tumor bulk (fig. S2A). In addition, community 10, with high type 1 
macrophage contribution, peaked in cell count at the tumor boundary, 
demonstrating a clear interface region between normal tissue and the 
tumor bulk (fig. S2B). There were also further communities, num-
bers 2 and 3, that were found only in the tumor region, albeit at very 
different frequencies between vehicle and MRTX1257 conditions 
(fig. S2, C and D).

We previously observed that following treatment with MRTX1257, 
the immune-excluded phenotype of this tumor model was remodeled 
into a more inflammatory immune–infiltrated TME (9). Here, we 
could see that this conversion was also reflected in spatial distribu-
tion of the communities, suggesting that tissue domain definition 
was lost following KRAS-G12C inhibition. Not only did the concen-
tration of communities such as 10 and 18 to the interface and normal 

regions become less pronounced, but also spatial patterns within the 
tumor bulk changed following KRAS-G12C inhibition, as the fre-
quency of many communities, such as 2 (type 2 macrophage domi-
nant), 3 (tumor dominant), and 16 (mixed phenotype with high 
type 2 macrophage portion) was altered, suggesting a transition to a 
new organization of the TME (Fig. 2B and fig. S2E).

Comparing the relative contribution of each community between 
the vehicle and MRTX1257 treatment groups revealed that preva-
lence of many spatial patterns was altered following KRAS-G12C 
inhibition. Some of these shifts in communities captured changes 
that we previously described at the single-cell level (9). For example, 
communities 5, 13, 14, and 15 from dataset 1 were found solely in 
tumors treated with vehicle. These communities represent abundant 
interactions between tumor cells and neutrophils, which were lost 
or dispersed following treatment with MRTX1257 (Fig. 2C and fig. 
S1D). This is in line with a previous observation that the number of 
neutrophils within the tumor domain was substantially reduced 
following treatment (9). Alternatively, communities 2, 4, and 16 from 
dataset 1 and communities 2, 6, and 8 from dataset 2 were almost 
exclusively found in tumors following treatment with MRTX1257. 
A shared feature for these communities was a neighborhood involving 
high numbers of type 2 macrophages (F4/80+ CD206+), which we 
previously showed to become greatly increased in number upon 
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Fig. 2. Spatial communities reflect refined tissue architecture and have functional relevance. (A and B) Cell count per community relative to cross section through 
the tissue, where 0 represents the center point of the tumor in (A) vehicle and (B) MRTX1257 treatment settings. (C) Percentage distribution of each community across 
vehicle (left) and MRTX1257 (right) treatment groups. Bars are ordered by increasing percentage distribution in vehicle setting. (D) Hierarchical clustering of community 
proportion per ROI for dataset 1, with the use of dendrograms to show relationships between similar ROIs, similar communities, and community distribution across the 
treatment groups. (E) Pearson correlation calculation on the proportion of each cell type pair within each community. *P < 0.05, **P < 0.01, and ***P < 0.001. Cell types 
were clustered on the basis of correlation value. MRTX, MRTX1257.
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KRAS-G12C inhibition (9). This agreement with previous observa-
tions suggests that the communities are reflecting relevant biological 
processes. Further supporting this notion was the ability to largely 
separate tissues into the two treatment groups when clustering the 
frequency of each spatial community per region of interest (ROI) 
(Fig. 2D and fig. S2F).

One way to infer potential cellular relationships is by correlating 
cell frequencies, measuring co-occurrences. Therefore, we calculated 
the correlation of each cell type pair within communities. Strong 
positive correlations were seen between certain cell types, such as T 
cells among themselves, T cells with dendritic cells (DCs), type 2 
macrophages with fibroblasts, and CD8+ T cells with B cells when 
calculated per community (Fig. 2E and fig. S2G). By contrast, a num-
ber of these, such as Tregs with CD4+and CD8+ T cells, and most 
T cell–DC relationships showed lack of significance when quanti-
fied in the ROIs (fig. S2, H and I). This demonstrates the benefit of 
studying cellular relationships through the identification of localized 
spatial patterns, as they provide increased statistical power about the 
interactions occurring in the TME in comparison to measuring 
interaction of cells across a whole tissue.

Spatial communities that are abundant in CD8+ T cells
Because the abundance of CD8+ T cells is associated with positive 
outcomes in relation to antitumoral immune response, we decided 
to investigate the T cell–rich communities from this tumor model. 
Previous analysis revealed increased numbers of CD8+ T cells inside the 
tumor domain following KRAS-G12C inhibition in this model (9).

The top five communities with the highest CD8+ T cell count were 
identified from dataset 1 and dataset 2 (fig. S3, A and B). These five 
CD8+ T cell–rich communities from both datasets paired up pheno-
typically, particularly when only shared cell types between datasets 
were considered (fig. S3C). Therefore, unique colors and the names 
T cell/normal adjacent community (T/NA), T cell/type 1 macro-
phage community (T/M1), T cell/DC community (T/DC), T cell/
type 2 macrophage community 1 (T/M2_1), and T cell/type 2 macro-
phage community 2 (T/M2_2) were assigned to each pair for parallel 
analysis going forward (Fig. 3A). These five communities contained 
over 75% of the total CD8+ T cell population from both datasets, 
suggesting a representative population of the overall cohort (fig. 
S3D). These communities had widely different compositions, placing 
the T cells in very diverging spatial contexts (Fig. 3A). The T/NA 
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to the top five communities with the highest CD8+ T cell count from dataset 1 (left) and dataset 2 (right), ordered in pairs based on proportions of shared cell types and 
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community was characterized by high endothelial cell content; in the 
T/M1 community, the type 1 macrophages (CD11c+ CD68+) (9) were 
the most abundant cell type; the T/DC community was strongly en-
riched in various T cell subsets and DCs; and T/M2_1 and T/M2_2 
communities were dominated by tumor cells and type 2 macro-
phages (F4/80+ CD206+) (9) in different ratios.

These CD8+ T cell–rich communities also differed in presence 
between treatment groups. The T/NA community was more fre-
quently found following treatment with vehicle, while the T/M2_2 
community was almost exclusively detected in MRTX1257-treated 
tissues (fig. S3E). Following this, most of CD8+ T cells in the vehicle-
treated tumors were found within T/NA and T/M1 communities, 
while CD8+ T cells in the MRTX1257 treatment group were more 
likely to reside within T/DC, T/M2_1, and T/M2_2 communities 
(fig. S3F).

Furthermore, the spatial location of the top five communities also 
varied largely in relation to three assigned tissue domains: normal, 
interface, and tumor (Fig. 3, B and C). In particular, in the vehicle 
setting, the T/NA community was situated predominantly in the 
“normal” nontumor region, and the T/M1 community was restricted 
to the “interface,” situated as a clear ring around the tumor bulk 
(fig. S3G). The T/DC community was located just inside the tumor 
bulk in the vehicle setting but increased in size, and its position 
moved toward the tumor core following treatment with MRTX1257. 
The T/M2_1 and T/M2_2 communities were concentrated within 
the tumor domain and predominantly found within the MRTX1257-
treated tumors. Evidently, treatment with MRTX1257 led to a shift 
in spatial distribution and neighborhood environment of the CD8+ 
T cells.

Responses of T cell–rich communities to 
KRAS-G12C inhibition
Communities were defined on the basis of cell types using lineage 
markers independently of maturation or activation markers. We next 
sought to explore how cells within the communities responded to 
KRAS-G12C inhibition based on the maturation and activation 
markers included in both datasets. Previously, we described how the 
two subsets of macrophages in this tumor model differed in spatial 
location and response to treatment with MRTX1257 (9). The most 
notable observation was that the type 2 macrophages increased in cell 
number and up-regulated activation markers such as programmed 
cell death ligand 1 (PD-L1) and major histocompatibility complex 
II. Zooming in on the communities here revealed that the up-
regulated expression could be largely attributed to the type 2 macro-
phages in the T/DC community (fig. S4, A and B).

Similarly, we looked at expression of PD-L1 and costimulatory 
receptor CD86 on DCs. Differences were more noticeable across the 
communities than between treatment groups, suggesting that DC 
phenotypes were more influenced by surrounding neighbors than 
treatment with MRTX1257 (Fig. 4, A and B, and fig. S4C). The be-
havior of expression varied slightly across these markers, with T/M1 
community harboring high PD-L1 but low CD86 expression in the 
vehicle setting but less so under inhibitor-treated conditions. This 
high PD-L1 and low CD86 expression is thought to be a character-
istic of regulatory or migratory tolerogenic DCs, with a potential to 
inhibit immune responses (16). Alternatively, in T/DC, T/M2_1, 
and T/M2_2 communities, increased PD-L1 expression on DCs in 
the MRTX1257 treatment group was accompanied by high CD86 
expression, indicative of a more activated DC phenotype, making 

these cells better equipped to facilitate T cell activation. This differ-
ential in activation status was further supported by the expression 
levels of major histocompatibility complex II, being the highest in 
the T/DC community (fig. S4D). We previously reported increased 
expression of T cell chemoattractants chemokine (C-X-C motif) 
ligand 9 (CXCL9) and CXCL10 in KRAS-G12C inhibitor–treated tu-
mors (8). MRTX1257 treatment increased the expression of CXCL9, 
with the highest overall expression in the T/DC community, sug-
gesting that most of the T cell attraction was occurring within this 
environment (Fig. 4C). This agrees with our finding that the T/DC 
community contains the largest T cell density. We also compared 
proliferative marker Ki67 and apoptotic marker cleaved caspase-3 
(c-casp3) expression on tumor cells in the tumor-associated com-
munities (T/DC, T/M2_1, and T/M2_2) and found the highest 
expression of both markers in the T/DC community (Fig. 4, D and E, 
and fig. S4, E and F). This demonstrates the high level of activity occur-
ring within this community, where some tumor cells were thriving, 
while others were dying.

We expected that these different neighborhoods would also have 
an impact on the phenotype of the T cells, so we investigated their 
PD-1 expression to understand how T cell activation state changed 
following KRAS-G12C inhibition, per community. In the T/NA and 
T/M1 communities, the PD-1 expression was negligible in both 
treatment groups, compared to the T/DC, T/M2_1, and T/M2_2 
communities, where an increase occurred following treatment with 
MRTX1257, most pronounced in the T/DC community, indicating 
a switch in cell state from naïve to activated in these communities 
following KRAS-G12C inhibition (Fig. 4F and fig. S4G). A simi-
lar pattern could be seen for CD4+ T cells, whereas the Tregs had 
higher PD-1 expression mainly in the T/DC community following 
MRTX1257 treatment (fig. S4, H and I). However, the expression of 
lymphocyte-activation gene 3 (LAG-3) protein was also distinctly 
higher in CD8+ T cells, specifically in the tumor-associated com-
munities, in which ~30% of PD-1+ T cells were also LAG3+ following 
treatment with MRTX1257. This suggests that activation of the T 
cells was, in part, accompanied with induction of T cell exhaustion 
following KRAS-G12C inhibition (fig. S4, J and K).

Positive and negative regulations of antitumoral 
immune responses
While the T/DC, T/M2_1, and T/M2_2 communities contained most 
of the CD8+ T cells in the tumor tissue, these cells expressed significant 
levels of potential exhaustion markers such as PD-1 and LAG-3. Co-
localization of PD-L1–expressing macrophages and PD-1+ CD8+ T 
cells has recently been highlighted as associated with good response 
to ICI (17, 18). However, previous attempts to reinvigorate these T 
cells using MRTX1257 in combination with ICIs anti–PD-1 or anti–
PD-L1 and anti-LAG3 had failed to achieve any improved tumor 
control in our 3LL model (8). We therefore wondered whether we 
could gain any insight into the signals provided to the T cells before 
moving into the core of the tumor and becoming incapacitated by 
exhaustion. The high proportion of activated DCs and increased ex-
pression of markers associated with T cell attraction and activation 
following KRAS-G12C inhibition, as well as evidence for local tumor 
cell death, pointed toward the T/DC community as a potential cyto-
toxic T cell activation hub.

As noted, CXCL9 expression was the highest within antigen-
presenting cells in the T/DC community (Fig. 4C). Separating DCs 
based on their CXCL9 expression into “CXCL9-low” and “CXCL9-high” 



Cole et al., Sci. Adv. 10, eadl6464 (2024)     1 November 2024

S c i e nc  e  A d v anc   e s  |  R e s e arc   h  A r t i c l e

7 of 19

groups showed that CXCL9-high DCs had a significantly shorter 
distance to their nearest PD-1+ CD8+ T cell, PD-1+ CD4+ T cells, 
and PD-1+ Tregs (Fig. 5A and fig. S5, A and B). Visual inspection 
indeed confirmed that CXCL9-high DCs were frequently found in 
proximity to and interacting with PD-1+ CD8+ T cells (Fig. 5B). 
CXCL9 expression could therefore be one of the key mediators driv-
ing the aggregation of the T cells and DCs within the T/DC com-
munity, as part of a mechanism to draw in the activated T cells to 
launch an antitumor immune response. This would be in agreement 
with our previous work showing that CXCL9 expression was one of 
the strongest predictors of ICI (19).

We sought to determine further indications of an active anti-
tumoral immune response within this community. A significant 
increase in Ki67 expression was identified for CD4+ and CD8+ T cells 
on MRTX1257 treatment, as well as a similar trend for Tregs, sug-
gesting that the T cells had increased proliferation following KRAS-
G12C inhibition (Fig. 5C). Frequency of casp3+ tumor cells was the 
highest in the T/DC community, and the occurrences in which a 
c-casp3+ tumor cell was found in the 15-pixel neighborhood of a 

CD8+ T cell increased following treatment with MRTX1257 (Fig. 5D). 
These interactions were primarily found within the T/DC commu-
nity (fig. S5C). There was no such increase in spatial interactions 
identified for CD4+ or Tregs with c-casp3+ tumor cells (fig. S5D). 
These increased interactions point to increased cytotoxicity of the T 
cells against the tumor cells following KRAS-G12C inhibition, sug-
gesting that the neighborhood of the T/DC community was likely to 
be able to support the effector function of the CD8+ T cells.

We then wondered why such a cytotoxic response was not effec-
tive enough to mediate clinical benefit and what could be driving 
the induction of T cell exhaustion or dysfunction. To identify poten-
tial negative regulatory influences of the immune response, we used 
another way of interrogating spatial relationship by calculating en-
richment scores for cells in the near neighborhood, compared to 
randomized data (9, 20). Following MRTX1257 treatment, it was 
determined that CD4+ T cells and DCs were significantly enriched 
in the neighborhood of a CD8+ T cell within the T/DC community 
in at least five of the six images, compared to random permutation 
(Fig. 5E). This is supportive of a microenvironment promoting 

A B

D E F

Dataset 1 Dataset 1

Dataset 1 Dataset 1 Dataset 1

Dataset 2
C

Fig. 4. T cell–rich communities respond differently to KRAS-G12C inhibition. (A and B) Mean expression of (A) PD-L1 and (B) CD86 on DCs and CD103+ DCs in T/NA, 
T/M1, T/DC, T/M2_1, and T/M2_2 communities following vehicle and MRTX1257 treatments for dataset 1 only. Values were log2 scaled. (C) Mean expression of CXCL9 on 
DCs, CD103+ DCs, macrophages type 1, and macrophages type 2 combined for T/NA, T/M1, T/DC, T/M2_1, and T/M2_2 communities in vehicle- and MRTX1257-treated 
groups in dataset 2. Values were log2 scaled. Center line shows median expression for each treatment group. (D and E) Mean expression of (D) Ki67 and (E) c-casp3 on 
tumor cells in T/DC, T/M2_1, and T/M2_2 communities following treatment with MRTX1257 for dataset 1. Values were log2 scaled. (F) Mean expression of PD-1 on CD8+ 
T cells in communities T/NA, T/M1, T/DC, T/M2_1, and T/M2_2 in vehicle- and MRTX1257-treated groups for dataset 1. Values were log2 scaled. Center line shows median 
expression for each treatment group. MRTX, MRTX1257.
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Fig. 5. Positive and negative regulations of antitumoral immune responses come together in the T/DC community. (A) Minimum distance of DCs and CD103+ DCs that 
have “low” or “high” CXCL9 expression (threshold = 0.5) to PD-1+ CD8+ T cells within 800 pixels in T/DC community from dataset 2. Distance values were log2 scaled. ***P < 0.001. 
(B) Visualization of cell outlines for cells assigned to T/DC community in MRTX1257-treated tissues from dataset 2, with CXCL9-high DCs, CD103+ DCs, and PD-1+ CD8+ T cells 
colored in to show spatial proximity of these cell phenotypes. Some regions were expanded for easier visualization. (C) Mean expression of Ki67 on CD4+ and CD8+ T cells and 
Tregs within the T/DC community for vehicle and MRTX1257 treatment groups from dataset 2. Values were log2 scaled. (D) The number of times a c-casp3+ tumor cell is found in 
the 15-pixel neighborhood of a CD8+ T cell within the T/DC community, compared across vehicle and MRTX1257 treatment groups for dataset 2, averaged per ROI. Count is relative 
to the proportion of tumor cells that were c-casp3+ in vehicle versus MRTX1257 treatment groups. Each dot represents the value of one ROI. (E) Log2 fold changes (log2FC) in 
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DCs, CD4+ and CD8+ T cells, and Tregs were filled in to illustrate spatial proximity of these cell types. Some regions were expanded for easier visualization. MRTX, MRTX1257.
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antitumoral immune response, which was not apparent from T/NA, 
T/M1, T/M2_1, and T/M2_2 communities (fig. S5, E to H). How-
ever, Tregs were also significantly enriched in the neighborhood of 
CD8+ T cells in three of the six images, indicating the presence of 
immune suppressor cells in the vicinity where T cell activation and 
effector functions may be taking place (Fig. 5E). Treg frequencies were 
the highest within the T/DC and T/M2_2 communities (Fig. 5F and 
fig. S5I). This T cell subset also increased in size, most notably in the 
T/DC and T/M2_2 communities, and, as we saw previously, was 
showing evidence of increased activation after MRTX1257 treatment 
(figs. S4I and S5J). Tregs were seen intermixed with effector T cells 
and DCs, suggesting a potential role in locally dampening antitumoral 
immune responses (Fig. 5G).

Role for Tregs in dampening antitumoral immune responses
Upon revealing the high presence of Tregs within the T/DC commu-
nity and showing that they are enriched within the neighborhood of 
CD8+ T cells and neighboring DCs and CD4+ T cells following 
treatment with MRTX1257, we decided to explore their role within 
this community in relation to antitumoral immune response. We 
therefore split up the T/DC community into two neighborhoods: 
those with presence of Tregs or those with absence of Tregs. The 
neighborhoods differed slightly in their composition of cell types, 
with the Treg neighborhood comprising a higher proportion of DCs 
and CD4+ T cells, whereas the no Treg neighborhood contained a 
higher tumor and type 2 macrophage portion (Fig. 6A).

While the frequency of CD8+ T cells within both the Treg and no 
Treg neighborhoods were similar (fig. S6A), the cellular interactions 
for CD8+ T cells differed substantially between these environments. 
Despite the slightly higher DC frequency in the Treg neighborhoods, 
we saw a lack of spatial enrichment between CD8+ T cells and both 
DC subsets when Tregs were present, in contrast to a positive spatial 
enrichment of DCs in the CD8+ T cell neighborhood when Tregs were 
absent (Fig. 6B and fig. S6B). In addition, when Tregs were not present 
in the CD8+ T cell neighborhood, a strong enrichment of tumor cells 
was identified following MRTX1257 treatment, compared to slight 
depletion when the Tregs were nearby. Furthermore, the frequency of 
c-casp3+ tumor cells in the CD8+ T cell close neighborhood in-
creased on MRTX1257 treatment when Tregs were absent (Fig. 6C). 
We therefore only saw interactions with CD8+ T cells indicative of 
an active antitumoral immune response when the Tregs were absent, 
suggesting an inhibitory role for the Tregs. These changes in neigh-
borhood enrichment were not observed when comparing CD4+ T 
cells with or without Tregs in their neighborhood, indicating that Treg 
presence may affect CD8+, but not CD4+, T cell relationships (fig. 
S6, C and D). However, there were several other changes to the cel-
lular interactions when subsetting the T/DC community based on 
presence or absence of Tregs, suggesting that Tregs may be affecting 
the local milieu of this community in many ways, further pointing 
toward their potential negative influence on antitumoral immune 
response (fig. S6B). Overall, these analyses indicated that the T/DC 
community potentially could provide an activating environment for 
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Treg neighborhoods in dataset 2, averaged per ROI. Count is relative to the proportion of tumor cells that were c-casp3+ in Treg versus no Treg groups.
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the antitumor cytotoxic T cell response, but the presence of Tregs was 
likely imposing a strong negative influence.

A similar analysis for the T/M2_2 community, also relatively 
rich in Tregs (Fig. 5F), showed that CD8+ T cell and Treg interac-
tions focused mainly around fibroblasts, while CD8+ T cell inter-
actions with M2 macrophages were largely interrupted in presence 
of Tregs (fig. S6E). Likewise, CD4+ T cell interactions with M2 mac-
rophages were also diminished in presence of Tregs (fig. S6F). This 
further solidifies the likely role of Tregs suppressing T cell function 
through down-regulating interactions with antigen-presenting cells 
following KRAS-G12C inhibition, which occurred across multiple 
spatial groups.

Treg spatial communities in human lung NSCLC
While community analysis in mice can help us to identify recurring 
patterns in a fairly homogeneous and controlled experimental setting, 
we ultimately aim to translate our findings to better treat patients. 
Therefore, we wanted to investigate whether communities similar to 
the mouse communities could be identified in human lung cancer 
clinical samples, focusing on the communities rich in Tregs, effector 
T cells, and DCs, similar to our mouse T/DC community.

Recently, 151 tumor regions from 81 untreated patients with 
NSCLC from the TRACERx longitudinal study were analyzed with 
IMC using two 35-plex antibody panels: A pan-immune cell panel 
(p2) and a T cells and stroma panel (p1), the latter designed to assess 
the differentiation states of T cells and stromal cells in greater detail. 
The T cells and stroma panel provides us with an opportunity to not 
only match cell type compositions with our mouse data but also to 
potentially refine the T cell signatures that are associated with them 
(14). Therefore, we chose to detect communities based on the T cells 
and stroma panel with relatively high granularity by optimizing 
parameters of the method by Schurch et al. (15), obtaining 30 com-
munities, including seven that were rich in Tregs and other T cells 
(Fig. 7A). Five of these communities (p1_C7, p1_C17, p1_C23, p1_
C26, and p1_C27) were including mature and/or exhausted CD4+ 
and CD8+ T cells, similar to the mouse T/DC community. Another 
characteristic feature of the mouse T/DC community was the presence 
of DCs, as well as the peritumoral localization. DCs could not be 
identified from the T cells and stroma panel (p1). However, com-
munity analysis of the pan-immune (p2) data had previously identi-
fied 10 communities in which “p2_C1: tumor border” also contained 
DCs and was in the peritumoral region (fig. S7, A to C) (14). The 
presence of p2_C1: tumor border correlated with the density of Tregs 
in LUAD (Fig. 7B), but not in lung squamous cell carcinoma (LUSC) 
(fig. S7D). In a major subset of patients, we could confirm the 
co-occurrence of p2_C1: tumor border from the pan-immune panel 
and Treg communities from the T cells and stroma panel (Fig. 7C) 
and that, in particular, Treg communities p1_C7, p1_C17, p1_C23, 
p1_C26, and p1_C27 displayed a peritumoral distribution close to 
p2_C1: tumor border (Fig. 7, D and E). Homing in on the pheno-
types of the T cells associated with these communities revealed that 
p1_C27 was standing out among the others. CD4+ and CD8+ T cells 
in p1_C27 expressed high levels of immune checkpoints (TIM3, 
GITR, CTLA-4, and ICOS) (Fig. 7F). However, in contrast to the 
mouse T/DC community, there was no evidence of ongoing T cell 
activation, with absence of proliferation marker Ki67 and cytotoxicity 
marker granzyme B (GZMB). The Tregs in p1_C27 highly expressed 
all tested markers and moderate levels of GITR, an immune checkpoint 
that was recently described to mark the most immune-suppressive 

Treg subset in NSCLC and associated with PD-1 resistance (21). 
Other Treg-rich communities had more moderate expression of 
immune checkpoints and more frequent expression of Ki67 and 
GZMB on the CD4+ and CD8+ T cells, e.g., in p1_C23 and p1_C26. 
The MYSTIC trial (22) demonstrated that the combination of 
durvalumab (anti–PD-L1) and tremelimumab (anti–CTLA-4) only 
showed improved survival compared to durvalumab alone in pa-
tients with high trimethylboron (TMB) (>20 mutations/Mb). Using 
the genomics data available for the patients of this TRACERx co-
hort (23), we found that p1_C7 and p1_C17 also correlated with 
the most increased TMB in LUAD, suggesting that targeting of these 
Treg communities with anti–CTLA-4 might be beneficial (Fig. 7G). 
Overall, these data from human lung cancer samples that have not 
been treated with KRAS inhibitory drugs suggest that cellular com-
munities similar to the mouse T/DC community exist at baseline, 
where CD4+and CD8+ T cells, DCs, and Tregs were gathered together 
at the tumor periphery.

Tregs dampen antitumoral immune responses
We then went back to the mouse model to investigate whether 
depleting Tregs using an Fc-optimized anti–CTLA-4 antibody (24) 
could promote immune-mediated control of orthotopic 3LL lung 
tumors treated with KRAS-G12C inhibitor. Anti–CTLA-4 anti-
body along with anti–PD-1 therapy failed to control tumor growth 
and extend survival of mice. Similar to what we observed previously, 
MRTX849 + anti–PD-1 led to short-term tumor control after 1 week 
on treatment and extended survival, but, eventually, tumors relapsed, 
and nearly all mice reached their end point within 5 to 6 weeks 
(Fig. 8, A and B) (8). Our previous observations showed that anti–
PD-1 antibodies did not improve the response to MRTX849 in this 
system (8). In addition, after 1 week of treatment, combination of 
MRTX849 + anti–PD-1 with Treg-depleting anti–CTLA-4 therapy 
did not significantly affect tumor growth (Fig. 8B). However, after 
2 weeks, tumor volume assessment revealed most tumors from 
MRTX849 + anti–PD-1 group had relapsed in contrast to triple com-
bination with anti–CTLA-4 where tumors kept regressing (Fig. 8C 
and fig. S8A). This response pattern continued after 3 weeks of treat-
ment (fig. S8B), and the effect of the triple combination in the long-
term resulted in significant tumor control and extension of survival 
compared to MRTX849 + anti–PD-1, even generating one of the 
eight completely tumor-free mice, which remained tumor free after 
withdrawal of treatment for 30 days (Fig. 8A). Variability in tumor 
control can be observed in the breakdown of tumor growth per 
mouse (fig. S8C).

Flow cytometry analysis demonstrated increased Treg (CD4+Foxp3+) 
infiltration upon MRTX849 treatment, which was exacerbated with 
the addition of anti–PD-1, while the addition of anti–CTLA-4 therapy 
induced depletion of Tregs in the tumors, as expected (Fig. 8D). We 
also observed an increased CD8 T cell infiltration with effector and 
exhausted phenotype (fig. S8, D to F) and elevated CD86 expression 
on CD103+ type 1 DCs (cDC1s), an indication of increased antigen 
presentation and explainable by reduced transendocytosis in the 
absence of Tregs or Fc receptor–induced activation by the CTLA-4 
antibody (fig. S8G).

We generated an additional IMC dataset to investigate the changes 
in the cellular communities after 7 days of treatment with MRTX845 
+ anti–PD-1 (n = 3 mice, one ROI each) and MRTX849 + anti–PD-
1 + anti–CTLA-4 (n = 4 mice, one ROI each). Tumors treated with 
MRTX849 + anti–PD-1 showed a similar architecture to the MRTX849 
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Fig. 7. Treg spatial communities are also found in human NSCLC. (A) Thirty spatial communities detected in 135 tumor cores from 69 patients with NSCLC. The z-score 
of the proportion of cell subtypes, detected using the T cells and stroma antibody panel (20), in each spatial community is shown. Communities p1_C6, p1_C7, p1_C16, 
p1_C17, p1_C23, p1_C26, and p1_C27 (bold lettering) contain the highest proportions of Tregs. (B) Correlation between the density of stroma-localized T cell subtypes 
detected using the T cells and stroma antibody panel and the cell density of 10 spatial communities detected using the pan-immune antibody panel, in 66 LUAD tumor 
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sponding to cells in Treg communities in serial tumor cores. (E) Per-image median distance between cells of a community and their nearest tumor cell cluster. Tumor cell 
clustering method described in (71). Seventy LUAD tumor cores from 40 patients. (F) Heatmap displaying the scaled proportion of CD8+ T cells, CD4+ T cells, and Tregs 
expressing phenotypes of interest. Color scales indicate proportion of cells considered positive, defined by a threshold. β2-Microglobulin (β2M) is expected to be 
expressed on all nucleated cells; therefore, this threshold indicates high or low expression (71). Seventy LUAD tumor cores from 40 patients. (G) Spearman correlation 
between the density of Treg communities and total harmonized tumor mutational burden. Sixty-nine LUAD cores from 40 patients and 49 LUSC cores from 21 patients. 
Tcm, central memory T cells; Trm, Tissue resident memory T cells; TDT, Terminally differentiated T cells; DP, double positive; aSMA, alpha smooth muscle actin.



Cole et al., Sci. Adv. 10, eadl6464 (2024)     1 November 2024

S c i e nc  e  A d v anc   e s  |  R e s e arc   h  A r t i c l e

12 of 19

A B

C D

F

G

–100
–75
–50
–25
00

1000
2000
3000
4000
5000

20,000

40,000

60,000

Tu
m
ou
r v
ol
um

e 
ch
an
ge
 (%

)

Vehicle
Anti–PD-1 + anti–CTLA-4
MRTX + ant–PD-1
MRTX + anti–PD-1 +
anti–CTLA-4

1-week tumor volume change

0 10 20 30 40
0

20

40

60

80

100

Days on treatment

P
ro
b
ab
ili
ty
 o
f 
su
rv
iv
al

Vehicle
Anti–PD-1 + anti–CTLA-4
MRTX + anti–PD-1
MRTX + anti–PD-1 +
anti–CTLA-4

** **

*** ****

–100

–50

0
0

500

1000

1500

2000

2500

3000
4000

Tu
m
o
u
r 
vo
lu
m
e 
ch
an
g
e 
(%

)

Difference between 1st and 2nd week

MRTX + anti–PD-1
MRTX + anti–PD-1 + anti–CTLA-4

0

2

4

6

8

C
D
45
%

Tregs

####
## #

Vehicle
MRTX
MRTX + anti–PD-1
MRTX + anti–CTLA-4
MRTX + anti–CTLA-4 +
anti–PD-1

E

Tumor Tumor

MRTX + anti–PD-1 MRTX + anti–PD-1 + anti–CTLA-4

MRTX + anti–PD-1
+ CTLA-4

MRTX + anti–PD-1
CD8   CD4   CD103   Foxp3 CD8   CD4   CD103   Foxp3

Co
m

m
un

ity

“T/DC”

“T/M1”

“T/M2”

“T/NA”

“T/Treg”
Co

m
m

un
ity

“T/NA”

“T/NA”

“T/DC”

“T/Tum”

“T/M2”

100 µm100 µm

20 µm20 µm

Fig. 8. Depletion of Tregs rescues antitumoral immune responses. (A) Kaplan-Meier analysis of the survival of mice using the 3LL orthotopic lung carcinoma model under 
vehicle (n = 8 mice), anti–PD-1 + anti–CTLA-4 (n = 9 mice), MRTX849 + anti–PD-1 (n = 7 mice), and MRTX849 + anti–PD-1 + anti–CTLA-4 (n = 9 mice) treatment groups. 
**P < 0.01, ***P < 0.001, ****P < 0.0001. (B) Tumor volume changes after 1 week of treatment as measured by microcomputed tomography (μCT) scanning. Multiple tumors 
per mouse are shown for vehicle (n = 8 mice), anti–PD-1 + anti–CTLA-4 (n = 9 mice), MRTX849 + anti–PD-1 (n = 7 mice), and MRTX849 + anti–PD-1 + anti–CTLA-4 (n = 9 mice). 
(C) Tumor volume changes after the second week of treatment as measured by μCT scanning for MRTX849 + anti–PD-1 (n = 6 mice) and MRTX849 + anti–PD-1 + anti–CTLA-4 
(n = 8 mice) treatment groups. (D) Percentage of all CD45+ cells identified as Tregs (gated as CD45+ CD3+ CD4+ Foxp3+) measured by flow cytometry in the tumor. Data are 
mean values ± SD. Each dot represents a mouse. Statistics were calculated using one-way ANOVA. ***P < 0.001, ****P < 0.0001, ###P < 0.001, ####P < 0.0001. (E) IMC images 
of a representative tumor area from lungs treated with either MRTX849 + anti–PD-1 or MRTX849 + anti–PD-1 + anti–CTLA-4. Tumor edge is indicated with a dashed line. 
Underneath a magnification from a CD8 T cell–rich area is shown. For visualization purposes, the images were processed in Fiji with a median and Gaussian filter (radius, 0.5). 
(F and G) Top five communities from (F) MRTX849 + anti–PD-1–treated tumors (n = 3) and (G) MRTX849 + anti–PD-1 + anti–CTLA-4–treated tumors (n = 4). Similarity to 
communities found in the vehicle- and MRTX849-treated tumors from datasets 1 and 2, based on visual comparison, is indicated with quotation marks around the label 
(e.g. “T/DC”). Asterisks indicate statistics between samples, and hashtags indicate statistics compared to vehicle. MRTX, MRTX849.
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monotherapy group, except for the increased Treg presence in the 
local T cell/DC aggregates at the tumor interface (Fig. 8E). This was 
reflected in the community analysis, where we identified very similar 
top five CD8 T cell–rich communities as seen in the vehicle and 
MRTX849 analysis but now with the addition of a community (T/Treg) 
highly enriched in CD4 T cells and Tregs (Fig. 8F), as well as in the 
neighborhood enrichment analysis (fig. S8H). Depletion of Tregs led 
to a disappearance of the densely packed T cell/DC aggregation at 
the tumor interface (Fig. 8E). This suggests that the T/DC rich com-
munity was possibly more of a dysfunctional T cell activation hub, 
trapping the effector cells while inducing an exhaustive activation 
state. Instead, in the MRTX849 + anti–PD-1 + anti–CTLA-4 tumors, 
CD8 T cells were mostly found within the tumor (“T/Tum” and “T/M2”) 
or in the normal adjacent tissue (“T/NA”) (Fig. 8, E and G), while 
still interacting with CD4 T cells and CD103+ DCs (Fig. 8E and 
fig. S8H).

In the pulmonary lymph nodes, Tregs were not depleted by the ad-
dition of anti–CTLA-4 (fig. S8I). This has been observed before and 
was related to the differential expression of CTLA-4 on Tregs, being 
high in tumors and low in the lymph nodes (25, 26), which is in agree-
ment with our data (fig. S8J). Despite this, the lymph nodes showed 
pronounced T cell activation, evidenced by increased expression of 
PD-1 and proliferation marker Ki67 in the triple combination 
treatment group compared to double combinations or single-agent 
MRTX849 (fig. S8, K and L), again indicative of the priming of a 
systemic immune response.

DISCUSSION
Despite objective response rates of roughly 30 to 40%, the licensed 
KRAS-G12C inhibitors sotorasib (3, 4, 27) and more recently adagrasib 
(28,  29) have, so far, achieved only a modest improvement in 
progression-free survival of about 1 month and no improvement in 
overall survival. This very limited clinical benefit has been attributed 
to intrinsic and acquired resistance mechanisms (30–33), which has 
led to increased efforts to explore combination therapies. Besides com-
binatorial targeting of multiple tumor cell intrinsic pathways (34–37), 
early preclinical experiments also suggested a potential synergy with 
immune therapy (6, 7). Durable responses to KRAS-G12C inhibition 
depended on the presence of intact adaptive immunity (6). Further-
more, inhibiting KRAS-G12C was able to turn a cold tumor into a hot 
proinflammatory environment, potentially supporting antitumor 
immune responses in combination with ICI (9). Similar observations 
have been made with other KRAS inhibitors and in other model sys-
tems, arguing against off-target effects (6, 38–41). We found that 
oncogenic KRAS suppresses interferon signaling within the tumor 
cells via MYC and down-regulates the antigen presentation machinery 
and that KRAS-G12C inhibition led to the induction of immunogenic 
cell death (8). Furthermore, oncogenic KRAS signaling mediates the 
secretion of myeloid cell recruiting and immune polarizing chemo-
kines and cytokines such as chemokine (C-C motif) ligand 2 (CCL2), 
granulocyte-macrophage colony-stimulating factor, interleukin-10 
(IL-10), and transforming growth factor–β, as reviewed in (42). To-
gether, there is a multifactorial cascade that supports tissue inflamma-
tion after inhibition of KRAS in the tumor cells. However, our own 
preclinical work demonstrated that despite the presence of TME 
changes, anti–PD-1 refractory tumors did not become responsive to 
ICI combinations as a result of KRAS-G12C inhibition (8). Similarly, 
first reports of the safety and efficacy of sotorasib in combination with 

pembrolizumab or atezolizumab in advanced KRAS-G12C NSCLC 
have suggested poor response rates in patients that previously pro-
gressed on ICI, at least in part due to severe combination toxicities (11).

To better understand this persisting resistance to therapy, we fur-
ther investigated our most immune refractory KRAS-G12C mutant 
NSCLC model. The 3LL Lewis lung carcinoma model has a history 
of repeated passaging through immunocompetent mice and, as a 
result, has developed a complex mixture of immune resistance 
mechanisms (43). In previous work, treating orthotopic 3LL lung 
tumors with KRAS-G12C inhibitors only provided temporary tumor 
control, and combinations with anti–PD-1 or anti–PD-L1 and anti-
LAG3 failed to give additional benefit (8).

Recent studies have demonstrated that the organization and 
distribution of cellular communities in the tumor can be predictive 
of clinical outcome (15, 44, 45), including studies on lung cancer 
(13, 14, 46). Similarly, in this study, we investigated the cellular commu-
nities in our therapy-resistant 3LL model for evidence of immune-
suppressive patterns. Similar to the “suppressed expansion” cluster 
in breast cancer described by Danenberg et al. (44), we identified a 
T cell–rich cellular community (T/DC) with evidence of T cell acti-
vation, proliferation, exhaustion, and inhibition. In this cluster, we 
saw abundant interactions between CD4+ and CD8+ T cells and 
mature antigen-presenting DCs, similar to interactions normally seen 
within the T cell zones of lymph nodes; however, these did not 
resemble tertiary lymphoid structures, as B cell involvement was 
sparse. Furthermore, we found evidence of antitumor cytotoxicity 
within this community, with enrichment for interactions between 
CD8+ PD-1+ T cells and c-casp3–expressing tumor cells, suggestive 
of T cell–induced apoptosis. After treatment with KRAS-G12C 
inhibitory drug, we observed increased CXCL9 expression, which is 
involved in T cell recruitment, potentially from the periphery. Tumor-
draining lymph nodes (tdLNs) are considered to play a key role in 
facilitating the antitumor immune response, with the priming of new 
waves of antitumor T cells by both migratory and resident DCs in 
tumor and tdLN, which are subsequently attracted to the tumor by 
chemokine-expressing DC in the TME (47). Recent work not only 
showed that patients responding to ICI harbored more shared T cell 
receptor clones between tumor and tdLNs but also provided evi-
dence for local expansion and proliferation of CD8+ T cells in the 
TME (48). It remains to be determined to what extent the makeup of 
spatial communities in the TME are a direct reflection of processes 
occurring in the tdLNs.

While Tregs were generally quite scarce in the data, they were found 
strongly enriched within this T cell/DC–enriched community, and 
this Treg presence became even more pronounced in the MRTX849 
+ anti–PD-1 group. Tregs have direct and indirect mechanisms to 
inhibit T cell function. First, Tregs can inhibit CD8+ T cells directly 
by secreting or exposing T cell suppressive cytokines, such as IL-10, 
IL-35, and transforming growth factor–β, by scavenging IL-2, and 
by the generation of extracellular adenosine (49). Unfortunately, we 
could not investigate these mechanisms within the spatial commu-
nities as our panel lacked the markers for these soluble factors.

Second, Tregs can compete with CD8+ and CD4+ T cells for the 
costimulatory molecules on the antigen-presenting cells, primarily 
by transendocytosis or trogocytosis of CD80/CD86 through the in-
teraction with CTLA-4 (50, 51). Therefore, blocking of CTLA-4 is 
able to enhance CD8+ T cell responses. CD8/DC interactions were 
indeed less frequently observed in the neighborhoods containing 
Tregs, potentially reducing the opportunity for local activation of 
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CD8+ T cells. It was recently shown that depleting Tregs with an 
Fc-modified antibody to promote antibody-dependent cellular cyto-
toxicity also promotes an inflammatory myeloid response triggered 
by Fc receptor engagement (52). In agreement, depletion of Tregs using 
anti–CTLA-4, in combination with MRTX1257 and anti–PD-1 in 
our model, led to increased expression of activation markers, including 
the CTLA-4 ligand CD86 on the DCs.

Notably, the combination of MRTX849, anti–PD-1, and anti–
CTLA-4 induced tumor control by enhanced immunity in this other-
wise strongly immune-evasive model. Similarly, in another study, 
we achieved prolonged survival in the same tumor model using a 
combination of a RASG12C(ON) inhibitor and Src homology region 
2 domain-containing phosphatase-2 (SHP-2) inhibition with anti–
PD-1 and anti–CTLA-4 (38). In addition, Mahadevan et al. (41) 
recently showed that KRAS inhibition in a genetic model for pan-
creatic cancer also led to prolonged survival in a combination therapy 
with anti–PD-1 and anti–CTLA-4.

Depletion of Tregs also led to a disappearance of the densely packed 
T/DC community at the tumor interface, suggesting that this com-
munity played an important role in controlling the cytotoxic activity. 
This raises the question of whether the presence of a cellular com-
munity that is rich in not only activated T cells and DCs but also 
Tregs may predict resistance to the combined therapy of KRAS-G12C 
inhibition and PD-1 blockade. Spatial investigation of cellular com-
munities in the pretreatment biopsies of the CodeBreak 100/101 
clinical trials would allow for correlation with clinical outcome. This 
is highly relevant as initial results in this study showed that the com-
bination of sotorasib with PD-1 or PD-L1 led to unexpected liver 
toxicity (53); hence, identifying and excluding patients that are re-
sistant to this combination due to Treg activity would help to prevent 
unnecessary ineffective treatments. Furthermore, this could open 
up the possibility of using anti–CTLA-4 or other Treg targeting 
therapies in combination with KRAS-G12C inhibition in selected 
patients based on a spatial Treg community biomarker.

However, as our data suggest, Treg-rich communities are not 
unique to the KRAS inhibitor–treated conditions, as the T/DC com-
munity was present at similar frequencies in the vehicle setting. 
Likewise, a deeper analysis of the TRACERx IMC cohort (14) 
demonstrated that various Treg-rich communities are present in a 
significant proportion of treatment-naïve patients. Furthermore, 
Pentimalli et al. (54) described the presence of a niche rich in cyto-
toxic T cells, regulatory DCs, and Tregs, marked by localized expres-
sion of CXCL9, similar to our observations, as well as CCL19 and 
CCL21, in three-dimensional spatial transcriptomics analysis of a 
patient with high-grade NSCLC. This suggests that DC-, T cell–, 
and Treg-rich communities are a recurring feature in lung cancer 
and may predict response in a broader context. Several studies in 
lung cancer so far have indicated frequencies of intratumoral or circu-
lating Tregs to be associated with poor outcome (55–57) or therapy 
resistance (58, 59), but few have looked into the cellular communities 
in more detail.

Sorin et al. (13) identified B cell communities that associated with 
survival advantage unless they co-occurred with an enrichment of 
Tregs. Magen et al. (48) identified a niche containing progenitor CD8+ 
T cells, dendritic cells enriched in maturation and regulatory mole-
cules (“mregDC”), and CXCL13+ T helper cells in ICI responders, 
while T cell–rich nonresponders were high in Tregs. CXCL13+ T cells 
were also associated with response to PD-1 blockade in an analysis 
by Sorin et al. (60), in contrast to DCs and Tregs that were found 

enriched in another community not significantly correlated to out-
come. However, Chen et al. (61) similarly identified immune hubs 
associated with response to PD-1 blockade that were rich in stem-
like (progenitor-exhausted) T cell factor 7+ PD-1+ CD8+ T cell and 
mregDCs, also containing Tregs. This indicates that a careful defini-
tion of the Treg communities, including cell states (21) and local cyto-
kine environments, will be required to identify accurately predictive 
biomarkers for resistance to PD-1/PD-L1 blockade. Spatial analysis 
of pretreatment biopsies from cohorts such as ARCTIC (62), 
MYSTIC (63), and CHECKMATE 227 (64), comparing anti–PD-
L1/PD-1 as monotherapy or in combination with anti–CTLA-4, 
could help better define the Treg communities that confer resistance 
to blocking the PD-1/PD-L1 axis alone, while potentially being 
responsive to the addition of Treg targeting.

Clinical trials for NSCLC that combine nivolumab or durvalumab 
anti–PD-(L)1 with ipilimumab or tremelimumab anti–CTLA-4 as 
mentioned above have shown no or only modest additional clinical 
benefit compared to monotherapy PD-(L)1 blockade (65). This may 
be due to a lack of statistical power resulting from the absence of a 
biomarker to select the patients that may benefit from additional 
CTLA-4 blockade. The MYSTIC trial showed that the combination 
of durvalumab and tremelimumab versus durvalumab monotherapy 
was performing worse across the whole patient population but showed 
improved survival in a select patient group with high TMB (22). In 
line with this, we observed two Treg communities with strong simi-
larities to the Treg community identified in mice, which correlated 
with increased TMB and possibly represent communities that would 
be more responsive to CTLA-4 blockade or Treg depletion.

Note that it has been heavily debated whether the human anti–
CTLA-4 antibodies ipilimumab and tremelimumab are Treg depleting. 
Treg-depleting strategies are being explored clinically, such as an anti–
CTLA-4 monoclonal antibody that was Fc engineered to bind FcyRIIIA 
(botensilimab) (66), several different Treg-depleting anti-CCR8 anti-
bodies in phase 1/2 studies, mogamulizumab, a CCR4-depleting 
antibody in phase 1/2 studies (NCT02358473 and NCT02946671) (67), 
and preclinical studies such as the Fc-optimized anti-CD25 (68). 
One of the concerns with anti–CTLA-4 therapies is the enhanced 
toxicity seen in patients treated with ipilimumab or tremelimumab 
on top of anti–PD-1 therapy. Local delivery of low-dose anti–CTLA-4 
has been proposed to reduce toxicity while maintaining efficacy, such 
as recently shown for local delivery to the lymphatic basin in mela-
noma (69). However, the site for local delivery of a Treg-depleting 
antibody therapy should be carefully considered. Similar to others 
before us (26, 52, 68), we observed how the Treg depletion with anti–
CTLA-4 was effective in the tumors, but not in the lymph nodes, 
most likely due to the differences in CTLA-4 expression. Notably, 
CTLA-4 levels are increased on activated Tregs, which allows for 
selective depletion of these functionally suppressive Tregs (69), that 
are elevated both in tumors and in tdLN. Intra- or peritumoral 
delivery might therefore be a more appropriate approach than sys-
temic anti–CTLA-4 delivery (47).

In conclusion, we have used spatial cellular community analysis 
to investigate the nature of resistance to combined KRAS-G12C and 
PD-1 inhibition in a strongly immune-evasive mouse model for 
NSCLC. We identified a cellular community that is rich in T cells 
and DCs, with evidence of local T cell activation and cytotoxicity 
but that is inhibited by Treg-mediated suppression. Depletion of the 
Tregs led to profound reduction in tumor growth, longer survival, 
and enhanced, and in some cases sustained, antitumor immunity. 
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Analysis of treatment naïve patients showed that similar communities 
rich in CD4 and CD8+ T cells and Tregs were found to co-occur with 
DCs in the peritumor space and correlated with increased TMB. We 
propose that a detailed spatial analysis of Treg-rich communities in 
clinical samples from patients treated with KRAS inhibitors, anti–PD-1/
PD-L1, or anti–CTLA-4 may provide the foundations for a very 
specific predictive biomarker.

MATERIALS AND METHODS
Study design
The goal of the study was to identify new targets within the spatial 
cellular communities in the TME of KRAS-G12C inhibitor–treated 
mouse LUADs to overcome therapy resistance. Previously published 
data from IMC analysis of Lewis lung carcinoma treated for 7 days 
with KRAS-G12C inhibitors were reanalyzed to look into the recur-
ring cellular communities that could be potentially linked to therapy 
resistance. Relationships between cells within the communities were 
analyzed, looking at cell-cell distances, expression of activation 
markers, and neighborhood enrichment. To validate the findings, a 
similar analysis was conducted in a human dataset of treatment naïve 
NSCLC tumor samples. The identified suppressor cells, namely, Tregs, 
were then targeted in vivo using depleting antibodies to verify that 
these were indeed instrumental in imposing resistance to KRAS-
G12C + PD-1 treatment.

In vivo drug study and IMC
The IMC data of the vehicle and MRTX1257-treated tumors were 
published previously in van Maldegem et al. (9) for dataset 1 and 
Mugarza et al. (8) for dataset 2. The IMC data of MRTX849 + PD-
1– and MRTX849 + PD-1 + CTLA-4–treated tumors were newly 
generated for this study (dataset 3). For details on samples, staining, 
imaging, and cell typing, please refer to the above references or the 
Supplementary Materials.

Neighbor identification
As described in van Maldegem et al. (9), cellular neighbors were 
identified during segmentation using the CellProfiler module 
“Measure Object Neighbors,” following steps to identify individual 
cells. Neighbors were identified if a cell boundary was within 15 μm 
(pixels) of the cell boundary of interest. Neighbor information was 
obtained for every cell object in each tissue.

Identification of spatial cellular communities—Mouse data
Each “neighborhood” was identified as a single cell and its local 
neighbors, defined by 15-μm object relationship output data from 
segmentation. For each cell, the proportion of each cell type (16 cell 
types for dataset 1 and 14 cell types for dataset 2) found in its neigh-
borhood was calculated (range, 0 to 1), as demonstrated by the 
equation below

All cells per dataset were then clustered using Rphenograph, based 
on the neighbor proportion values calculated. A k = 250 clustering 
input yielded 62 neighborhood communities for dataset 1 and 254 
communities for dataset 2.

Dimensionality reduction such as the R implementation of tSNE 
(70) and dendrograms were used to determine which communities 

were similar and could therefore be analyzed together for dataset 1. 
Agglomerative clustering using the AgglomerativeClustering func-
tion from the sklearn.cluster package in Python 3.9 was then used to 
group the 62 communities into 18. The clustree package was used to 
represent the merging of 62 communities into 30 and subsequently 
18. Agglomerative clustering was also used to group 254 communities 
into 18, so that analysis of communities from datasets 1 and 2 were 
equal and, thus, the datasets could be analyzed in parallel. For vali-
dation of the method to identify communities, please refer to the 
Supplementary Materials.

Pearson correlation
For comparing cell type relationships per ROI, the proportion of 
each cell type contributing to each ROI was calculated. For com-
paring cell type relationships within communities, the proportion of 
each cell type contributing to each of the 18 communities was calcu-
lated. For both instances, this was followed by a Pearson correlation 
calculation of each cell type pair across all communities. A significant 
correlation was depicted by a P value below 0.05, but significance was 
tiered as *P < 0.05, **P < 0.01, and ***P < 0.001. Cell types were 
clustered on the basis of their correlations.

Neighborhood enrichment analysis
As described in van Maldegem et  al. (9), the neighbouRhood 
method developed by the Bodenmiller laboratory [https://github.com/
BodenmillerGroup/neighbouRhood (20)] was used to identify the 
enrichment of cell types within the 15-pixel neighborhood of each 
cell compared to random permutations of events, with a modifica-
tion of only calculating enrichment in the CD8+ T cell neighborhood, 
separated by community and using 1000 rounds of permutation. 
This was carried out for the community names T/NA, T/M1, 
T/DC, T/M2_1, and T/M2_2 communities for the MRTX1257 
treatment setting.

Neighborhood enrichment analysis was also used for exploring 
cell pair relationships in the presence or absence of Tregs within the 
T/DC and T/M2_2 communities following MRTX1257 treatment. 
Enrichment scores were only deemed statistically significant if the 
P value when comparing real neighbors to randomized neighbors 
was ≤0.01.

Distance calculations
X and Y coordinates based on the center of each cell, as generated 
through segmentation in CellProfiler, were used to calculate distances 
between cells. The cKDTree function from scipy.spatial package in 
Python 3.9 was used to compute distances of DCs and CD103+ DCs 
to CD4+ and CD8+ T cells and Tregs that were PD-1+ with a distance 
threshold of 800 pixels within the T/DC community following 
MRTX1257 treatment.

Identification of spatial cellular communities—TRACERx data
The TRACERx study (Clinicaltrials.gov no: NCT01888601) is spon-
sored by University College London (UCL/12/0279) and has been 
approved by the London–Camden & Kings Cross Research Ethics 
Committee (13/LO/1546). The community identification method, 
developed by Schurch et al. (15), was applied to 139 NSCLC tumor 
cores from the TRACERx study that were imaged with the pan-
immune panel and 135 tumor cores that were imaged with the T 
cells and stroma panel (14) to identify groups of cells that commonly 
localized near one another.

Proportion =

No. of cells of type X in neighborhood

Total no. of cells in neighborhood

https://github.com/BodenmillerGroup/neighbouRhood
https://github.com/BodenmillerGroup/neighbouRhood
http://Clinicaltrials.gov
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Briefly, the method is as follows: A window was defined around 
every cell in an image and its 10 nearest neighboring cells including 
the center cell. These windows were clustered by their composition 
with respect to the 18 cell types in the pan-immune panel and the 20 
cell types in the T cells and stroma panel (with at least 10 cells on 
average per image) using MiniBatchKMeans. We optimized the 
parameters of the method by Schurch et al. (15) and identified 
10 spatial cellular communities from the pan-immune panel and 30 
spatial cellular communities using the T cells and stroma panel. Com-
munities were then assigned representative names based on the en-
richment of cell densities within them.

Spatial community identities were mapped onto segmented cells 
and visualized using Cytomapper (71), which were then validated by a 
pathologist’s assessment of serial hematoxylin and eosin–stained 
tissue sections. The cell density of spatial cellular communities was cal-
culated by taking the number of cells assigned to a spatial cellular com-
munity divided by the total tissue area (in cells per square millimeter).

Association between cell densities of cell subtypes (T cells 
and stroma panel) and spatial cellular communities 
(pan-immune panel)—TRACERx data
We correlated the cell density of stroma-localized T cell subtypes 
detected using the T cells and stroma antibody panel and the cell 
density of 10 spatial communities detected using the pan-immune 
antibody panel in cores from the same tumor region. For compari-
sons with multiple tumor cores/regions per tumor, we used linear 
mixed-effects model analysis to incorporate patient ID as a random 
effect. We report the T score and P value of the model.

Co-occurrence of spatial cellular 
communities—TRACERx data
The lowest quartile of the cell densities of Treg communities was 
approximately 25 cells/mm2. Therefore, we used 25 cells/mm2 as the 
threshold to determine whether a spatial community was present or 
absent in a tumor core. We reported the proportion of paired tumor 
cores (T cells and stroma panel and pan-immune panel) with at least 
25 cells/mm2 in p2_C1: tumor border communities and in p1 Treg 
communities.

In vivo survival experiment
3LL-ΔNRAS (37) was cultured in RPMI 1640 supplemented with 
10% fetal bovine serum, 4 mM l-glutamine (Sigma-Aldrich), penicillin 
(100 U/ml), and streptomycin (100 mg/ml; Sigma-Aldrich). Cell lines 
were tested for mycoplasma and authenticated by short-tandem repeat 
DNA profiling by the Francis Crick Institute Cell Services Facility. 
Cells were allowed to grow for not more than 20 subculture passages.

Intravenous tail vein injections of 106 3LL-ΔNRAS cells were 
carried out for orthotopic studies using 8- to 12-week-old male 
C57BL/6J mice. Mice were euthanized, with an overdose of pento-
barbitone, when a humane end point of 15% weight loss was reached 
or any sign of distress was observed (i.e., hunched, piloerection, and 
difficulty of breathing). In addition, if a mouse was observed to have 
a tumor burden in excess of 70% of lung volume when assessed by 
μCT scanning, they were deemed at risk of rapid deterioration in 
health and euthanized immediately.

Mice were anesthetized by isoflurane inhalation and scanned 
using the Quantum GX2 μCT imaging system (PerkinElmer) at a 
50-μm isotropic pixel size. Serial lung images were reconstructed 
and analyzed using Analyze12 (AnalyzeDirect) as previously described 

in Zaw et al. (72). Tumor volume changes between time points were 
calculated as follows: (tumor volume time point 2 − tumor volume 
time point 1) / tumor volume time point 1 × 100%.

Bristol Myers Squibb antibodies anti–PD-1 (clone 4H2, g1-D265A) 
and anti–CTLA-4 (clone 9D9, mlgG2a), with mlgG1-D265A and 
mlgG2a isotype controls, were given twice weekly at 200 μg per dose 
by intraperitoneal injection. MRTX849 (adagrasib) was given by oral 
gavage daily at 100 mg/kg for a total of 2 weeks. The mouse work 
was carried out with approval of the Francis Crick Institute Animal 
Welfare and Ethical Review Body under UK Home Office Project 
License P19FC0E42.

Flow cytometry
Flow cytometry was performed as previously (8) using the antibody 
mixes listed in table S1. Details of staining protocol, data acquisition, 
and analysis can be found in the Supplementary Materials.

Supplementary Materials
This PDF file includes:
Supplementary Materials and Methods
Figs. S1 to S8
Table S1
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