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Abstract

Background: Although regional wall motion abnormality (RWMA) detection is foundational to 

transthoracic echocardiography, current methods are prone to interobserver variability. We aimed 

to develop a deep learning (DL) model for RWMA assessment and compare it to expert and novice 

readers.
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Methods: We used 15,746 transthoracic echocardiography studies—including 25,529 apical 

videos—which were split into training, validation, and test datasets. A convolutional neural 

network was trained and validated using apical 2-, 3-, and 4-chamber videos to predict the 

presence of RWMA in 7 regions defined by coronary perfusion territories, using the ground 

truth derived from clinical transthoracic echocardiography reports. Within the test cohort, DL 

model accuracy was compared to 6 expert and 3 novice readers using F1 score evaluation, with 

the ground truth of RWMA defined by expert readers. Significance between the DL model and 

novices was assessed using the permutation test.

Results: Within the test cohort, the DL model accurately identified any RWMA with an area 

under the curve of 0.96 (0.92–0.98). The mean F1 scores of the experts and the DL model were 

numerically similar for 6 of 7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral 

(83 vs 87), inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 

94), respectively, while in the anteroseptal region, the F1 score of the DL model was lower than 

the experts (75 vs 89). Using F1 scores, the DL model outperformed both novices 1 (P = .002) and 

2 (P = .02) for the detection of any RWMA.

Conclusions: Deep learning provides accurate detection of RWMA, which was comparable to 

experts and outperformed a majority of novices. Deep learning may improve the efficiency of 

RWMA assessment and serve as a teaching tool for novices.
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INTRODUCTION

The assessment of regional wall motion abnormalities (RWMAs) is paramount for 

the echocardiographic evaluation of ischemic heart disease. Accurate identification of 

RWMAs is key to the identification of acute and chronic myocardial infarction, as 

well as the differentiation of ischemic from nonischemic causes of cardiomyopathy. 

Currently, the assessment of RWMA relies on qualitative interpretation of the multiple 

echocardiographic views. However, conceptually this is one of the most difficult skills 

to learn in echocardiography. Additionally, even for readers who attain expertise, visual 

RWMA assessment remains prone to interobserver variability.1,2 For example, in a prior 

study by Hoffman et al.,1 the interobserver agreement for the detection of RWMA using 

noncontrast two-dimensional (2D) echocardiography was only 37%. Moreover, much of 

the available evidence supporting qualitative methods for RWMA detection is derived from 

expert readers at academic medical centers.3,4 The accuracy of RWMA assessment appears 

to be even worse in novice readers.5,6 There is therefore room for improvement in the 

current paradigm for RWMA assessment.

One potential method by which to augment reader assessment of RWMA is through artificial 

intelligence (AI), which has shown the potential to improve the automation and diagnostic 

accuracy of several tasks in echocardiography. Deep learning (DL) is an AI method in which 

models are trained directly on echocardiographic images using neural networks to detect a 
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finding or condition.7 The factual data used for training are commonly referred to as the 

ground truth, which is used to train the AI model, such that its detection comes as close as 

possible to the ground truth. The power of AI in echocardiography has been demonstrated 

in a variety of disease states, including hypertrophic cardiomyopathy, cardiac amyloidosis, 

and valvular heart disease.8–10 Previous studies have also shown promising capabilities for 

AI to detect RWMAs.11,12 However, further studies are needed to prospectively validate 

AI-based RWMA assessment using current American Society of Echocardiography (ASE) 

wall segmentation.13 Additionally, it is unknown which types of readers (i.e., experts and/or 

novices) are likely to derive the most benefit from AI-assisted RWMA assessment.

The aim of this study was to utilize a large database of 2D echocardiograms to (1) train 

and validate a novel AI model to detect RWMAs in accordance with ASE segmentation 

guidelines and (2) compare its accuracy to that of both expert and novice readers.

METHODS

Training, Validation, and Test Cohort Selection and Image Analysis

We identified 15,746 consecutive transthoracic echocardiograms—composed of 25,529 

apical 2-, 3-, and 4-chamber Digital Imaging and Communications in Medicine (DICOM) 

videos—performed at the University of Chicago between 2007 and 2020. The dataset was 

composed of all patients imaged within this time period who possessed adequate-quality 

2-, 3-, and/or 4-chamber videos, including those with RWMAs due to both ischemic and 

nonischemic causes, as well as patients without RWMA. These studies were randomly 

assigned to model training (n = 14,072) and validation (n = 1,563) cohorts with no 

patient overlap between groups. The training and validation cohorts were utilized for model 

development and fine-tuning using the presence of RWMAs from the clinical transthoracic 

echocardiography report as the ground truth. A separate test dataset containing 111 studies

—including 40 normal and 71 with RWMA—was used to perform the reader study to 

compare the performance of the AI model to both experts and novice readers, using the 

consensus determination of the presence of RWMAs from the expert readers as the ground 

truth. In order to adequately assess the model across all regions, the test cohort was designed 

to include a similar proportion of RWMAs in each region. All of the readers who formulated 

the clinical echocardiography reports were level III readers, a majority of whom had >10 

years of reading experience. This study was approved by the Institutional Review Board 

with a waiver of informed consent.

All studies were performed using Philips ultrasound imaging equipment using standard 

acquisition techniques. For each study, regional wall motion was assessed by an expert 

reader in accordance with ASE guidelines and standards. We divided the myocardium into 7 

regions defined based on the American Heart Association (AHA) 17-segment model, while 

also conforming to the boundaries of the coronary territories outlined in the ASE guidelines: 

anteroseptal, anterior, anterolateral, inferolateral, inferior, inferoseptal, and apical (Figure 

1).13 Coding of an RWMA in any AHA segment within this region was considered positive, 

irrespective of the number of AHA segments involved. For the purposes of this study, those 

with global hypokinesis were considered to have an RWMA only if there were regional 
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differences in wall motion. The overall methodology for model training, validation, and 

testing is depicted in the Central Illustration.

Artificial Intelligence Model Training and Validation

After accounting for the 111 studies that were utilized for the test dataset, the remaining 

15,635 studies were randomly assigned 90%/10% into model training and validation sets. 

Apical 2-, 3-, and 4-chamber non-contrast-enhanced videos were manually annotated from 

the complete echocardiographic examination. Using these videos as input, we developed a 

three-dimensional convolutional neural network to predict the ground truth of presence of 

RWMAs (Figure 2A). For model training and validation, the ground truth for RWMAs was 

defined from the clinical echocardiography report.

The convolutional neural network works by analyzing imaging features derived from raw 

echocardiographic videos—in this case apical 2-, 3-, and 4-chamber views—in order to 

predict the presence and location of RWMAs as defined from the clinical reports. More 

specifically, the network processes ultrasound image sequences by convolving both over 

the space and time dimension of the input. The model itself used the full scan-converted 

B-mode images, without annotations. No spatial cropping was used. The clips were split 

by cardiac cycle, using the electrocardiogram, that is, only using complete cardiac cycles. 

The images were resampled to a matrix size of 120 × 120 using B-spline interpolation. The 

temporal axis was not resampled. We did consider multiple cycles per view, if available. The 

model processes each cardiac cycle from each view independently. The available predictive 

values from each view and each cycle are then averaged to generate an aggregate predicted 

probability for RWMAs. We trained 1 model for each of the 7 wall sectors.13 In the case 

of the left ventricular apex, the probabilities from all available apical 2-, 3-, and 4-chamber 

cardiac cycles were aggregated. The model is an end-to-end DL model that directly learns 

from the images, that is, there is no special treatment for a specific region like the apex.

The AI model was trained in a supervised manner, where the ground truth of RWMAs 

was obtained from finding codes extracted from structured reports by expert readers that 

were created during routine exams. A standard cross-entropy loss function and the Adam 

optimization algorithm were used for model training. Hyperparameters such as confidence 

threshold, learning rate, and model size were selected using the validation set. To reduce 

overfitting and improve generalization, we used data augmentation techniques such as 

random brightness, contrast, and shifting augmentation. The output of the convolutional 

neural network is a per-region confidence of RWMA detection between 0 and 1. We set a 

threshold confidence level of 0.4 to define the presence or absence of RWMAs based on the 

validation set receiver operator curve (ROC) performance with the goal of having a balanced 

trade-off between true- and false-positive prediction rates.

Comparison of AI Model With Expert and Novice Readers

Using the distinct 111 patient test dataset, we performed a reader study to assess the 

accuracy of the AI model in comparison to 6 expert and 3 novice readers. Expert 

readers were defined as board-certified echocardiographers with level III competency in 

echocardiography.14 Novice readers were defined as fellows with ≥3 months dedicated 
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training in echocardiography who had not yet passed their echocardiography board 

examinations. Although only apical views were used by the AI model, experts and nonexpert 

readers were provided with all standard views, including parasternal and contrast-enhanced 

images when available. For the reader study, expert and nonexpert readers were blinded to 

the prediction of the AI model.

The definitions of the ground truth for each group for the reader study are depicted in 

Figure 2B. The AI model and novice performance were assessed using the ground truth for 

RWMAs formed by a 6-way majority vote of all experts, that is, at least 4 of the 6 experts. 

Experts’ performance was assessed using a ground truth for RWMAs comprising a rotating 

majority vote of at least 3 of the remaining 5 experts, such that the expert being evaluated 

was never part of the ground truth that they were evaluated against. The performance of the 

AI model, expert, and novice readers were compared in the test dataset using F1 scores, 

defined as harmonic mean of precision and recall, as well as ROC analysis. The F1 score 

is a commonly used metric for evaluating the performance of DL models, balancing the 

model’s ability to detect RWMAs and minimizing the misclassification of an RWMA when 

it is not present.15 A ROC analysis was used to determine the optimal threshold for detecting 

RWMAs, while balancing sensitivity and specificity, and to evaluate the overall diagnostic 

accuracy of the DL model in the different regions.

We tested for significance of the differences in the F1 scores between the DL algorithm 

and novices using the permutation test. P values < .05 were considered significant. A 

permutation test is a statistical procedure that helps assess whether an observed difference or 

relationship between groups in a dataset is likely a real effect or if it could have happened 

due to random chance.16 Statistical analysis and metric calculation were performed using the 

Python packages scipy and scikit-learn. The convolutional neural networks were trained with 

PyTorch.

RESULTS

Model Training and Validation

Clinical and echocardiographic characteristics for the training and validation cohorts are 

listed in Table 1. Within the 25,529 training and validation images, abnormal regional wall 

motion was noted within the structured echocardiography reports in 10,722 (42%) of cases, 

with apical abnormalities being the most common. The prevalence of abnormal wall motion 

in the inferior, anterolateral, inferolateral, inferoseptal, anterior, anteroseptal, and apical 

regions was 22%, 13%, 18%, 17%, 18%, 9%, and 23%, respectively.

Comparison of AI Model With Expert and Novice Readers

Clinical and echocardiographic characteristics for test cohort are also listed in Table 1. 

In the test cohort, an RWMA was present in 66 studies (59% of cases). The prevalence 

of inferior, anterolateral, inferolateral, inferoseptal, anterior, anteroseptal, and apical wall 

motion abnormalities was 43%, 39%, 42%, 38%, 42%, 31%, and 47%, respectively. The 

area under the curve of the AI model for detection of any RWMA in the test cohort was 0.96 

(0.92–0.98).
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The F1 scores of the AI model and the average of the 6 experts within the test dataset are 

displayed in Table 2. The mean F1 scores of the experts and the DL model were similar 

for 6 of 7 regions: anterior (86 vs 84), anterolateral (80 vs 74), inferolateral (83 vs 87), 

inferoseptal (86 vs 86), apical (88 vs 87), inferior (79 vs 81), and any RWMA (90 vs 94), 

respectively, while in the anteroseptal region the F1 score of the DL model was lower than 

the experts (75 vs 89). Similarly, the F1 score (94 vs 90), recall (92 vs 92), and accuracy 

(92 vs 87) were similar for the DL model versus the experts, respectively, for any RWMA. 

Receiver operator curve analysis demonstrated similar performance for the AI model and the 

6 expert readers for detection of any RWMA, while individual differences were observed 

in specific myocardial areas, being most pronounced in the anterolateral and anteroseptal 

regions (Figure 3).

The F1 scores of the AI model and the 3 novice readers are shown in Table 3. As compared 

with the AI model, both novices 1 and 2 performed significantly worse for the detection 

of any RWMA, as compared to the AI model (P = .002 and .02, respectively). The AI 

model performed significantly better than novice 2 for the detection of apical wall motion 

abnormalities (P = .006). Additionally, the AI model outperformed novice 2 for the detection 

of RWMAs in the inferolateral, inferoseptal, and inferior regions (P = .03, .02, and .05, 

respectively). There were no significant differences in F1 scores between novice 3 and the 

AI model. With respect to recall scores, the DL model performed significantly worse than 

novice 1 and novice 3 in the anteroseptal region. The ROC analysis showed similar or better 

performance of the AI model compared with all 3 novice readers with the exception of the 

anterolateral and anteroseptal region (Figure 4).

DISCUSSION

In our study, we developed a novel AI model aimed to detect RWMAs, which was 

subsequently validated by comparing its accuracy to that of both expert and novice readers. 

This model demonstrated excellent accuracy, which was equivalent to that of experts and 

outperformed a majority of the novice readers (Central Illustration).

In our study, the AI model demonstrated comparably high accuracy in the test dataset, 

supporting the generalizability of our results. Although the model was reasonably accurate 

on a regional basis, it was most accurate for the detection of any RWMA. Because 

echocardiography is the frontline assessment tool in patients with known or suspected 

ischemic heart disease, the detection of any RWMA is therefore likely to be most 

clinically relevant, as this identifies patients who may warrant further diagnostic evaluation. 

The model performed best for detection of anterior and apical RWMA. Conversely, the 

model performed worst for the detection of RWMAs in the anterolateral and anteroseptal 

regions. One potential explanation for this is that these latter regions are more prone 

to endocardial dropout—particularly on non-contrast-enhanced images.17 This may have 

disproportionately affected the accuracy of the AI model relative to the readers who 

had access to contrast-enhanced images. Further studies are needed to assess whether 

the inclusion of parasternal views and/or contrast-enhanced views—which may provide 

improved segmental visualization—can further improve the accuracy of DL for RWMA 

assessment.
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Among AI techniques, DL is uniquely suited to visual tasks, such as RWMA assessment, 

due to its ability to rapidly analyze large amounts of spatial and temporal imaging 

data, automatically selecting important features without the need for manual selection 

or quantification.18,19 One potential drawback of our model was the need for manual 

annotation of views for the convolutional neural network, which may slightly increase 

performance time. The integration of existing technologies for automated view identification 

will likely further improve model efficiency in the future.20,21

Our study expands on a growing body of literature supporting the accuracy of AI for the 

echocardiographic detection of RWMAs. Previously, Huang et al.11 had developed an AI 

model that demonstrated a high degree of accuracy for the detection of RWMAs in both 

internal and external validation. Similarly, using a smaller 300 patient cohort, Kusunose 

et al.12 developed an AI model based on coronary distributions, which demonstrated 

comparable accuracy to that of echocardiographers. One advantage of our study was the 

division of wall segments into 7 myocardial regions, which conformed to the boundaries 

of the coronary perfusion territories as defined in the current ASE guidelines.13 This is 

important as the compliance of the model with current reporting standards helps to ensure 

that the AI output is easily interpretable and clinically actionable. Further studies are 

needed to assess whether expansion of DL-based RWMA assessment to a 17-segment model 

provides incremental value.

In addition to demonstrating high accuracy of the detection of RWMAs in the test cohort, 

the AI model provided comparable accuracy to that of expert readers. Our findings parallel 

those of Kusonose et al.12 An advantage of AI methods over conventional visual analysis is 

that they can be performed in seconds, providing rapid and accurate information. Artificial 

intelligence–based RWMA assessment therefore has the potential to augment expert reads 

by rapidly highlighting areas of concern for RWMAs, improving the ease and efficiency of 

interpretation. Artificial intelligence assistance may be particularly helpful as a user support 

tool given the rising utilization of transthoracic echocardiography, which may increase 

workload, potentially at the risk of accuracy.22,23 Another potential benefit of AI for RWMA 

assessment is in improving the consistency of echocardiography reporting. As in prior 

studies, we observed substantial interobserver variability with respect to RWMA detection, 

even among expert readers,1,2 as reflected by the data reported in Figure 3. Further studies 

are needed to determine whether the integration of the AI methodology into clinical 

interpretation can reduce interobserver variability with respect to RWMA assessment.

Lastly, our AI model outperformed a majority of novice readers for RWMA assessment. 

In their study, Kusunose et al. compared the performance of their AI model to resident 

physicians. Our study differs in that we utilized novice echocardiographers who—unlike 

resident physicians—have received formal training in echocardiography. Our study suggests 

the potential for AI to augment the accuracy of novices for RWMA detection even with such 

training. Given this, it is perhaps possible that AI could potentially allow for distribution of 

expert-level RWMA analysis to geographic regions where such expertise is not otherwise 

available. Artificial intelligence models could also serve as an educational tool to improve 

novices’ ability to assess regional wall motion. It should be noted that we did not assess 

whether the use of AI augmented novice performance; further studies may help to better 
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elucidate whether access to AI model predictions would provide direct benefit to novice 

readers.

Limitations

One limitation of our study is that we used images obtained from a single ultrasound vendor. 

However, as the model uses DICOM images as input, it is unlikely that these results would 

not be generalizable to other vendors. Extended follow-up studies should aim to validate 

our findings using multicenter, multivendor data. Additionally, although no images were 

excluded, some studies were partially incomplete and did not contain all 3 apical views, 

resulting in a discordance between the 15,746 echo studies and 25,529 images included; 

however, we chose not to exclude these studies in order to maximize the size of our 

dataset for model development. Additionally, rather than randomly select patients for the 

test dataset, we chose to include a similar number of RWMAs from each myocardial region 

in the test dataset. Accordingly, age, left ventricular ejection fraction, and prevalence of 

RWMA differed between the training/validation and test datasets. We felt this was important 

because random sampling would be likely to overrepresent more common RWMAs, such 

as apical and inferior territories, thus skewing the performance of the model in the reader 

study. Additionally, using a testing pool with many healthy patients—which are easy to 

classify—could have also shifted the results in favor of the model.

We only assessed readers within a single tertiary academic echocardiography laboratory. 

Further studies are needed to determine whether AI could augment RWMA assessment at 

centers where such a high level of expertise is not available. Another potential limitation of 

this study is the use of expert wall motion interpretation on resting 2D echocardiogram as 

the ground truth rather than invasive coronary angiography or noninvasive stress testing. One 

reason for this choice was that RWMA may be caused by a variety of conditions, including 

ischemia, infarction, and even nonischemic etiologies, such as cardiac sarcoidoisis or 

takotsubo cardiomyopathy. Even high-grade stenosis without myocardial infarction may not 

manifest in RWMAs under resting conditions; similarly, occult prior myocardial infarction 

may manifest in an RWMA in the absence of epicardial stenosis.24 Further studies may be 

useful to determine whether AI is similarly effective at detecting stress-induced RWMA.

Moreover, the use of the clinical reports for the classification of RWMAs during training 

and validation may have affected the development of the DL model. Presumably readers 

generating those reports would have access to clinical data that might influence the 

interpretation of the exam, as readers may be more likely to assign an RWMA when 

they have knowledge of a history of coronary disease or prior infarction. Our model also 

did not utilize parasternal or contrast-enhanced images. However, this is likely only to the 

disadvantage of the model, as readers were provided with all views including parasternal and 

contrast-enhanced images when present. Further studies are needed to determine whether the 

inclusion of parasternal and/or contrast-enhanced images can further improve the DL-based 

assessment of RWMA.

Lastly, the use of DL for RWMA assessment does represent a “black box.” Because the 

neural network works by processing raw images, we are unable to determine which aspects 

of the images are most important for RWMA assessment.
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CONCLUSION

This study indicates that the use of this new AI algorithm provides highly accurate detection 

of RWMAs. The automated DL-based assessment of RWMAs has the potential to improve 

the efficiency of all readers and may serve as a teaching tool for novice readers.
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HIGHLIGHTS

• Currently, assessment of regional wall motion is prone to interobserver 

variability.

• We developed a DL model for regional wall motion assessment.

• The model demonstrated excellent accuracy, equivalent to that of expert 

readers.

• The model outperformed the majority of the novice readers.

• It may prove useful, as it rapidly highlights areas of concern.
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Figure 1. 
Definitions of each of the 7 ASE regions that were used for model training and validation.
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Figure 2. 
(A) Flowsheet depicting the workflow for training the AI model; apical images were input 

into the 10-layer convolutional neural network to predict the ground truth of RWMAs 

derived from the clinical echocardiogram reports. (B) Model testing was performed via a 

reader study in which the accuracy of the AI model was compared to expert and novice 

readers. Artificial intelligence and novice accuracy were assessed using a ground truth of 

RWMA derived from a majority of the 6 experts. Experts were assessed using a rotating 

panel of other experts such that an expert was not included in their own ground truth.
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Figure 3. 
Receiver operator curve analysis depicting accuracy of the AI model within the test cohort 

on a per-region basis. Expert accuracies represented by the 6 color dots are compared against 

the AI model represented by the ROC curves.
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Figure 4. 
Receiver operator curve analysis depicting accuracy of the AI model within the test cohort 

on a per-region basis. Novice accuracies represented by the 3 color dots are compared 

against the AI model represented by the ROC curves.
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Central Illustration. 
Illustration of key findings of the study. The AI model was trained and validated using 

apical 2-, 3-, and 4-chamber images to predict the ground truth of RWMA from the clinical 

echocardiography report. The model was subsequently tested using a reader study format. 

Here, the AI model demonstrated comparable accuracy to the ground truth of expert readers 

and outperformed a majority of novice readers for RWMA detection.
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Table 1

Characteristics of the training, validation, and test cohorts

Parameter
Training and validation cohort

(n = 15,635 patients, n = 25,529 DICOM)
Test cohort

(n = 111 studies)

Clinical data

 Age, years, mean (IQR) 70.7 (60–83) 77.4 (69–90)

 Gender, male, % 48 51

 Race, %

  White 51 53

  Black 31 27

  Other 18 20

 Height, cm, mean (IQR) 170 (163–178) 170 (163–178)

 Weight, kg, mean (IQR) 79 (67–93) 81 (69–97)

 Systolic blood pressure, mm Hg 130 ± 23 126 ± 25

 Diastolic blood pressure, mm Hg 72 ± 15 68 ± 12

Echocardiographic data, cm

 IVSd 1.01 1.04

 PWd 1.00 1.04

 LVIDd 5.06 5.04

 EF (Biplane method of disks), % 52.22 39.6

  Wall motion abnormality, n (%)

   Inferior 5,705 (22) 48 (43)

   Inferolateral 4,681 (18) 46 (41)

   Anterolateral 3,352 (13) 43 (39)

   Anterior 4,495 (18) 46 (41)

   Anteroseptal 2,508 (10) 34 (31)

   Inferoseptal 4,221 (17) 42 (38)

   Apical 5,745 (23) 52 (47)

   Any RWMA 10,722 (42) 66 (59)

A subset of measurements is available for the test cohort. EF, Left ventricular ejection fraction; IQR, interquartile range; IVSd, interventricular 
septal thickness; LVIDd, left ventricular end-diastolic diameter; PWd, posterior wall thickness.
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