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Sequence variation observed in populations of pathogens can be used for important public health and evolutionary geno-

mic analyses, especially outbreak analysis and transmission reconstruction. Identifying this variation is typically achieved by

aligning sequence reads to a reference genome, but this approach is susceptible to reference biases and requires careful fil-

tering of called genotypes. There is a need for tools that can process this growing volume of bacterial genome data, pro-

viding rapid results, but that remain simple so they can be used without highly trained bioinformaticians, expensive data

analysis, and long-term storage and processing of large files. Here we describe split k-mer analysis (SKA2), a method that

supports both reference-free and reference-based mapping to quickly and accurately genotype populations of bacteria us-

ing sequencing reads or genome assemblies. SKA2 is highly accurate for closely related samples, and in outbreak simula-

tions, we show superior variant recall compared with reference-based methods, with no false positives. SKA2 can also

accurately map variants to a reference and be used with recombination detection methods to rapidly reconstruct vertical

evolutionary history. SKA2 is many times faster than comparable methods and can be used to add new genomes to an ex-

isting call set, allowing sequential use without the need to reanalyze entire collections. With an inherent absence of reference

bias, high accuracy, and a robust implementation, SKA2 has the potential to become the tool of choice for genotyping bac-

teria. SKA2 is implemented in Rust and is freely available as open-source software.

[Supplemental material is available for this article.]

Pathogen genomes accumulate sequence variation over time,
and mapping these differences to their genomes has proven in-
valuable for tracking outbreaks and informing public health inter-
ventions (Harris et al. 2010; Gardy et al. 2011; Grad et al. 2012;
Quick et al. 2016). Genetic distances are a powerful additional
source of information for inferring transmission events in out-
breaks, allowing transmission events to be comprehensively ruled
out when epidemiological links may suggest otherwise (Cori et al.
2018; Wymant et al. 2018). In particular, single-nucleotide poly-
morphisms (SNPs) make up a substantial portion of the molecular
events that generate genetic diversity among pathogenic strains.
SNPs are ideal for inferring evolutionary relationships owing to
their high resolution, as well as the availability of tractable molec-
ular models for phylogenetics.

From a practical perspective, the identification of SNPs still re-
lies on complex and computationally intensive pipelines usually
based on read alignment. Making reliable SNP calling quicker
and easier would lower the barriers to routine implementation

for transmission tracing andwould assist academic scientists wish-
ing to quickly investigate populations of pathogens before launch-
ing more involved analyses. As volumes of pathogen genome data
continue to grow (Hunt et al. 2024), tools that can make use of
large populations without requiring excessive disk space or com-
pute time can make the iterative cycle of investigation much
more interactive and accessible. This is particularly the case for
low-resource settings, which often have a high burden of bacterial
diseases. Genome data are large and complex, even more so when
dealing with populations. Unlike tabular data, which are easy to
manipulate and plot, genome data have remained relatively un-
democratic; their use is still mostly restricted to experts with
good computational resources and training.

Identifying SNPs within a population traditionally involves
aligning each sample’s sequencing reads against a reference ge-
nome. This involves multiple algorithms and pieces of software,
so the resulting pipelines are often complex and sensitive to pa-
rameters andmaynot necessarily bewell tuned to every pathogen,
often restricting their usage to users with strong bioinformatics
training and resources. Additionally, the choice of reference ge-
nome, read-alignment pipeline, and its parameters can have a
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significant impact on SNP identification and can influence down-
stream analyses (Pightling et al. 2014; Usongo et al. 2018; Bush
et al. 2020;Walter et al. 2020). Differences in genomic composition
and organization between the input sequences and the chosen ref-
erence can generate misalignments, leading to the identification of
spurious SNPs (Landan andGraur 2009; Farrer et al. 2013; Hurgobin
and Edwards 2017). Without sufficient coverage, this approach is
more likely to call the reference variant, a phenomenon known as
“soft reference bias” (Paten et al. 2017). Alignment pipelines miti-
gate these errors using various alignment and SNP filtering criteria
(e.g., matching alignment strands), excluding certain genomic re-
gions or selecting a reference genome closely related to the strains
of interest (Colquhoun et al. 2021). With typical mapping ap-
proaches, SNPs are totally missed when they occur in genomic re-
gions that are either absent from or too dissimilar to the reference
genome, a phenomenon known as “hard reference bias.”

An alternative approach, and the subject of our work, is to use
subsequence probes, namely, k-mers to probe variation between
samples, which avoids mapping and variant-calling steps entirely.
Odd-length k-mers can be further divided into two smaller frag-
ments surrounding a variable middle base, forming a structure
called “split k-mer” (Gardner and Hall 2013; Harris 2018). In this
structure, the left and right parts of the k-mer serve as local refer-
ence points to map the position of the middle base. If the same
combination of left–right k-mers is found in another strain with
a different middle base, homology between the two middle bases
can be hypothesized and their difference interpreted as a SNP.
The data conversion into split k-mers essentially creates indepen-
dent local references for each genomic position of the strains of in-
terest on the fly, enabling alignment-free and reference-free
comparisons between them. Additionally, the split k-mers can be
mapped to a reference sequence to impose a useful and interpret-
able ordering and coordinate system on the called variants.

Alignment-free algorithms can entirely avoid both forms of
reference bias, so they are well suited to bacterial species in which
these biases have a major effect on accuracy. The split k-mer ap-
proach does not use alignment during construction, so it is robust
to diversity from a reference, either avoiding references entirely as
in ska align or using the reference only as a coordinate system as in
ska map. It is, however, important to note that cases of high diver-
sity among samples being aligned cannot be addressed by SKA:
SNPs spaced closer than the k-mer length will disrupt exact k-
mer matches, which becomes more likely the higher the diver-
gence between a pair of samples.

The split k-mer approach was first introduced through the
kSNP program (Gardner and Hall 2013; Gardner et al. 2015; Hall
and Nisbet 2023). We previously implemented an enhanced ver-
sion of this approach in the SKA (“split k-mer analysis”) software,
hereafter referred to as SKA1. SKA1 offered improvements in effi-
ciency and flexibility and the ability to map detected SNPs to a ref-
erence genome (Harris 2018). SKA1 has since been successfully
employed in genomic studies of a large range of bacterial patho-
gens (Becker et al. 2021; Gladstone et al. 2021; Morris et al.
2022; Chew et al. 2023) and has independently been shown to
be superior to limited-resolution gene-by-gene approaches for
mapping transmission (Maechler et al. 2023). There remains a
need for these variant-calling methods that scale to the size of
modern data sets and produce high-quality results without need-
ing manual testing and adjustment and that avoid the soft and
hard reference bias common in analysis of bacterial populations
(Bush et al. 2020; Colquhoun et al. 2021; Valiente-Mullor et al.
2021).

We have therefore re-engineered and improved our imple-
mentation to develop SKA2, which we designed to be faster,
more flexible, and easier to maintain. SKA2 is intentionally de-
signed as a tool that is quick and easy to use, although it still re-
quires some command line expertise. Academics can use SKA2 to
quickly analyze data and test hypotheses. In public health and
clinical settings, SKA2 can rapidly determine whether an isolate
is from an outbreak quickly and without the need for dedicated
high-performance computing. At the same time, users have access
to a method that is as accurate as the more complex, detailed anal-
yses for the particular question they have.

Methods

Split k-mer encoding

A split k-mer is broadly defined as a sequence of length k, contain-
ing one or more contiguous unspecified (“wildcard”) bases that
can match with any character (Harris 2018). Throughout this pa-
per, we use a more specific definition, which is an odd length k-
mer in which themiddle base is allowed to vary (i.e., the onlywild-
card position is the middle one). Other choices, including having
the wildcard position as the final or first base, would be possible,
but including the base within the k-mer ensures only SNPs can
be tagged, as a variable base at the end may be the start of a larger
genetic event. We therefore opt for the middle base following the
precedent of SKA1. This spaced seed pattern has also been proven
to be optimal for lossless filtering of single-base errors (Kucherov
et al. 2005; Brǐnda 2013). For example, with k=11, the split k–
mer would be XXXXX-XXXXX, where X= {A, C, G, T} and “-” is
any base. The methods used in SKA2 are demonstrated with an
example with k=11 in Figure 1.

To count the split k-mers in an input FASTA file, we read each
new base in turn and use the following commonly used mapping
to two bits: {A, C, G, T} = {00, 01, 11, 10} (Drezen et al. 2014). This
can be efficiently converted into the upper and lower half of the
split k-mer using bitshift and masking operations, rolling through
the input string rather than rebuilding the split k-mer at every po-
sition. Tomatch themachine word size, for k≤31, the known bas-
es are packed into 64 bits; for k≤63, the known bases are packed
into 128 bits. The default is to consider both of the integer repre-
sentations of the k-mer and its reverse complement and keep
only the smallest, which is consistent irrespective of which strand
the k-mer was actually counted on. If the strand is made to be con-
sistent between samples ahead of time (e.g., single-stranded virus-
es or reference sequences), this step can be skipped.

We store themiddle base in a single byte and thereby support
IUPAC uncertainty codes. Any observation of the same split k-mer
contributes equally to the uncertainty in the middle base (i.e., a
single duplicate observation adds that base as a possibility), and
the specific counts of different middle bases are ignored. Because
of the split k-mer necessarily containing an even number of fixed
bases, it is possible for the fixed part of a split k-mer to be its own
reverse complement (a palindrome). In this case, the strand of the
middle base is ambiguous, so we keep both the observed base and
its complement as observations using uncertainty codes.

The fundamental data structurewe use in SKA2 for each input
sequence is a hash map (dictionary), with the split k-mers as the
keys and with their middle bases as the values for the entry. For ex-
ample, using k=11 and ignoring the reverse-complement se-
quences for simplicity, the sequence CTAGCTCACAAGT would
have the dictionary entries {CTAGCCACAA:T; TAGCTACAAG:C,
AGCTCCAAGT:A}.
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Creating split k-mers from short-read sequencing data

When using FASTQ files as input, ska assumes these have been
generated from error-prone short-read sequencing.We implement
two filtering options to prevent sequencing errors from entering
the split k-mer dictionary. The first is a minimum quality score
for reported read quality (default = 20), which can be applied at
the middle base only (“middle”) or across the entire split k-mer
(“strict”, the default).

The second is a minimum observation count (default = 5).
Keeping track of k-mer counts, even in relatively small sequencing
experiments, takes >90% of the runtime, so filtering on the mini-
mum observation count is an important optimization target. For
simulated 150 bp paired-end reads fromMycobacterium tuberculosis
at 60× coverage, a baseline of keeping counts in a dictionary takes
99 sec and uses 2.4 GB of memory. We evaluated numerous alter-
native approaches and found that a two-stage approach, using a
blocked-Bloom filter to remove singletons and then a dictionary
to count k-mers appearing at least twice was the fastest, the least
memory-consuming, and the most accurate insofar as it gave no
false positives or false negatives with the default count threshold.
This is similar to the approach taken by bifrost (Holley andMelsted
2020). The hashes in the Bloom filter are calculated using ntHash
(Mohamadi et al. 2016); the filter uses a word-aligned block with
12 bits per block (∼1% FPR) and is 227 blocks wide (∼200 million
bits) (Qiao et al. 2014). For the same simulated sample, this ap-
proach takes 46 sec and uses 1.6 GB of memory.

To select a suitable minimum k-mer count we implemented a
coveragemodel (ska cov) that fits a mixture model to the count fre-
quency distribution of contiguous k-mers. There are two advantag-
es of a model-based approach over a simpler method such as

choosing the minimum count bin: The model is guaranteed to
have a single globalminimumand can be fit to find a single thresh-
old even with noisy data.

We used an observation model that is a mixture of error k-
mers and real k-mers. The error component probability density is
a Poisson countwith amean of one; the real k-mer probability den-
sity is a Poisson countwith amean of the coverage c. Theirmixture
with w as the proportion of error k-mers has likelihood

L(w, c) =
∏imax

i=1

xi · w · e
−1

i!
+ (1−w) · c

ie−c

i!

( )
,

where the datum xi is the number of split k-mers counted i times.
We fit w and c bymaximizing the likelihood. We do this using the
BFGS algorithm (Fletcher 1970) and deriving analytic expressions

for the gradient
∂L
∂w

,
∂L
∂c

. The count cutoff is selected by picking the

first integer value i for which the responsibility of the non–error
component is greater than the error component. Users can select
either this threshold (whichminimizes the chance of including er-
ror k-mers) or the minimum count bin from the output (which in-
creases sensitivity at low coverages). An example of observed
coverage counts and the k-mermodel fit is shown in Supplemental
Figure 1.

Split k-mer genotyping

To create an alignment, the multiple dictionaries from each sam-
ple are merged into a single dictionary. The values in this diction-
ary are then lists of the middle bases for each sample, using a gap
character “-” if the split k-mer was not observed in that sample.

k

Figure 1. Overview of functions and methods in SKA2. Split k-mers allow matching variant positions, whereas contiguous k-mers mismatch any varia-
tion. ska build creates split k-mer dictionaries from input sequence data. The example shows four sequences that are aligned and on the same strand for
clarity, but in real input data, neither is necessary. Split k-mers are used as keys, and their middle bases are stored in lists. This dictionary is compressed using
snappy tomake split k-mer files (SKFs). ska alignmakes reference-free alignments with no coordinate systembywriting out themiddle bases, applying filters
on the frequency of missing data, constant sites, and ambiguous sites. ska mapmakes reference-based mappings as ALN or VCF, with the same coordinate
system as the reference. In both modes, the conserved sites are also written out but are not shown for clearer visualization. ska cov counts k-mers and fits a
mixture model to find a threshold for count when using reads as input to ska build. ska distance calculates SNP distances andmismatches between samples
by multiplying the middle base matrix by its transpose. The cluster_dists.py script can be run on this distance matrix to make phylogeny, single-linkage
clusters with a provided threshold, and a Microreact visualization. Operations to merge, delete samples and split k-mers, and write out the contents of
SKFs are also implemented but are not shown.
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We implement two operations on this merged dictionary: append
(to add a single sample) andmerge (to combine twomerged dictio-
naries). Using these operations with the same algorithm as a paral-
lel merge sort, it is possible to support parallel construction and
merging. As the merge operation is slower than append, this
only gives a speedup when construction of the initial dictionaries
is slow, namely, with read data. With two threads on a data set of
28 samples with 3.2 million split k-mers, our approach yields a
speedup of 1.7×. The ska build command combines this merge
with the encoding for multiple samples as described above. By do-
ing this, weminimize thememory and disk requirements and sim-
plify the command line use. It is also possible to parallelize the
build over samples using a program such as GNU parallel, followed
by a single merge. This process gives close to a 100% efficient
speedup, at the expense of increasedmemory usage andmore tem-
porary disk space.

In the default, reference-free mode, ska build, each aligned
column is a list of the middle bases in this merged array.
Therefore, creating the output alignment simply consists of writ-
ing the transpose of the dictionary values.Options to filter the sites
are available: a minimum number of observations (i.e., nonmiss-
ing middle bases); remove any ambiguous sites; replace any ambi-
guity with “N”; no constant sites; and allow “-” in otherwise
constant sites (useful for low coverage samples). These columns
are in an arbitrary order, as in the hash table, and do not represent
a physical position in the chromosome.

In the reference-based mode ska map, the algorithm iterates
over the split-k-mers in the input reference sequence, searching
for each one in themerged dictionary. If amatch is found, themid-
dle base at that position is written; otherwise, a missing base “-” is
output. Extra logic is needed to write the matching parts of the
split k-mers, keep track of multiple chromosomes, and mask
mapped but repeated split k-mers with N (if requested by the
user). We have implemented rigorous unit testing to ensure this
process works correctly. Output as either FASTA or VCF is
supported.

Split k-mer files and their supported operations

We save split k-mer files (SKFs) to disk for reuse, addition, or alter-
native filtering. These consist of the list of split k-mer keys, an array
of themiddle bases, the count of samples inwhich each split-k-mer
has occurred, the sample names, and some metadata (k-mer size,
version, andnumber of bits used for k-mer keys). To generate these,
we serialize the split k-mer dictionaries and compress them using
snappy, which adds minimal time to read/write operations and
achieves a compression ratio of ∼10×. Using SKFs, we support
merging with another SKF (ska merge), deleting named samples
(ska delete), and deleting specified split k-mers or refiltering the
split k-mers (ska weed). The number of k-mers command (ska nk)
can be used to output the contents of SKFs to the terminal, includ-
ing the total number of split k-mers and the split k-mer observed in
each sample, which can be a useful quality-control metric (e.g., el-
evated in the case of contamination). The same command can op-
tionally output, in text form, the split k-mer sequences and the
middle bases of all samples, which can be used for processing in
other bioinformatic tools.

Sample distances and clustering

We implemented the ska distance command, which iterates over
every pair of samples to calculate the number of SNPs different be-
tween the samples. For eachmatching split k-mer between a pair of
samples, if the middle base matches, then zero is added to this dis-
tance; otherwise, one is added to the distance. For ambiguousmid-

dle bases, a probability vector is set using the IUPAC codes, with
the probability equally divided among possible middle bases. For
example, if a sample has S as a middle base (either a C or a G),
we give a 50% weight to each one. The probability of a match be-
tween the samples at that split k-mer is then given by multiplying
the probability vectors of each sample. For example, if two samples
had the middle bases S and Y, this would give corresponding vec-
tors for A, C, G, T, (0, 0.5, 0.5, 0) and (0, 0.5, 0, 0.5), yielding a
match probability of 0.25. For assemblies and small numbers of re-
peats, this is reasonable but will be less effective than a full variant
caller that tracks the exact count and quality scores of each obser-
vation, rather than dividing the probability equally between the
possible bases. The number of missing sites is also reported as mis-
matches. To fully replicate and extend the functionality of SKA1,
we alsowrote a downstream Python script that clusters samples us-
ing single linkage at a given SNP threshold,makes a neighbor-join-
ing tree with RapidNJ (Simonsen et al. 2008), and creates a
visualization of the clusters, tree, and single-linkage graph. This
is displayed interactively using Microreact (Argimón et al. 2016);
an example is shown in Supplemental Figure 2.

Comparison to SKA1

We designed SKA2 so that the majority of SKA1 functions would
also be available, but a full list of differences is given in the software
documentation. The code runs automated tests and ensures at least
90% test coverage of the code. Each version is automatically com-
piled and so can be installed as a static binary, using the Rust tool-
chain to compile locally, or via Bioconda. All tests in this paper
used version 0.3.5.

Some features of SKA1 were not implemented in SKA2. The
maximum k-mer size is 63 (to fit into a 128-bit integer, the maxi-
mum native size supported by Rust) rather than unlimited; our
testing showed that longer k-mer sizes did not yield improvements
(Fig. 2). The annotate function was not implemented, as its func-
tionality is covered by BEDTools (Quinlan and Hall 2010). The
unique function can be parsed from the output of the dictionary
and was not made into a separate function. The type function
has been superseded by k-mer tools such as StringMLST (Gupta
et al. 2017) and BioHansel (Labbé et al. 2021).

SKA1has the option, through skamerge, to invert the keys and
values in the merged dictionary. In this format, each unique pat-
tern ofmiddle bases appears only once in the keys; the correspond-
ing split k-mers, in a vector of the values. For closely related
samples, this is effective at reducing redundancy; the above exam-
ple has only 1163 unique patterns from 3264141 split k-mers, so
the output compresses to 34 MB. We did not implement this in
SKA2 as the gain over the current compression approach ismargin-
al and increases processing time.

Split k-mer simulations

We simulated a mutated sequence along a single branch using the
Gillespie algorithm (Gillespie 1977), following a similar approach
to that taken in phyloSim (Sipos et al. 2011). We used a GTR+
Gamma+ Invar rate model plus short indels, with parameters pre-
viously estimated for Streptococcus pneumoniae (Lees et al. 2018), us-
ing reference ATCC 7000669 (Spn23F) as the starting sequence
(Croucher Vernikos et al. 2011b). We tracked the exact expected
split k-mers for each substitution in the simulation and calculated
power as the proportion of these detected by running ska align be-
tween the starting sequence and the mutated sequence. We calcu-
lated power requiring an exact match of the split k-mer and the
correct middle base, as well as also a more relaxed mode that just
checks the flanking sequence, tolerating ambiguity at repeat
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sequences. Indels are ignored in the power calculation but may re-
duce power if they interrupt a split k-mer.

Outbreak simulations

Wesimulated outbreak clusters of S. pneumoniae andM. tuberculosis
using Transphylo v1.4.10 (Didelot et al. 2017) with simulation pa-
rameters provided in the SupplementalMethods. Starting from the
root genomes listed in Supplemental Table 1, we then simulated
sets of mutations along these phylogenies using phastSim (De
Maio et al. 2022). We choose a mutation rate of 10 and one muta-
tion per genome per year for S. pneumoniae andM. tuberculosis, re-
spectively, which correspond to upper estimates of themutational
rate of these two species (Chewapreecha et al. 2014;Menardo et al.
2019). For S. pneumoniae, we also simulated indels of 100 bp at a
rate of 0.5 indel per year to mimic accessory genome changes as
in (Lees et al. 2019). phastSim command lines are provided in
the Supplemental Methods. SNPs and indels were then randomly
inserted in genome assemblies using a custom Python script to re-
create the genome of each sample composing the outbreaks.We fi-
nally simulated Illumina HiSeq 2500 paired-end sequencing reads
of 150 bp from the modified genome assemblies at a 60× coverage
using ART (Huang et al. 2012).

We used the variant-calling pipelines Snippy v4.6.0 (https://
github.com/tseemann/snippy) and BactSNP v1.1.0 (Yoshimura
et al. 2019), both with default parameters. The command lines
of the “BWA+BCFtools” read-alignment pipeline are provided in
the Supplemental Methods. Briefly, reads were aligned using
BWA-MEM v0.7.17 (Li 2013), SNPs were called using BCFtools
v1.10.2 (Li 2011) and then filtered using the following criteria: a
minimum of 10× coverage, supported by at least one read forward
and one read reverse, and aminimumallele frequency of 0.75. SNP
alignments obtained from all read-alignment pipelines were final-
ly trimmed to only retain positions with a maximum of 10%miss-
ing data, considering degenerate nucleotides as missing. Runtime
and memory consumption were measured on an Intel Xeon plat-
inum 8360Y CPU with 10 GB RAM. The parameters and com-
mands used in the simulations are listed in the Supplemental
Methods.

False-positive and false-negative SNPswere identified by com-
paring the positions of the inferred SNP alignments to those of the

expected SNP alignment. Phylogenetic analyses were performed
using IQtree2 v2.2.2.7 (Minh et al. 2020) under the GTR+ASC
model and near-zero branches collapsed into polytomies
(“‐‐polytomy” option). Distances between phylogenetic trees
were computed using the R package TreeDist v2.7.0 (Smith 2022).

Recombination analysis

We used ska build, with both k=17 and k=63, followed by ska map
with options tomask repeats and any ambiguous bases to create an
alignment of 240 samples against the Spn23F reference (Croucher
et al. 2009). We used Gubbins v3.3.1 (Croucher et al. 2015), turn-
ing off gap filtering (‐‐filter-percentage 100.0), with otherwise de-
fault parameters (no outgroup, RAxML as tree builder, five
iterations). We compared the density of the recombinations across
the genome to the originally published analysis using Phandango
(Hadfield et al. 2018), which includes these data as a default exam-
ple set.

Genome data

Twenty-eight Listeria monocytogenes samples from a study of bacte-
rial meningitis, taken from the largest PopPUNK cluster, were used
for testing and comparison with SKA1 (Kremer et al. 2017; Lees
et al. 2018, 2019). The 288 E. coli genome assemblies used for
the online analyses were extracted from the GenomeTrackr data-
base (Allard et al. 2016), and all correspond to a single strain in
the PopPUNK database (Lees et al. 2019). Their accession numbers
are provided in Supplemental Table 2. For the Gubbins analyses,
240 S. pneumoniae genomes from the PMEN1 strain were used
(Croucher et al. 2011a).

Results

SKA2 can be used to genotype SNPs in sets of populations using ska
align. These variants are unordered so are only suitable for con-
structing phylogenies or transmission detection. The ska distance
tool can also be used to create possible transmission clusters by ap-
plying a SNP cutoff. In outbreak settings, this mode is highly accu-
rate and can be used rapidly with either or both reads (60×
speedup) and assembly data (190× speedup) as input. Despite

Figure 2. Average recall of SKA2 in simulations across increasing sequence divergence between a pair of sequences (πn or SNPs per site). Lines show recall
using different split k-mer lengths k. (Left) Recall when allowing ambiguous bases, showing typical divergence thresholds used to define species, strain, and
lineage boundaries. (Right) Recall when requiring exact matches of the middle base, with inset showing recall over the within-lineage range.
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the simple approach to SNP genotyping, in its primary use case of
outbreak settings, it outperforms traditional read mapping ap-
proaches that dominate this type of analysis. In the first section,
we show that this holds within related bacterial samples (corre-
sponding to a typical strain or sequence-type cluster definition),
and then in the second section, we use simulated outbreak data
to compare read mapping approaches. This approach also avoids
the need for selection of an appropriate reference, which requires
expertise, and introduces hard- and soft-reference bias, which low-
ers the sensitivity of variant calling.

The mapping approach of ska map gives mapped variants a
chromosome coordinate. Although in small sample sets of possible
transmission this has less power than ska align, mapping has ad-
vantages in which the order and reference-based functional inter-
pretation of variants needs to be kept, whichwe demonstrate in an
example for recombination detection in the third section below.
For large sample sets in which diversity may be larger, ska map re-
mains scalable and robust.

Tools to investigate shared k-mer content ska nk on a per-sam-
ple basis are useful quality control and can rapidly determine the
diversity of a population. Using ska weed to remove or keep chosen
sequences can also rapidly be used to detect the presence of genetic
elements such as transposons. In the final section, we show these
methods can be used to create scalable SKFs formappingwith large
and continuously growing sample collections.

Compared with SKA1, SKA2 showed improved runtimes and
smaller file sizes, a major objective of our reimplementation. For a
3 Mb bacterial assembly (L. monocytogenes), the build process of
SKA2 takes 0.1 sec on average, producing a SKF 16 MB in size. In
SKA1, the process takes 2.8 sec and produces a SKF 30 MB in size.
For 28 samples of L. monocytogenes from the same strain, the SKF
is 38 MB and takes 5 sec to create. In SKA1, these files are 870
MB and take 194 sec to create and merge (∼40× speedup). For a
set of simulated reads, SKA2 build takes 46 sec and uses 1.4 GB
of memory. In SKA1, this takes 120 sec (∼2.5× speedup) and 0.6
GB memory. A major advantage of SKA2 over SKA1 is therefore
the optimized and streamlined combined build and merge step,
as well as the resulting smaller files. This increase in speed is owing
to a faster dictionary implementation, optimized file parsing, and
use of a faster serialization process. Parallelization is not directly
supported in SKA1.

Split k-mers accurately and quickly genotype

closely related samples

Before using SKA2 to analyze bacterial populations, we first used
two-sample simulations to evaluate the power and limitations of
the split k-mer genotyping approach.We first note thatmore com-
plex variation, such as insertions, deletions (indels), rearrange-
ments, or copy number variation, is ignored by SKA2 entirely.
However, as typically only SNP calls are used in reconstructing evo-
lutionary history (Lees et al. 2018), owing to their mostly vertical
inheritance, and the existence of corresponding effective models
of molecular evolution, we focus on these variants entirely.

As SKA2 is alignment-free, it is unaffected by soft reference
bias (more likely to call the reference base) (Colquhoun et al.
2021). ska align is also robust to changes in sequence content, so
it is unaffected by hard reference bias (missing accessory genes).
However, split k-mers can still miss SNP variant calls, causing false
negatives, for the following reasons:

• When using assemblies as input, variants closer than half the
split k-mer length to a chromosome or contig boundary cause

the flanking bases to be too short to be enumerated in the dic-
tionary. When using reads as input, a similar problem occurs
at the ends in the case of very low coverage data.

• Two or more SNPs within the half k-mer arm length (i.e., (k−1)/
2) of one another cause a mismatch in the flanking bases.

• Similarly, indels or rearrangements can interrupt split k-mers.
• Repeated split k-mers cannot be uniquely mapped, so their mid-
dle bases contain ambiguity from all observations of the split k-
mer.

We also note that doubly (or more) mutated sites, occurring
more frequently at larger distances, only count the most recent
variant. In simulations, it is possible to detect this as an error
from the reference sequence, but it is not an issuewith variant-call-
ing methods themselves.

Unremoved sequencing errors in reads (owing to poor filter-
ing) or assembly errors may introduce false-positive variant calls
prior to input to the SKA2 data structure, but split k-mers them-
selves introduce effectively zero further false-positive variant calls.
We therefore focused on false negatives here. False positives are as-
sessed further in the outbreak simulations below.

We used simulations to evaluate the relative importance of
these effects across evolutionary distances (Fig. 2, left panel). We
found that themajor effect on calling accuracy was variants occur-
ring closer than the k-mer distance. Indel rate had a negligible ef-
fect on power, as it was no more likely to interrupt a split k-mer
than a nearby SNP (Supplemental Fig. 3). SKA is intended to be
used for closely related samples and shows good power in this
range. Within a lineage (divergence≲0.0005 SNPs per site, in
some species referred to as a clone), the recall is >99%. Outbreaks
are often much more closely related than this, as many species ac-
quire only a few SNPs per year (Duchêne et al. 2016), showing that
SKA2 is a reliable genotyping tool for this purpose.

Within a bacterial strain (divergence≲0.005 SNPs per site),
this drops slightly to ∼90%, and across an entire bacterial species
(divergence≳0.05 SNPs per site), the recall drops further, to be-
tween 10% and 50%. When ignoring repeats, defined here as
any split k-mer with multiple observations, shorter k-mers had
consistently higher power as they are proportionally less suscepti-
ble to multiple close SNPs. We therefore recommend that SKA2 is
used only within bacterial strains and, for this purpose, with a
short k-mer length.

Themain effect on accuracy is the resolution of repeats (Fig. 2,
right panel), althoughwe note that this is a strict criterion, as most
phylogenetic software allows uncertainty in alignments.
Requiring exactly resolved repeats results in an average recall to
∼95%, although using longer k-mers improves this up to ∼98%.
Split k-mers show the archetypal sensitivity/specificity tradeoff
for length: At small divergences, longer split k-mers are preferred
as they are more specific, owing to uniquely mapping more se-
quences by spanning shorter repeats; at larger divergences, smaller
split k-mers are preferred as they are more sensitive, owing tomap-
ping more nearby SNPs.

SKA2 outperforms read-mapping approaches in simulated

outbreak analyses

Having confirmed that split k-mers aremost effective for closely re-
lated examples,wenext evaluated the performance of SKA2 in sim-
ulated outbreaks, comparing SKA2 to traditional read-alignment
methods. We analyzed simulated outbreaks of S. pneumoniae (12
samples, 87 SNPs) and M. tuberculosis (30 samples, 38 SNPs).
Each simulated outbreak was replicated five times, leading to 20

Derelle et al.

1666 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.279449.124/-/DC1


simulated outbreaks per species. We generated sequences at the
tips of each expected phylogeny from the transmission series
and then created simulated short-read sequences from this truth
set of full-length sequences. We tested the effect of reference bias
by using references of increasing divergence from the root genome
(ATCC_700669 and H37Rv for S. pneumoniae and M. tuberculosis,
respectively). We compared SKA2 (at k = 31) to the popular read-
alignment tool Snippy, the hybrid assembly mapping pipeline
BactSNP, and a custom-made SNP-calling pipeline referred hereaf-
ter as BWA+BCFtools. We used SKA2 in both reference-free mode
(align) and its reference-based mode (map).

For S. pneumoniae outbreaks, read-alignment pipelines
showed increasing numbers of false-negative SNPs whenmore dis-
tant outbreaks to the reference genome were analyzed, highlight-
ing the impact of differential genome composition between the
analyzed outbreaks and the reference genome (Fig. 3). In contrast,
ska align showed relatively stable numbers of missed SNPs, regard-
less of the origin of the outbreak: SKA2 missed similar numbers of
SNPs to read-alignment pipelines when the analyzed outbreak cor-
responds to the reference genome (here from the strain ATCC
700669), but it missed significantly fewer when outbreaks isolates
were much less similar to the reference genome. None of the SNP
inference methods produced false-positive SNP when outbreaks
derived from the ATCC 700669 reference genome were analyzed.
However, Snippy, BWA+BCFtools, and BactSNP produced on av-
erage 89.1, 6.4, and 0.2 false-positive SNPs, respectively, when
more distant outbreaks were analyzed. The low specificity of
Snippy has already been characterized in benchmark studies
(Yoshimura et al. 2019; Falconer et al. 2022). In contrast, SKA2
did not produce any false-positive SNPs in any of these analyses.
We then compared the phylogenetic trees obtained from all these
SNP alignments to the tree obtained from the set of simulated
SNPs. We used the clustering information distance from the
TreeDist package (Smith 2020), which is a measure of how similar-

ly two trees group tips. Except for outbreaks derived from the
ATCC 700669 genome, the phylogenetic trees obtained from the
BactSNP and SKA2 SNPs were found to be more similar to the ex-
pected tree than those derived from SNPs inferred by Snippy and
the BWA+BCFtools read-alignment pipeline.

For M. tuberculosis, which is characterized by a highly con-
served genome across lineages (Comas et al. 2013; Gagneux
2018), SKA2 still demonstrated similar or superior performance
compared with read-alignment methods, as illustrated in Figure
3. The numbers of false-negative SNPs were found to be similar be-
tween all methods, and BactSNP and SKA2 were the only methods
to not produce any false-positive SNPs (on average, 7.6 and 0.1
false-positive SNPs generated by Snippy and BWA+BCFtools in
non-H27Rv outbreaks). The phylogenetic trees obtained from
BWA+BCFtools, BactSNP, and SKA2 SNPswere all found to be sim-
ilarly distant to the expected tree, whereas those obtained from
SNPs inferred by Snippy were found to be more distant.

Using ska map gives very low numbers of false positives. We
investigated the small number of false positives and found them
to be present in tandem repeats. In cases in which the flanks of a
split k-mer can bemapped inmultiple overlapping places, it is am-
biguous whether the mapped base should be overwritten by the
conserved flank or the middle base (for consistency of reporting,
the code always chooses the latter option). Filtering on repeat re-
gions removes these false positives but increases false negatives.
For a purely phylogenetic or transmission analysis, the lower recall
(which drops further withmore distant references) is less desirable.
However, when using many samples, the ability to map them one
at a time can still be useful; with ska align, the entire intersection of
split k-mers must always be kept, which leads to large memory use
with diverse samples to keep low-frequency (and typically unused)
split k-mers. In such sample sets, using the default of 80%presence
can also lead to loss of k-mers in ska align, which can be usefully
retained by ska map.

We repeated the SKA2 analyses to as-
sess the impact of split k-mer size on its
SNP detection. Using k-mer sizes ranging
from 21 to 61 nucleotides, in increments
of 10, we observed similar numbers of
identified SNPs between k=21 and k=51
for S. pneumoniae, followed by a sharp
decrease at k=61 (Supplemental Fig. 4).
ForM. tuberculosis, we observed a slight in-
crease in the number of identified SNPs
from k=21 and k=31 followed by a pla-
teau and again a sharp decrease at k=61
(Supplemental Fig. 4). Then, we evaluated
the performance of SKA2 in low sequence
coverage settings, from 60× coverage used
in the previous set of analyses down to
10× coverage, in decrements of 10.We ob-
served a sharp decrease in the sensitivity
of SKA2 at 20× coveragewhen filtering set-
tings are not adjusted (average sensitivity
of 0.93 to 0.43 and of 0.96 to 0.31 for
the S. pneumoniae and M. tuberculosis out-
breaks, respectively) (Supplemental Fig.
5). We used ska cov to determine a more
sensitive minimum count threshold
(Supplemental Table 3). This resulted in
changing from the default of five to three
and restored the sensitivity of SKA2 to

Figure 3. Results obtained from the analyses of simulated outbreaks showing recall (false negatives),
false positives, and clustering information distance from the four different tools. “map” and “align” refer
to the SKA2 functions used to generate SNP alignments. References of increasing distance (darker blue)
from the source of the outbreak were used to evaluate reference bias. The error bars in the CI distance
plots correspond to the 95% confidence interval calculated from 10 values (two phylogenies were ob-
tained from each SNP alignment using two independent maximum-likelihood runs). The numbers
4.8, 3, and 1 in the legend correspond to the names of M. tuberculosis lineages.
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0.89 and 0.93 at 20× coverage for the S. pneumoniae and M. tubercu-
losis outbreaks, respectively, which corresponds to sensitivity levels
obtained by Snippy at the same coverage. These analyses also re-
vealed a small rate of false-positive SNPs inferred by SKA2 at 30×
and lower coverages owing to unfiltered sequencing errors, al-
though, on average, fewer than 0.5 false-positive SNPs per simulated
outbreak (Supplemental Fig. 5). These spurious SNPs might be
caused by differential distribution among samples of split-k-mers
corresponding to duplicated genomic regions owing to stochastic
variations of coverage.

We also recorded runtimes andmaximummemory consump-
tion of SKA2, SKA1, and read-alignment pipelines in these out-
break analyses. SKA2 was found to be by far the fastest method:
two- to fourfold faster than SKA1, 14- to 20-fold faster than the
read-alignment pipelines Snippy and BWA+BCFtools, and 60-
fold faster than the hybrid pipeline BactSNP (Table 1). Despite
the necessity to store all split k-mers in memory, SKA2 also dis-
played modest maximum memory consumption values, which
were similar to those observedwith SKA1 and other variant-calling
pipelines. Finally, the SKFs produced by SKA2 were, on average,
only 24 and 53 MB in size per outbreak for S. pneumoniae and M.
tuberculosis, respectively (31 and 66 MB for SKA1 output files),
whereas the BAM files produced by the read-alignment pipelines
were, on average, 91 and 185 MB in size per sample for S. pneumo-
niae andM. tuberculosis, respectively. SKA2 disk usagewas therefore
found to be 40–100 times lower than traditional read-alignment.

With much longer genomes, such as those from eukaryotes,
SKA2’s resource use has linear scaling with the number of k-
mers, which is a function of both genome length and diversity.
For example, to align two typical human genomes (3 Gb length,
πn =0.001 SNP density) requires 34 min CPU, 230 GB memory,
and a 9 GB disk for the SKF. The memory use and requirement
for assembled genomes as input thereforemake SKA2 a less appeal-
ing choice for these organisms.

We finally recorded runtimes and maximummemory usages
of SKA2 using a real-world data set composed of FASTQ files from
100 isolates of S. pneumoniae belonging to the IC1 cluster
(Croucher et al. 2014). By repeating the analyses (ska build at k=
31 and ska align functions) in increments of 10 isolates, we found
that SKA2 runtimes increased nearly linearly with the number of
isolates (Fig. 4). In contrast, and as expected, its maximummemo-
ry usage was found to be dependent on the total number of split k-
mers extracted from the sets of isolates.

SKA2’s map can be used to effectively detect recombination

with assemblies as input

We show above that for phylogenetics, using ska align is superior
to the reference-based approach of ska map. However, the all-ver-

sus-one approach of ska map offers several key advantages: a
unique comparison point based on which all variants are charac-
terized, some functional interpretation by using the annotation
of the reference, a well-defined coordinate system, computational
scalability that can be trivially parallelized, and flexibility as new
samples can be added to an already processed data set.

For some purposes, ordering and spacing variants along the
chromosome are necessary. These are typically for uses in which
the actual physical molecule structure is important tomaintain lo-
cal linkage disequilibrium. One example is recombination detec-
tion, which typically finds windows of locally elevated variant
density, which are more likely the result of transfer from a relative
than from local hypermutation (Croucher et al. 2015; Didelot and
Wilson 2015; Mostowy et al. 2017). Another is genome-wide asso-
ciation studies, in which local linkage disequilibrium is used to
define distinct signals (Lees et al. 2016).

Anecdotally, a popular use of SKA1 has been to create ordered
SNP alignments against a reference genome for use in recombina-
tion detection. Thismode of input generation is also officially sup-
ported in the Gubbins package (Croucher et al. 2015). Given that a
limitation of split k-mers is that SNPs closer than the k-mer length
will be missed, we tested that this is still sufficient to identify re-
gions of elevated SNP density and produce correct results with re-
combination detection methods,

Using 240 genome assemblies as input, SKA2 can rapidly cre-
ate an input alignment against a reference chromosome (56 sec,
3.6 GB RAM), ∼190× faster than using snippy on all samples
(178 min). Using this as the input to Gubbins gives similar recom-
bination signals to the original results (Supplemental Fig. 6),
which were based on short-read mapping (similar to the BWA+
BCFtools pipeline). As in the original study, the major peaks span-
ning prophage φMM1-2008, the mobile element ICESpn23FST81,
and the cps operon were all detected. The only major locus not de-
tected was the psrP gene. This gene mostly consists of short two to
three amino acid serine-containing repeats, and hence, this low
complexity repeat sequence that is longer than the split k-mer
length cannot be mapped by SKA2 (Fig. 2). This repeat is longer
than 63 bases, so even using the maximum k=63 is unable to re-
cover these SNPs.

Split k-mers can be filtered to allow “online” outbreak

analysis with large numbers of samples

Noting the computational efficiency of SKA2, in particularwith re-
spect to file sizes, we then tested the suitability of SKA2 for “on-
line” (or serial) analysis in which genomes are added to the
existing in batches, rather than the entire data set being reana-
lyzed. This is the dominant mode by which genome data now ar-
rive for bacterial pathogens, and supporting analysis in this

Table 1. Runtimes obtained on one CPU and maximum memory consumption in the analyses of simulated outbreaks

S. pneumoniae (n = 12) M. tuberculosis (n = 30)

Runtime (min) Memory (MB) Runtime (min) Memory (MB)

BactSNP 59.6 1955 330.1 2059

Snippy 20.1 338 90.9 1434

BWA+BCFtools 19.8 323 77.4 656

SKA1 align 2.3 424 20.1 865

SKA2 align 1.0 443 5.5 893

Values represent averages over 20 replicates. (n) Number of samples per outbreak. The lowest values are highlighted in bold.
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manner will lower the computational burden, which is particular-
ly relevant for democratizing access to rapid outbreak analysis. We
also consider these results in the context of making “reference”
SKFs available on a website (such as pathogen.watch) so users
can use them to contextualize their new genomes. To be used for
interactive internet tools, file sizes ≲10 MB are desirable. To effi-
ciently store large amounts of data, we propose reducing the size
of SKFs by filtering split k-mers using the ska weed function.
Here, we tested the power lost using an online approach by using
iterative analyses of 288 Escherichia coli genome assemblies, in
which the SKF generated from the new genomes is merged to
the previous SKF and then filtered to remove constant or rare split
k-mers. In absence of ground truth, we considered in these analy-
ses the numbers of SNPs obtained from standard SKA2 analyses
(i.e., without split-k-mer filtering) as reference.

Initially, we added E. coli genome assemblies in random
batches of 10, employing a split k-mer filtering based on consis-
tently missing split k-mers (i.e., removing any rare split k-mers; pa-

rameter min-freq set to 0.8). The number
of SNPs found at each iteration closely
matched the results obtained through
standard SKA2 analyses (with a maxi-
mum difference of 13 SNPs out of
16,905 SNPs at 100 genomes). Simulta-
neously, the size of SKFs was substan-
tially reduced, ranging from twofold to
6.4-fold reductions after filtering in the
first and last iterations, respectively (Fig.
5), reaching a file size of 212 MB for 288
genomes. For comparison, the 288 un-
processed and gzipped genome files rep-
resent a combined 454 MB of data.
Similar outcomes were observed when
adding genomes in batches of 50 and

when starting with a data set of 200 or 250 genomes followed by
additions in batches of five or one. These analyses affirm that
SKA2 would be suitable for use in an online mode and even suit-
able for use in a web browser tool, as it can proficiently store sub-
stantial genomic data with negligible information loss, facilitating
the analysis of ongoing outbreaks.

We repeated all these analyses using a stricter split k-mer fil-
tering based on the presence–absence of SNPs, removing any cons-
tant or gap only sites (filters no-ambig-or-const and no-gap-only-
sites).We observed amore substantial reduction in SKF sizes (rang-
ing from 100-fold to 400-fold size reductions across all analyses),
reaching 12–14 MB for 288 genomes, but the numbers of missed
SNPs were significant and increased in each iteration (Fig. 5).
Consequently, the filtering based on SNPs would only be suitable
for the analysis, storage, and sharing of final data sets, for example
fixed SNP-based typing schemes (Hawkey et al. 2021).

We also compared the pairwise SNP distances calculated by
ska distance between the default SKA2 analysis and both online
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Figure 4. Empirical scaling of SKA2 computational efficiency using increasing block sizes from 100 iso-
lates of the S. pneumoniae IC1 cluster. The numbers of split k-mers represent the total numbers of split
k-mers contained across all samples.

Figure 5. Online analyses of E.coli genomes. The three different genome addition strategies mentioned in the main text are displayed from left to right.
Units of the x-axes (number of genomes) are identical across the six plots, and units of the y-axes (number of SNPs and SKF sizes) are identical within plots on
the same line. “k-mer-based filtering” refers to the filtering based on missing split-k-mers, and “SNP-based filtering” refers to the filtering based on pres-
ence-absence of SNPs. Points corresponding to the number of SNPs (upper panels) obtained from default SKA2 analyses and after k-mer-based filtering
were jittered to avoid overlapping.
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modes at the final step with all 288 samples (Supplemental Fig. 7).
This confirmed that SNP-based filtering loses too much informa-
tion and biases distances downward as SNPs are systematically
missed. k-mer-based filtering showed good correlation with analy-
sis of the full data set, with results improving when the initial
batch size was larger.

Discussion

Manypopular tools in bioinformatics succeed by doing something
relatively simple but doing it well. SKA2 uses exact matching of k-
mers, which has been the focus of intense optimization efforts in
bioinformatics, to create SNP alignments without explicitly per-
forming any alignment. This is very similar to the pseudoalign-
ment approach which has become the dominant form of
analysis of RNA-seq data (Bray et al. 2016) and for representing
population data (Holley and Melsted 2020; Alanko et al. 2023;
Brǐnda et al. 2023). SKA2 has very similar benefits: speed, ease of
use, robustness to structural variation, and reduced reference bias.

In analyses of simulated outbreaks, in which samples were
closely related and thus most suited for split k-mer analysis,
SKA2 showed higher sensitivity compared with mapping ap-
proaches that used distant strains as reference genomes. Another
major advantage of SKA2 over classical alignment-based methods
was that it avoided reference bias or sensitivity to parameters, gen-
erating no false positives. SKA2was also faster than othermethods,
with runtimes more than an order of magnitude lower than those
of read-alignment pipelines and representing at least a twofold im-
provement over SKA1.We further showed that iterative filtering of
split k-mers represents a promising approach to track variation
when streaming input samples, a potential solution for storing
and analyzing the ever-growing amount of publicly available bac-
terial genome data.

The high accuracy and speed of SKA2 are complemented by
its user-friendly workflow, requiring only two commands for stan-
dard operation: one for building split-k-mer indexes and the other
for aligning split-k-mers. Additionally, akin to other alignment-
freemethods, outbreak investigations conducted using SKA2 elim-
inate the need for analysis steps such as manually masking low-
complexity genomic regions (e.g., PE-PPE genes in M. tuberculosis)
and expert selection of closely related reference genomes. Another
practical advantage of SKA2 is the ability to directly and efficiently
work with assembly rather than read data or to even combine the
two. As sequence assemblies are becoming an increasingly popular
archival form for bacterial genomes (Blackwell et al. 2021; Brǐnda
et al. 2023; Hunt et al. 2024), they are more convenient for
many users.

Algorithm scalability is of increasing importance to users.
With hundreds of thousands of potential comparator genomes
in the public domain (Hunt et al. 2024), users cannot afford to
“just wait” for computation to complete, and many who would
benefit from pathogen genomics do not have easy access to
high-performance computing servers. This is also important for
public health pathogen genomics, in which quick-turnaround
time is essential to allow genomic data to be included in rapid pub-
lic health decision making. Fast, simple methods that can run on
regular laptops are particularly important in resource-limited set-
tings where there is a lack of compute and skilled bioinformati-
cians to allow local genomic epidemiology in countries where
most infectious disease outbreaks and burden are concentrated.

There is a clear potential to further develop SKA2 to accom-
modate emerging sequencing technologies. Although we did not

test SKA2’s performance using sequencing reads with high error
rates (e.g., Oxford Nanopore sequencing data), we would expect
the current SKA2 error filtering to perform relatively poorly on
such noisy data. However, assembling these data for use as input
should still be suitable (Sanderson et al. 2023), and it is also expect-
ed that advances in this technologymean that high error rate reads
will likely only be an issue in the short term.We also only looked at
data from single colony picks, but the identification and analysis
of samples composed of a mixture of strains from plate sweeps
(Mäklin et al. 2020, 2021) or metagenomic samples are becoming
more common (Richardson et al. 2023). SKA2 currently only saves
the observed middle bases of each split k-mer, but a future version
could also save their abundances, information that can potentially
be used to deconvolute such mixtures. Also emerging are metage-
nome-assembled genomes (MAGs), which are typically more in-
complete and contaminated than are colony pick-generated
assemblies (Bickhart et al. 2022).

SKA2 remains under active development. Among future im-
provements, better compression of the output files in SKA2 is pos-
sible, which will be important when tracking variation in very
large strain collections. Future versions of SKA2 will use a sparse
and phylogenetically compressed (Brǐnda et al. 2023) data struc-
ture for the variant array. With many constant sites, this would
be expected to yield an improvement and be usable during con-
struction, too, saving memory and disk usage and making paralle-
lization more effective. Various data structures for compressing k-
mers also exist and could be applied to the lists of front and back
halves of the split k-mers (Rahman et al. 2021; Brǐnda et al.
2023). Runtimes of analyses based on sequencing reads could
also be further reduced by limiting the number of reads to be ana-
lyzed using a stopping criterion as implemented in other tools
(Peterlongo et al. 2017; Derelle et al. 2023) and using a cache-opti-
mized filter (Holley and Melsted 2020). Finally, the inference of
variants by SKA2 is limited to SNPs, and indels or structural vari-
ants cannot be detected using the current implementation. Such
variants could be inferred by repeating the split k-mer analysis at
various split sizes and matching flanking bases across a middle re-
gion of various lengths, similar to haplotyping approaches
(Garrison and Marth 2012), or by using split k-mers to create a
de Bruijn graph as employed in other alignment-free variant-call-
ing methods (Iqbal et al. 2013; Fang et al. 2016; Peterlongo et al.
2017). Finally, SKA2’s execution pipeline, parameters, and down-
streamprograms still require bioinformatics training. In the future,
we hope to relax this requirement further with a web-browser-ex-
ecutable version of the code.

We originally released SKA in 2018 and SKA2 in 2022, so we
have had time towork with users to improve testing, address unex-
pected results, and identify edge cases. Creating reliable results
with well-chosen defaults, offering the right amount of flexibility
in the interface, good documentation, and long-term mainte-
nance potential are also important to users, an important focus
of our work that has only been touched upon in this paper. This
has culminated in a high-quality implementation that we are con-
fidentwill continue to deliver accurate results as genomic sequenc-
ing of bacteria continues to grow.

Software availability

SKA2 is implemented in Rust and is freely availablewith anApache
2.0 license at GitHub (https://github.com/bacpop/ska.rust) and as
Supplemental Code. Installation is also possible via crates.io,
Bioconda, or directly from source. Documentation, including
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API code for reuse in other software, is available at https://docs.rs/
ska/latest/ska/. A tutorial is available at https://www.bacpop.org/
guides/building_trees_with_ska/. Analysis code used to generate
the figures in the paper is available at GitHub (https://github
.com/bacpop/ska_simulations and https://github.com/rderelle/
compareALI) and as Supplemental Code.
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