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Cis-regulatory elements (CREs), such as promoters and enhancers, are DNA sequences that regulate the expression of genes.

The activity of a CRE is influenced by the order, composition, and spacing of sequence motifs that are bound by proteins

called transcription factors (TFs). Synthetic CREs with specific properties are needed for biomanufacturing as well as for

many therapeutic applications including cell and gene therapy. Here, we present regLM, a framework to design synthetic

CREs with desired properties, such as high, low, or cell type–specific activity, using autoregressive language models in con-

junction with supervised sequence-to-function models. We used our framework to design synthetic yeast promoters and cell

type–specific human enhancers. We demonstrate that the synthetic CREs generated by our approach are not only predicted

to have the desired functionality but also contain biological features similar to experimentally validated CREs. regLM thus

facilitates the design of realistic regulatory DNA elements while providing insights into the cis-regulatory code.

[Supplemental material is available for this article.]

Cis-regulatory elements (CREs), such as promoters and enhancers,
are DNA sequences that regulate gene expression. Their activity is
influenced by the presence, order, and spacing of sequence motifs
(Wittkopp and Kalay 2012) that bind to proteins called transcrip-
tion factors (TFs), similarly to how words and phrases define the
meaning of a sentence. Synthetic CREs with specific properties
are needed for biomanufacturing as well as numerous therapeutic
applications including cell and gene therapy, for example, tomax-
imize the activity of a therapeutic gene in the target cell type.

SuchCREs are often designedmanually based onprior knowl-
edge (Fornes et al. 2023). Recent studies have used directed evolu-
tion (Taskiran et al. 2024) and gradient-based approaches
(Schreiber and Lu 2020; Linder and Seelig 2021; Gosai et al. 2023)
for CRE design, in which supervised “oracle” models are trained
to predict the activity of a CRE from its sequence, and are then
used to edit sequences iteratively until the desired prediction is
achieved. However, such approaches are not truly generative and
donot necessarily learn the overall sequence distribution of the de-
sired CREs. Instead, they may only optimize specific features that
have high predictive value. Consequently, the resulting CREs
may be out-of-distribution and unrealistic, leading to unpredict-
able behavior when they are experimentally tested in a cell.

Autoregressive language models, such as generative pre-
trained transformer (GPT), can produce realistic content in natural
languages (Brown et al. 2020). Here, we present regLM, a frame-
work to design synthetic CREs with desired properties, such as
high, low, or cell type–specific activity, using autoregressive lan-
guage models in conjunction with supervised models. Although
masked language models have been used to embed or classify
DNA sequences (Ji et al. 2021; Benegas et al. 2023; Dalla-Torre
et al. 2023; Fishman et al. 2023; Zhou et al. 2024), to our knowl-
edge this is the first time language modeling has been used for
DNA in a generative setting.

Results

regLM adapts the HyenaDNA framework for CRE generation

Several transformer-based foundation models for DNA have been
developed (Ji et al. 2021; Benegas et al. 2023; Dalla-Torre et al.
2023; Fishman et al. 2023; Zhou et al. 2024). However, thesemeth-
ods are based on masked language modeling which is difficult to
use for sequence generation. In contrast, the recent HyenaDNA
foundation models (Nguyen et al. 2023) are single-nucleotide res-
olution autoregressive models trained on the human genome, and
are hence suitable for regulatory element design. These models are
based on the Hyena operator (Poli et al. 2023), which uses implicit
convolutions to scale subquadratically with sequence length.

regLMbuilds on theHyenaDNA framework to perform gener-
ative modeling of CREs with desired properties using prompt to-
kens. This takes advantage of the resolution and computational
efficiency of the HyenaDNA model. Further, the ability to fine-
tune pretrainedmodels which have already learned regulatory fea-
tures assists in design tasks which lack sufficient labeled data for
training.

Given a data set of DNA sequences labeled with their mea-
sured activity (Fig. 1A), we encode the label in a sequence of cate-
gorical tokens (prompt tokens), which is prefixed to the beginning
of the DNA sequence (Fig. 1B). We train or fine-tune a HyenaDNA
model to take the processed sequences and perform next token
prediction beginning with the prompt tokens (Fig. 1C). This for-
mulation allows us to use any prior knowledge on sequences in
the model explicitly.

Once trained, the language model can be prompted with the
sequence of tokens representing any desired function. The model,
now conditioned on the prompt tokens, generates a DNA se-
quence 1 nt at a time (Fig. 1D). In parallel, we train a supervised se-
quence-to-activity regression model on the same data set (Fig. 1E),
and apply it to the generated sequences to select those that best
match the desired activity (Fig. 1F). This combined approach
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allows us to use the regression model as an oracle like previous
model-guided approaches, while the language model ensures
that the generated sequences have realistic content. Finally, we
provide several approaches to evaluate the generated sequences
as well as the model itself (Fig. 1G).

regLM generates yeast promoters of varying strength

Training and evaluating a regLM model on yeast promoter sequences

We applied the regLM framework to a data set of randomly gener-
ated 80 bp DNA sequences and their measured promoter activities
in yeast grown in complex and defined media (de Boer et al. 2020;
Vaishnav et al. 2022).We prefixed each sequencewith a two-token
label, wherein each token ranges from 0 to 4 and represents the
promoter activity in one of the media (Supplemental Fig. S1). For
example, the label 00 indicates that the sequence has low activity
in both media, whereas 04 indicates low activity in the complex
medium and high activity in the defined medium (Fig. 2A).

A regLMmodel trained to perform the next nucleotide predic-
tion on this data set reached 31% mean accuracy on native yeast
promoters and 33.8% accuracy on the test set (Supplemental Fig.
S2). This test set performance exceeded the 25% accuracy expected
by chance as well as the 31.3%–31.6% accuracy of n-gram models
trained on the same data, and the 31.3%–32.7% accuracy of n-
gram models trained on the test set itself (Supplemental Fig. S3).
Accuracy reduced when we randomly shuffled the labels across se-
quences (Fig. 2B; Supplemental Fig. S4) (One-sided Mann–
Whitney U test P-value=8.8 ×10−37 for native promoters, P<
10−250 for test set), indicating that themodel learned to use the in-
formation encoded in the prompt tokens.

Within the test set, we observed higher accuracy inmotifs for
known yeast TFs (Supplemental Fig. S5A) (One-sided Mann–
Whitney U test P-value=5.3 ×10−77). Accuracy increased with
the abundance of the motif in the data set (Supplemental Fig.
S5B) (Pearson’s rho=0.55, P-value=2.7 ×10−12). As expected due
to the autoregressive formulation of themodel, accuracy increased

along the length of the test sequences (Supplemental Fig. S6)
(Pearson’s rho= 0.21, P-value= 6×10−22). As a result, the model’s
mean accuracy within abundant motifs occurring in the last 15
nt of the promoter sequence was 40%, significantly higher than
its accuracy across all nucleotides in the sequence (Supplemental
Fig. S7) (Mann–Whitney U test P-value<10−250).

Finally, we asked whether the model learned to associate spe-
cificmotifs with categories of promoter activity. For eachmotif, we
calculated the relative abundance of themotif in strong promoters
(label 44) versus weak promoters (label 00). We also calculated the
ratio between themodel’s accuracywithin themotif when themo-
tif was present in strong promoters versus weak promoters. The
strong correlation between these two metrics (Supplemental Fig.
S8) (Pearson’s rho=0.88, P-value =5.6 ×10−45), indicates that the
model has learned to associate the prompt tokens with motifs
that are consistent with the corresponding promoter activity; for
example, when it observes the prompt 44, the model is more accu-
rate at predicting motifs that tend to occur in strong promoters.

Generating synthetic yeast promoters

We generated promoters of defined strength by prompting the
trained regLM model with labels 00, 11, 22, 33, and 44
(Supplemental Table S1). Generated sequences were distinct
from each other and from the training set, having a minimum
edit distance of 25 bp from training sequences. Supervised regres-
sion models trained on the same data as the language model
(Supplemental Fig. S9) were used to discard generated sequences
whose predicted activity did not match the prompt. Only 1.1%
of the generated sequences were discarded.

Independent regressionmodels trained on separate data from
the language model (Supplemental Fig. S10) predicted that regLM
generates stronger promoters when prompted with higher labels,
and that the activity of the generated promoters matches that of
held-out test promoters with the same label (Fig. 2C). The abun-
dance of TF motifs in the generated promoters was strongly corre-
lated with their abundance in the test set; in other words, when
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Figure 1. Schematic of regLM. (A,B) DNA sequences are prefixed with a sequence of prompt tokens representing functional labels. (C) A HyenaDNA
model is trained or fine-tuned to perform next token prediction on the labeled sequences. (D) The trained model is prompted with a sequence of prompt
tokens to generate sequences with desired properties. (E,F ) A sequence-to-function regressionmodel trained on the same data set is used to check and filter
the generated sequences. (G) The regulatory content of generated sequences is evaluated.
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regLM was prompted with the label 44 its generated sequences
were more likely to contain motifs for activating yeast TFs that
are often seen in strong promoters (Supplemental Fig. S11; Fig.
2D).

In addition to motif abundance, we also examined per-base
importance using in silico mutagenesis (ISM). Using TF-MoDISco
(Shrikumar et al. 2018), we identified motifs for known activator
(ABF1, REB1, RAP1, RSC3, SFP1, STB3) and repressor (UME6) TFs
with high importance in both the test set and the generated pro-
moters, indicating that regLM generates motifs that contribute
strongly to regulatory activity (Fig. 2E; Supplemental Figs. S12,
S13; Supplemental Table S2).

regLM generates promoters with diverse and realistic sequence content

To assess the biological realism of regLM-generated promoters rel-
ative to CREs generated by other methods, we compared 200 puta-

tive strong promoters generated by regLM (prompted with label
44; Supplemental Table S3) to sequences of similar predicted activ-
ity generated by five approaches (Directed evolution, Ledidi
[Schreiber and Lu 2020], AdaLead, FastSeqProp, and Simulated
Annealing) as well as synthetic strong promoters generated in an-
other study (Supplemental Fig. S14; Supplemental Table S4;
Vaishnav et al. 2022). For a fair comparison, we performed all
five model-guided methods using the regression model trained
on the same data set as regLM as an oracle. All sets of synthetic pro-
moters were compared to known strong promoters from the test
set using Polygraph (Lal et al. 2023). Below, we use Evolution (V)
to refer to synthetic promoters generated by Vaishnav et al.
(2022) using an evolution-based approach.

GC content (the percentage of G or C nucleotides in a se-
quence) is a useful biological metric to evaluate the realism of syn-
thetic sequences. regLM promoters were most similar to test set
promoters in GC content, whereas other approaches produced
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Figure 2. regLM generates synthetic yeast promoters. (A) Schematic of the experiment. (B) Box plot showing the mean accuracy of the trained regLM
model on test set sequences, before and after randomly shuffling the labels among sequences. The dashed line represents the accuracy of 0.25 expected by
chance. (C ) Predicted activity of regLM-generated promoters, compared to promoters from the test set with the same label. (D) Fraction of regLM pro-
moters prompted with different labels that contain the TF motifs most strongly correlated with promoter activity in the test set. (E) Example of a
regLM-generated strong promoter. Height represents the per-nucleotide importance score obtained from the paired regression model using in silico mu-
tagenesis. Motifs with high importance are highlighted. (F) Fraction of G/C bases in strong promoters generated by different methods. (G) Fraction of
generated promoters whose nearest neighbor based on k-mer content is a validated promoter from the test set, for different methods. (H) UMAP visual-
ization of true (Test Set) and synthetic strong promoters, labeled by clustermembership. (I) Cluster distribution of strong promoters generated by different
methods. (J) Box plots showing the log-ratio between the likelihood of the motif sequence given label 44 (high activity) versus label 00 (low activity) for
activating or repressing TF motifs inserted in random sequences. Motifs were selected based on TF-MoDISco results. In F, G, and I, asterisks indicate sig-
nificant (P<0.05) differences from the test set, and Evolution (V) represents synthetic promoters generated by Vaishnav et al. (2022).
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sequences with lower GC content (Fig. 2F) (Kruskal–Wallis P-value
5.7 ×10−173; Dunn’s post-hoc P-values 3.5 × 10−69 [Evolution vs.
Test Set], 1.5 × 10−70 [Evolution (V) vs. Test Set], 2.3 × 10−15

[Ledidi vs. Test Set], 1.6 × 10−27 [AdaLead vs. Test Set], 4.2 × 10−11

[FastSeqProp vs. Test Set], 1.2 × 10−6 [Simulated Annealing vs.
Test Set]).

We counted the frequency of all k-mers of length 4 in all pro-
moters. No k-mers were differentially abundant (defined as having
two-sidedMann–Whitney U test adjusted P-value<0.05) in regLM
promoters with respect to test set promoters, compared to 27–122
differentially abundant k-mers in the promoter sets generated by
other methods (Supplemental Table S5). When we matched each
sequence to its nearest neighbor based on their k-mer frequencies,
over 90% of regLM promoters were matched to a test set promoter,
unlike other methods (Fig. 2G; Supplemental Table S5). regLM-
generated promoters were among the most difficult to distinguish
from the test set using simple classifiers based on k-mer frequency
(Supplemental Table S5).

We repeated the above analyses using the frequency of yeast
TF binding motifs in all promoters (see Methods). regLM and
Simulated Annealing were the only methods that returned no dif-
ferentially abundant motifs (defined as having two-sided Mann–
Whitney U test adjusted P-value <0.05) with respect to the test
set (Supplemental Table S5). regLM-generated promoters were
themost likely to have a test set promoter as their nearest neighbor
based on motif frequency (Supplemental Table S5). regLM-gener-
ated promoters were also among the most difficult to distinguish
from the test set using simple classifiers based on motif frequency
(Supplemental Table S5).

To assess realism at the level of regulatory syntax, we exam-
ined combinations of motifs present in the generated sequences.
We first computed the frequencies of pairwise combinations of
motifs. Out of 2321 motif pairs that were present in over 5% of
any group of promoters, only one was differentially abundant (de-
fined as having two-sided Fisher’s exact test adjusted P-value <
0.01) in regLM promoters with respect to test set promoters. In
contrast, 21–439 motif pairs were differentially abundant in the
other sets of synthetic promoters (Supplemental Table S5).
Motifs in regLM-generated promoters also did not occur in signifi-
cantly different positions compared to their positions in the test
set (Supplemental Table S5) (defined as two-sided Mann–
Whitney U test P-value< 0.01).

We examined the distance and orientation between paired
motifs in each group of promoters. For eachmotif pair, we counted
the fraction of occurrences of the pair inwhich bothmotifs were in
the same orientation, in each group of synthetic promoters as well
as the test set. We found that the same-orientation fractions for
motif pairs in regLM-generated promoters showed the highest
Pearson’s correlation with those in the test set (Supplemental
Table S5). We also tested whether the distance between motifs in
these pairs was significantly different in synthetic promoters rela-
tive to the test set. regLM-generated promoters were the third low-
est in the number of motif pairs with significantly different
distances (defined as having two-sided Mann–Whitney U test ad-
justed P-value<0.01) (Supplemental Table S5).

To assess whether larger combinations of co-occurring motifs
are shared between real and synthetic promoters, we performed
graph-based clustering of real and synthetic strong promoters
(Traag et al. 2019) based on their TF motif content. This revealed
10 clusters (Fig. 2H) corresponding to different combinations of
co-occurring TF motifs (Supplemental Fig. S15; Supplemental
Note S1). All 10 clusters were represented in regLM promoters in

similar proportion to their abundance in the test set; in contrast,
the sets of sequences generated by othermethods had skewed clus-
ter representation, suggesting a tendency to converge upon specif-
ic transcriptional programs (Fig. 2I; Supplemental Fig. S16) (χ2 P-
values 2.6 × 10−14 [Evolution vs. Test Set], 3.6 × 10−54 [Evolution
(V) vs. Test Set], 1.3 × 10−68 [Ledidi vs. Test Set], 1.0 × 10−11

[AdaLead vs. Test Set] 4.1 × 10−3 [FastSeqProp vs. Test Set] 2.8 ×
10−3 [Simulated Annealing vs. Test Set]).

Finally,we embedded all the real and synthetic promoters in a
latent space defined by the convolutional layers of the indepen-
dent regressionmodels. The distance between sequences in this la-
tent space incorporates not only differences in the frequency of
important motifs, but also more complex regulatory syntax
learned by the regression model such as motif orientation and
spacing. Within this latent space, regLM promoters were still the
most likely to have a test set promoter as their nearest neighbor
(Supplemental Table S5). Together, this evidence demonstrates
comprehensively that regLMhas learnedmany aspects of the yeast
regulatory code.

Interrogating the trained regLM model reveals species-specific

regulatory grammar

To learn whether interrogating the trained regLMmodel could re-
veal the regulatory rules of yeast cells, we selected motifs for acti-
vating and repressing yeast TFs based on TF-MoDISco results (see
Methods) and inserted eachmotif into 100 randomDNA sequenc-
es.We used the trained regLMmodel to compute the likelihoods of
the resulting sequences (P(sequence|label)) given either label 44
(strong promoter) or 00 (weak promoter). For each synthetic pro-
moter, we defined a log-likelihood ratio as follows:

log(LR)= logP(sequence|label=44) − logP(sequence|label=00).

A positive log-ratio indicates that the model has learned the
motif is more likely to occur in sequences with label 44 than
with label 00, whereas a negative log-ratio indicates the opposite.
We observed that sequences containing activating motifs tend to
have positive log-likelihood ratios, whereas sequences containing
repressive motifs tend to have negative log-likelihood ratios (Fig.
2J). We also calculated the per-base log-likelihood ratios on all
promoters in the test set and found a significant positive correla-
tion with the ISM scores derived from regression models
(Supplemental Fig. S17) further supporting our assertion that the
language model has learned regulatory syntax, and suggesting
that the log-likelihood ratio can be used as a nucleotide-level or re-
gion-level score to interpret these models.

regLM generates cell type–specific human enhancers

Training and evaluating a regLM model on human enhancer sequences

We trained a regLMmodel on a data set of 200 bp human enhanc-
ers and their measured activity in three cell lines (K562, HepG2,
and SK-N-SH) (Gosai et al. 2023) with the aim of designing cell
type–specific human enhancers. Each sequence was prefixed
with a sequence of three prompt tokens, each ranging from 0 to
3 and representing the measured activity of the enhancer in one
of the three lines (Supplemental Fig. S18). For example, label 031
indicates that the sequence has low activity in HepG2 cells, high
activity in K562 cells, and weak activity in SK-N-SH cells (Fig. 3A).

Here, instead of training a model from scratch, we could fine-
tune a preexisting HyenaDNAmodel that had already learned reg-
ulatory information from the human genome (Nguyen et al.
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Figure 3. regLM generates synthetic cell type–specific human enhancers. (A) Schematic of the experiment. (B) Predicted activity of cell type–specific
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specific enhancers. (H) Predictions of a binary classification model trained on pseudobulk snATAC-seq from 204 cell types, on real and regLM-generated
cell type–specific enhancers. Color intensity represents the fraction of sequences in the group that were predicted to be accessible. “Mean” represents the
average of all remaining cell types. (I) Predictions of a classification model trained to classify genomic DNA into chromatin states defined by the full-stack
ChromHMM annotation, on real and regLM-generated cell type–specific enhancers. Color intensity represents the fraction of sequences in the group that
were predicted to belong to the given state. (Acet) acetylations, (BivProm) bivalent promoter, (EnhA) enhancers, (EnhWk) weak enhancers, (GapArtf) as-
sembly gaps and artifacts, (HET) heterochromatin, (PromF) Flanking promoter, (ReprPC) polycomb repressed, (Quies) quiescent, (TSS) transcription start
site, (Tx) transcription, (TxWk) weak transcription, (TxEnh) transcribed enhancer, (TxEx) exon and transcription, (znf) ZNF genes.
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2023). The pretrained model had a mean per-nucleotide accuracy
of 34%on the test set before any fine-tuning, demonstrating that it
learned relevant genomic properties. After fine-tuning, this accura-
cy increased to 45%.Despite the extreme rarity of cell type–specific
enhancers in the training set (enhancers with labels 300, 030, or
003 comprised only 0.16% of the training set), accuracy remained
high on cell type–specific enhancers (36.2%).

Generating and validating synthetic human enhancers

We used the trained regLMmodels to generate ∼4000 putative en-
hancers with activity specific to each cell line (Supplemental Table
S6) by prompting them with the labels 300 (HepG2-specific), 030
(K562-specific), and 003 (SK-N-SH specific) and selecting generat-
ed sequences with aminimumedit distance of 20 ntwith reference
to the training set. We then used the paired regression models
trained on the same data set (Supplemental Fig. S19) to select
the 100 regLM-generated enhancers predicted to be most specific
to each cell line (Supplemental Fig. S20; Supplemental Table S7).

Independent regression models (Supplemental Fig. S21) pre-
dicted that the regLM-generated elements have cell type–specific
activity (higher predicted activity in the on-target cell type than
in the off-target cell types). Although the full set of sequences gen-
erated by the language model display a wide range of activity
(Supplemental Fig. S20), the top 100 HepG2- and K562-specific se-
quences generated by regLM are predicted to bemore specific than
the majority of enhancers with the corresponding label in the test
set (Fig. 3B), and are even comparable to the predicted specificity of
synthetic enhancers designed using model-guided approaches ex-
plicitly intended to maximize activity far beyond the range ob-
served in the training set (Supplemental Fig. S22; Supplemental
Table S8; Gosai et al. 2023). We focused on these 200 synthetic en-
hancers for the subsequent evaluation.

Because the test set contains very few enhancers with this lev-
el of cell type specificity, we did not evaluate the realismof the syn-
thetic enhancers by quantitative comparisons of sequence content
to the test set. However, we noted thatmotifs for known cell type–
specific TFs occurred at higher frequency in regLM-generated en-
hancers of the appropriate specificity. For example, the motif for
the erythropoietic GATA1 TF and the GATA1–TAL1 complex occur
at higher frequency in regLM-generated K562-specific enhancers,
whereas motifs for the liver-specific HNF4A and HNF1B factors oc-
cur at higher frequency in HepG2-specific synthetic enhancers
(Fig. 3C). TF-MoDISco on ISM scores in the regLM-generated en-
hancers returned motifs for cell type–specific TFs (HNF1B and
HNF4A for HepG2, and GATA2 for K562) (Supplemental Table
S9). Examination of ISM scores for individual synthetic elements
yielded these as well as additional cell type–specific motifs
(FOXO3 for HepG2, and GATA1::TAL1 for K562) (Fig. 3D,E;
Supplemental Figs. S23, S24). We did not observe motifs for neu-
ron-specific TFs among the TF-MoDISco outputs for SK-N-SH cells
but instead general enhancer-associated factors such as AP-1.

Compared to less specific regLM-generated enhancers, the
top 100 regLM-generated enhancers specific for HepG2 are charac-
terized by elevated abundance of the liver-related HNF1B and
CEBPA motifs (FDR-adjusted Wilcoxon test P-value 1.2 ×10−11

for HNF1B and 1.2 ×10−5 for CEBPA). Among K562-specific en-
hancers, the top sequences are characterized by higher abundance
of GATA1 and GATA1–TAL1 motifs and absence of the inhibitory
SNAI3 motif as well as NFKB1 motifs (FDR-adjustedWilcoxon test
P-values 3.7 × 10−12 for GATA1, 4.7 × 10−6 for GATA1–TAL1, 1.1 ×
10−8 for SNAI3 and 3.9 ×10−4 for NFKB1) (Supplemental Table

S10). We also checked the abundance of these motifs in a set of
synthetic enhancers designed by Gosai et al. (2023), selected to
have similar predicted activity to the regLM-generated enhancers
(Supplemental Fig. S25), and found similar trends (Supplemental
Table S10).

We used several independent models to further validate the
predicted cell type specificity of theHepG2- andK562-specific syn-
thetic enhancers. First, we trained a regression model on lentiviral
massively parallel reporter assay (MPRA) data from HepG2 and
K562 cell lines (Agarwal et al. 2023), and applied it to our designed
enhancers. The model predicted that the designed enhancers for
K562 and HepG2 would have cell line-specific activity even in
the context of lentiviral integration (Fig. 3F). Next, we trained bi-
nary classification models on chromatin accessibility data from
cell lines (The ENCODE Project Consortium 2012) and predicted
that the designed elements would have cell type–specific chroma-
tin accessibility (Fig. 3G). In addition, a model trained on chroma-
tin accessibility in numerous fetal and adult human cell types
predicted that the designed elements would also maintain cell
type–specific accessibility in related cell types (Fig. 3H). Finally,
we trained amodel to classify DNA elements into chromatin states
defined by the ChromHMM full-stack annotation (Vu and Ernst
2022). This model predicted that most of the regLM-generated en-
hancers belong to enhancer-associated chromatin states (Fig. 3I).
In all cases, these models supported our prediction that the cell
type–specific enhancer activity of the regLM-generated set exceeds
that of cell type–specific enhancers in the test set.

We also ran all of these models on the set of synthetic ele-
ments designed by Gosai et al. (2023) with similar predicted activ-
ity to ours (Supplemental Fig. S25), and found that the regLM-
generated enhancers showed comparable cell type specificity
based on all predictions (Supplemental Figs. S26–S29). Together,
these diverse predictions greatly increase our confidence in the va-
lidity of regLM-generated enhancers.

Discussion

In recent years, many advances have been made in applying lan-
guage modeling to genomic DNA sequences, demonstrating the
ability of such models to learn genomic sequence composition
and functional patterns. Most work in this field has focused on us-
ing languagemodel-based sequence embeddings to predict biolog-
ical activity (Ji et al. 2021; Dalla-Torre et al. 2023), as well as to
predict variant effects (Benegas et al. 2023). Here, we ask whether
autoregressive language models can generate novel DNA sequenc-
es with precisely controlled functions. We demonstrate that the
regLM framework can learn the regulatory code of DNA in differ-
ent species and cell types, and generate CREs with desired levels
of activity in silico.

In contrast to predictive model-based approaches for regula-
tory DNA design (Vaishnav et al. 2022; Gosai et al. 2023;
Taskiran et al. 2024), regLM not only generates sequences with
controlled activity but also implicitly ensures that they have simi-
lar sequence content to the training set. Indeed, the evaluation of
the synthetic sequences generated by regLM shows high concor-
dance between the regulatory rules implemented in these sequenc-
es and known regulatory syntax. This increases our confidence in
the generated sequences and may help ensure their predictable
behavior in the genomic context. The fidelity of generated se-
quences to the training set can be tuned using sampling methods
that have been shown to be effective in natural language (Koehn
2010; Holtzman et al. 2019). regLM also differs from predictive
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model-based methods in that it is not biased by user-provided ini-
tial sequences and instead generates a diverse set of sequences fol-
lowing different regulatory programs.

Although this demonstration focuses on short regulatory ele-
ments, it will be interesting to apply this framework to more com-
plex tasks. The ability of the HyenaDNA architecture to scale to
sequences of hundreds of thousands or even millions of bases
(Nguyen et al. 2023), offers the possibility of generating novel
genes as well as regulatory sequences and potentially even multi-
gene genetic circuits and whole microbial genomes. Also, al-
though we have used simple activity-based prompts in this
study, our framework allows the user to define any number of ar-
bitrary categories (Supplemental Note S2; Supplemental Fig.
S30). Therefore, the prompts supplied to such models could
become more complex in the future, including parameters
such as species, cell type, GC content, or the presence of specific
motifs.

Another interesting advantage of our approach is its inter-
pretability based on base-level likelihood values, which allows us
to understand the prompt-driven regulatory logic driving its deci-
sions during generation. In this study, we analyzed a regLMmodel
using likelihood-based approaches as well as per-nucleotide
predictive accuracy, demonstrating that it learned species and
cell type–specific cis-regulatory syntax. However, all existing tools
for genomic model interpretation focus on supervised models
(Shrikumar et al. 2018; Avsec et al. 2021b). As languagemodels be-
come more powerful and commonly used in genomics, it will be
interesting to extend interpretationmethods to these and compare
the regulatory rules and biases learned by different modeling
approaches.

On the other hand, a potential disadvantage is that language
models may learn evolved features in natural genomes that are not
actually necessary for regulatory function. This can reduce func-
tionality and be a weakness for mechanistic understanding of
gene regulation. Larger training sets including randomly generat-
ed, mutated and nongenomic sequences will help mitigate this
problem (de Boer and Taipale 2024). In addition, models trained
on data from multiple species and individuals may achieve better
performance by learning signatures of evolutionarily conserved se-
quences (Karollus et al. 2024).

Methods

Data sources

Yeast promoter data from Vaishnav et al. (2022) was downloaded
from Zenodo (https://zenodo.org/records/4436477). Measure-
ments were available for 31,349,363 sequences in complex medi-
um, and 21,037,407 sequences in defined medium. Human
MPRA data was downloaded from the supplementary material of
Gosai et al. (2023). This data set contains 798,064 enhancer se-
quences from the human genome with their measured enhancer
activity in three cell lines.

Data processing

Yeast promoters

We removed the constant sequences flanking each promoter and
selected promoter sequences that were 80 bp long and contained
no N characters. This left measurements for 23,414,517 sequenc-
es in the complex medium and 16,799,784 sequences in the de-
fined medium. We split the data set into 7,533,156 sequences
whose activity was measured in both media, and sequences

whose activity was measured in only one medium (15,881,361
sequences measured only in complex medium and 9,266,628 se-
quences measured only in defined medium). The sequences mea-
sured in both media were used to train regLM and its paired
regression models, whereas the sequences measured only in
one medium were used to train independent, medium-specific re-
gression models.

Taking the sequences with measured activity in both media,
we randomly split them into training (7,483,156 sequences), vali-
dation (50,000 sequences), and test (50,000 sequences) sets. We
calculated the quintiles (five equally sized bins) of measured activ-
ity levels in complex medium and defined medium separately
based on the training set. We assigned each sequence in the train-
ing set a token 0–4 based on its quintile of activity in the complex
medium, and a second token 0–4 based on its quintile of activity in
the defined medium; 0 indicates that the sequence belongs to the
lowest quintile and 4 indicates that the sequence belongs to the
highest quintile. For example, label 00 means a sequence in the
lowest quintile of activity in both media. Label 40 means a se-
quence that is in the highest quintile of activity in complex medi-
um but the lowest in definedmedium. Sequences in the validation
and test sets were assigned labels based on the quintiles calculated
on the training set.

Human enhancers

We held out 94,451 sequences from Chromosomes 7, 13, 21, and
22 to train independent regression models, while the remaining
669,233 sequences were used to train the regLM model and its
paired regressionmodels. Out of these 669,233 sequences, we ran-
domly sampled 50 sequences with cell type–specific activity to use
as a validation set while the remaining sequences were used for
training. The training set for regLMwas used as a test set for the in-
dependent regression models, whereas the training set for the in-
dependent regression models was used as a test set for regLM and
its paired regression models.

We assigned each sequence in the training set a token 0–3
based on its activity in HepG2 cells, a second token 0–3 based on
its activity in K562 cells, and a third token 0–3 based on its activity
in SK-N-SH cells. 0 indicates activity <0.2, 1 indicates activity be-
tween 0.2 and 0.75, 2 indicates activity between 0.75 and 2.5,
and 3 indicates activity >2.5. These cutoff values roughly corre-
spond to the 25th, 75th, and 95thpercentiles of activity. For exam-
ple, label 301 means an enhancer that is in the highest group of
activity in HepG2 cells, the lowest group in K562 cells, and the sec-
ond lowest group in SK-N-SH cells.

Training regLM models

Human enhancers

For human enhancers, we fine-tuned the pretrained foundation
model “hyenadna-medium-160k-seqlen” from https://huggingface
.co/LongSafari/hyenadna-medium-160k-seqlen/tree/main (Nguy-
en et al. 2023). This model has 6.55 million parameters and is
trained to perform next token prediction on the human genome.
Themodelwas fine-tuned for 16 epochs on1NVIDIAA100GPUus-
ing the AdamW optimizer with cross-entropy loss, learning rate of
10−4 and batch size of 1024. Validation loss and accuracywere com-
puted every 100 steps and themodel with the lowest validation loss
was saved. During training, examples with each label were sampled
from the training set with aweight inversely proportional to the fre-
quencyof the label, allowing themodel to focusoncell type–specific
enhancers that were extremely rare.
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Yeast promoters

For yeast promoters, we trained from scratch a HyenaDNA model
with the same architecture as “hyenadna-medium-160k-seqlen.”
The model was trained for 100 epochs on 1 NVIDIA A100 GPU us-
ing the AdamWoptimizer with cross-entropy loss, learning rate of
3 ×10−4, batch size of 2048, and a maximum context length of 84
(80 bp plus two label tokens as well as start and end tokens).
Validation loss and accuracy were computed every 2000 steps
and the model with the lowest validation loss was saved.

Training regression models

For both yeast and human data sets, we trained two sets of regres-
sionmodels. One set of models was trained on the same sequences
as the regLMmodel, to use in conjunctionwith regLM to filter and
prioritize generated sequences. A second set of models was trained
on data that was held out from regLM and all generative methods
andwas used only for independent in silico validation of synthetic
CREs. Within each set, we trained separate regression models for
each medium or cell type. Hence, for yeast, we trained a total of
four regression models (two each for the two media) and for hu-
mans, we trained a total of six (two each for three cell types). All
regression models used the same architecture, based on the
Enformer model (Avsec et al. 2021a) and the same hyperpara-
meters. Further details are given in the Supplemental Methods.

Yeast promoters

The regLM-matched models were trained using the same training,
validation, and test data used to train regLM. For the independent
regression models, the 21,609,084 sequences whose activity was
measured only in complex medium and 11,460,087 sequences
whose activity was measured only in the defined medium were
used. In each medium, 50,000 randomly chosen sequences were
held out for validation and 50,000 were held out for testing. The
remaining sequences were used for training.

Human enhancers

For human data, we used a reduced version of the pretrained
Enformer model (Avsec et al. 2021a) and fine-tuned it separately
for each cell type. For the regLM-matched regression models, we
fine-tuned the model on the same sequences as regLM. For the in-
dependentmodels, sequences fromChromosome 21were used for
validation,while sequences fromChromosomes 7, 13, and 22were
used for training.

Generating synthetic CREs using regLM

Yeast promoters

We prompted the regLMmodel trained on yeast promoters to gen-
erate 1000 sequences each with labels 00, 11, 22, 33, and 44.
During generation, we applied nucleus sampling (Holtzman
et al. 2019) with a top-p cutoff of 0.85 to increase the reliability
of generation. Generated promoters were filtered using the regres-
sion model trained on the same data as the language model. For
each medium, we first used the paired regression model to predict
the activity of all sequences in its training set, and computed the
mean and standard deviation of predicted activity for training se-
quences with each class token (0, 1, 2, 3, and 4). We then used the
same model to predict the activity of all generated promoters in
both media. We discarded generated promoters whose predicted
activity in either medium was more than two standard deviations
from the mean predicted activity of promoters with the same to-
ken in the training set. We performed this procedure separately

for complex and defined media. We then randomly selected 200
synthetic promoters of each generated class (00, 11, 22, 33, and
44) to compare with other methods.

Human enhancers

The regLM model trained on human enhancers was prompted to
generate 5000 sequences each with tokens 300 (HepG2-specific),
030 (K562-specific), and 003 (SK-N-SH specific), using the beam
search method (Koehn 2010) to increase reliability. We dropped
sequences with an edit distance of <20 from the training set, leav-
ing 3900–4000 sequences for each cell type (Supplemental Fig.
S20).

Generated enhancers were then filtered using the regression
models trained on the samedata as regLM.We first filtered the gen-
erated sequences using absolute thresholds consistent with the
prompted labels (predicted activity >3.5 in the target cell type
and <0.2 in the off-target cell type). Next, we estimated the cell
type specificity of each sequence as the difference between its pre-
dicted activity in the target cell type and its maximum predicted
activity in off-target cell types. Based on this, we selected the 100
most specific regLM-generated enhancers for each cell type.

In silico evaluation of synthetic CREs

k-mer content

The frequency of all subsequences of length 4 (4-mers) was count-
ed in each real or synthetic promoter. Each sequence was thus rep-
resented by a 256-dimensional vector. To calculate the fraction of
real nearest neighbors, we matched each sequence to its nearest
neighbor out of all real and synthetic sequences. For each group
of synthetic CREs, we calculated the proportion of sequences
whose nearest neighbor was an experimentally validated CRE
from the test set. To compute classification performance, we
trained a support vector machine (SVM)with fivefold cross-valida-
tion to distinguish each set of synthetic sequences from the refer-
ence set based on their k-mer frequencies. The area under the
receiver operator curve (AUROC) for each SVM was reported as a
measure of classification performance.

Transcription factor motif content

Position probability matrices (PPMs) were downloaded from the
JASPAR 2024 database in MEME format. One hundred seventy
PPMs for yeast were selected using the filters Species = “Saccharo-
myces cerevisiae” and Versions = “Latest version.” Seven hundred
fifty-five PPMs were selected for humans using the filters Species
= “Homo sapiens” and Versions = “Latest version.”

Pairwise correlations between motifs were also downloaded
from the JASPAR 2024 database. Motifs were clustered based on
their pairwise Pearson’s correlations using agglomerative cluster-
ing with a distance threshold of 0.1. For clusters consisting of
twomotifs, themotif with higher information contentwas chosen
as the cluster representative, and the other was discarded. For clus-
ters containingmore than twomotifs, themotif that had the high-
est average Pearson’s correlation to the other cluster members was
selected as the representative and the others were discarded. This
resulted in a filtered set of 140motifs for yeast and 464 for human.

Reading the MEME files, conversion of PPMs to position
weight matrices (PWMs) and sequence scanning was performed
using the pymemesuite package, with a uniform background fre-
quency, default pseudocount of 0.1, and P-value threshold of
0.001. Each sequencewas represented by the 140-dimensional vec-
tor of its motif frequency for all motifs. Each sequence was
matched to its nearest neighbors in this vector space, and the
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proportion of real nearest neighbors for each group of synthetic
CREs was calculated as described above. Classification perfor-
mance was calculated as described above.

Model-based embeddings

Real and synthetic CREs were embedded in a model-defined latent
space by passing them as input to themodel and taking the output
of the convolutional tower. For yeast promoters, the embeddings
from each regression model had 384 features. We concatenated
the embeddings from the models trained on two media, resulting
in an embedding vector of size 768 for each sequence. Values were
clipped to the 1st and 99th percentiles of the distribution to re-
move extreme values. To compute nearest neighbors efficiently,
we reduced the number of features to 50 using principal compo-
nent analysis (PCA). Each sequence was matched to its nearest
neighbors in PCA space and the proportion of real nearest neigh-
bors for each group of synthetic CREs was calculated as described
above.

Interpretation of the regLM model trained on yeast promoters

regLM is trained to perform next token prediction; that is, for each
position in a DNA sequence, regLM predicts the probability of all
possible bases (A, C, G, and T) conditioned on the previous bases
as well as the initial label. Thus, we can obtain the likelihood of
an observed sequence conditioned on its initial label (P(se-
quence|label)) as the product of probabilities of the base observed
at each position.

To assess whether regLM has learned the function of a given
motif, we generated 100 random DNA sequences and inserted the
consensus sequence for the motif at the center of each. We pre-
fixed each sequence with label 00 (low activity) and used the
trained regLM model to predict the probability of each base in
the motif. We calculated the likelihood of the motif conditioned
on the sequence being labeled with 00 (P(sequence|label = 00)).
We then prefixed all 100 sequences with the label 44 (high activity
in both media) and repeated the procedure, calculating the likeli-
hood of the motif conditioned on the sequence being labeled
with 44 (P(sequence|label = 44)).

Additional models for human CRE validation

Wevalidated synthetic humanCREs using four additionalmodels,
trained on different data sets: one binary classification model
trained on cell line ATAC-seq data from the ENCODE Project
(The ENCODE Project Consortium2012), one binary classification
model trained on single-nucleus ATAC-seq from multiple human
tissues (Zhang et al. 2021), one multiclass classification model
trained on full-stack chromatin state annotations of the humange-
nome (Vu and Ernst 2022) and one regression model trained on
lentiviral MPRA data in human cell lines (Agarwal et al. 2023).
All models were Enformer-basedmodels, following the same struc-
ture as the regression models used to evaluate the generated yeast
and human CREs described above.

We refer readers to the Supplemental Methods for more de-
tails on model training, model parameters, and running bench-
mark methods.

Software availability

regLM source code is available at GitHub (https://github.com/
Genentech/regLM) under an MIT license, along with documenta-
tion and tutorials. The source code is also provided as
Supplemental Code S1.

Code to perform the experiments in this paper is available at
Zenodo (https://zenodo.org/records/12668907). All experiments
were performed using Python v3.8, PyTorch v1.13.0, and
PyTorch Lightning v1.8.2.

Model weights are available at Zenodo (https://zenodo.org/
records/12668907). Additionally, the models used for human
CRE validation are available on Weights and Biases at the follow-
ing links:

Binary classification model trained on ATAC-seq from cell
lines: https://wandb.ai/grelu/binary_atac_cell_lines/artifacts/model/
model/v1

Regression model trained on Lentiviral MPRA: https://wandb
.ai/grelu/human-mpra-agrawal-2023/artifacts/model/model/v0

Binary classification model trained on CATLAS snATAC-seq:
https://wandb.ai/grelu/human-atac-catlas/artifacts/model/model/v3

Classification model trained on ChromHMM annotations:
https://wandb.ai/grelu/human-chromhmm-fullstack/artifacts/mo
del/model/v2
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