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1☯*, Gauthier LoronID

2,3☯, Margaux Alloux3,4, Vivien Kraus2,

Quentin Delannoy2, Jonathan BeckID
3, Nathalie Bednarek2,3, François Rousseau5,

Nicolas PassatID
2
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Reims, Reims, France, 5 IMT Atlantique, LaTIM INSERM U1101, Brest, France

☯ These authors contributed equally to this work.

* guillaume.dolle@univ-reims.fr

Abstract

Magnetic resonance imaging (MRI) is a powerful tool for observing and assessing the prop-

erties of brain tissue and structures. In particular, in the context of neonatal care, MR images

can be used to analyze neurodevelopmental problems that may arise in premature new-

borns. However, the intrinsic properties of newborn MR images, combined with the high var-

iability of MR acquisition in a clinical setting, result in complex and heterogeneous images.

Segmentation methods dedicated to the processing of clinical data are essential for obtain-

ing relevant biomarkers. In this context, the design of quality control protocols for the associ-

ated segmentation is a cornerstone for guaranteeing the accuracy and usefulness of these

inferred biomarkers. In recent work, we have proposed a new method, SegSRGAN,

designed for super-resolution reconstruction and segmentation of specific brain structures.

In this article, we first propose an extension of SegSRGAN from binary segmentation to

multi-label segmentation, leading then to a partitioning of an MR image into several labels,

each corresponding to a specific brain tissue/area. Secondly, we propose a segmentation

quality control protocol designed to assess the performance of the proposed method with

regard to this specific parcellation task in neonatal MR imaging. In particular, we combine

scores derived from expert analysis, morphometric measurements and topological proper-

ties of the structures studied. This segmentation quality control can enable clinicians to

select reliable segmentations for clinical analysis, starting with correlations between perina-

tal risk factors, regional volumes and specific dimensions of cognitive development. Based

on this protocol, we are investigating the strengths and weaknesses of SegSRGAN and its

potential suitability for clinical research in the context of morphometric analysis of brain

structure in preterm infants, and to potentially design new biomarkers of neurodevelopment.

The proposed study focuses on MR images from the EPIRMEX dataset, collected as part of

a national cohort study. In particular, this work represents a first step towards the design of

3-dimensional neonatal brain morphometry based on segmentation. The (free and open-
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source) code of multilabel SegSRGAN is publicly available at the following URL: https://doi.

org/10.5281/zenodo.12659424.

1 Introduction

1.1 Context and objectives

Prematurity is associated with a wide range of neurological disorders, which is a significant

public health concern due to the increased survival of extremely premature children [1, 2]. Pre-

maturity exposes the brain to a number of developmental diseases, variously involving the

periventricular white matter, basal ganglia, brainstem, cerebellum and maturation of cortical

layers [3]. These lesions are the consequence of direct insults (inflammation directly affecting

white matter) and altered maturative processes (impaired neurogenesis and synaptogenesis),

collectively referred to as encephalopathy of prematurity [4]. A magnetic resonance imaging

(MRI) scan of the brain at the equivalent age to term is routinely performed to identify struc-

tural lesions [5]. However, neurological disorders are not solely attributable to these obvious

cerebral abnormalities [6, 7]. Preterm birth is associated with abnormal growth in many areas

of the brain, associated with long-term cognitive outcomes [8, 9]. Consequently, the current

interpretation of MRI acquired systematically at term equivalent age should be improved by

volumetric information. Regional brain volumes are potential biomarkers that can be used to

better understand the impact of prematurity on the developmental trajectory, to identify

babies eligible for intervention after hospital discharge and to evaluate the effectiveness of ran-

domised controlled trials.

Brain MRI segmentation has been explored and developed over the last two decades [10].

At present and despite an extensive literature, neonatal MRI segmentation [11] remains a

research tool and has very limited application in clinical routine. In [12], we have recently pro-

posed a new segmentation method, namely SegSRGAN, which has been specifically dedicated

to the segmentation of neonatal brain MRI. SegSRGAN is based on the Generative Adversarial

Networks (GAN) paradigm and aims to provide both super-resolution (SR) reconstruction of

neonatal MR images (often acquired at low resolution) and segmentation of brain structures at

super-resolution level. In [12], the relevance of SegSRGAN has already been proven by com-

parison with various state-of-the-art methods, particularly with regard to the difficult problem

of segmenting the cortex.

In this article, we propose a methodological and experimental framework, based on SegSR-

GAN, dedicated to the parcellation and morphometric analysis of brain structures from MR

images of premature infants. In particular, our contributions are threefold.

First of all, we are proposing a multi-label version of SegSRGAN. The initial version of the

method, proposed in [12], could perform the binary segmentation, i.e. the extraction of one

specific kind of tissue. The new multi-label SegSRGAN, proposed in this article, is now capable

of performing multi-label segmentation, leading to a partitioning of the whole brain into user-

selected regions of interest. The SegSRGAN multilabel (free and open-source) code is publicly

available [13]. Secondly, we propose a segmentation quality control (SQC) strategy for the par-

cellation of brain MR images, particularly for prematurity. This SQC strategy is based on three

main categories of assessment: (1) qualitative assessment by clinical experts, which aims to

establish a link between the visual quality of the parcellation and the standard quality scores

generally used for segmentation; (2) quantitative assessment of segmentation by comparing

morphometric measurements made manually by clinical experts and automatically from
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segmentation; and (3) quantitative assessment of the topological accuracy of the segmentation

by correlating connectivity and adjacency measurements between the segmented regions and

the reference regions used to train the method. Finally, we experimentally evaluate the quality

of the multi-label SegSRGAN. To this end, we consider MR images acquired in a clinical con-

text. These images are part of a national cohort, EPIRMEX. The aim of this quality control of

SegSRGAN on “real” data is to validate the approach and determine its strengths, limitations

and biases, before involving it in the processing of the entire cohort for other clinical studies. x

The remainder of this article is organised as follows. In the section 2, we briefly describe recent

work in the different areas related to the topics of this article, namely clinical aspects of brain

MRI analysis, neonatal brain segmentation and the SQC of brain MRI segmentation. In sec-

tion 3.1, we present SegSRGAN. We first recall the initial, binary version of the method. We

then present its extension to deal with the case of multi-label segmentation (i.e. parcellation) of

the brain from MR images. We also describe a post-processing step to clean up the results, par-

ticularly with regard to extracranial artefacts. In Section 3.2, we describe our SQC protocol.

We detail its three modules, which are respectively dedicated to qualitative, morphometric and

topological evaluation. In section 3.3, we apply this SQC protocol to the multilabel version of

SegSRGAN on a dataset constructed from the EPIRMEX cohort. We provide the numerical

results of this analysis and discuss the strengths, biases and limitations of SegSRGAN in its

ability to explore a full cohort of MR images.

2 Related works

In this section, we describe some recent contributions related to the three main issues

addressed in this article: the clinical relevance of preterm brain MRI analysis (Section 2.1);

recent methods for segmentation/parcellation of the neonatal brain (Section 2.2); and the

development of quality control for brain MRI segmentation (Section 2.3).

2.1 Preterm brain MRI analysis: Clinical aspects

Over the last three decades, MRI of the neonatal brain has shown that large, obvious lesions

are associated with a severe neurological course [14]. High-grade haemorrhage and parenchy-

mal infarction are associated with cerebral palsy, low IQ and death [15]. The clinical conse-

quences of venous infarcts (i.e. Volpe infarcts) vary according to location and size [16].

Cerebellar infarcts have a significant impact on neurological development, particularly when

the vermis, or both hemispheres, are affected [17]. Cystic white matter lesions are strongly

associated with cerebral palsy, but currently account for only 1% of white matter lesions. Over-

all, moderate and severe overt brain lesions on MRI are fairly good predictors of cerebral palsy

and severe neurodevelopmental delay [18–20]. However, these obvious lesions are not the only

potential consequences of premature birth on brain development. Many former preterm

infants present with mild to moderate learning difficulties as well as behavioural, psychiatric

and cognitive disorders [2, 21]. Brain MRI hardly predicts these mild to moderate cognitive

dysfunctions by analysing only overt lesions [18].

Indeed, premature birth induces diffuse alterations in brain developmental trajectories,

including structural changes in subplate, neuro-axonal organisation and cortical lamination

[22]. In children born prematurely, advanced analysis of brain MRI has highlighted these

structural and functional changes: gyration, structural and functional connectivity and

regional volumes are altered in children born prematurely, with or without associated obvious

lesions. A description of all these changes is beyond the scope of this document; readers can

find more detailed information in dedicated studies [23–25].
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Finally, children born prematurely show an alteration in regional brain volumes that per-

sists throughout childhood [26, 27], and even into adulthood by drawing a morphological

model of the “brain of infant born preterm” [28]. These alterations appear to correlate with

neurodevelopmental prognosis [8, 29, 30]. The respective contribution of: (1) regional brain

volumes [31], (2) their growth kinetics [31, 32] and (3) their asymmetry [25] for the prognosis

of neurodevelopment is still controversial and under investigation. In our opinion, the biases

associated with image analysis methods and their validation must be systematically taken into

account, as the performance and validation of an image analysis can greatly contribute to the

relevance of the biomarkers derived from its results.

2.2 Neonatal brain segmentation

The study of the developing brain involves several major image analysis challenges that con-

cern the development of appropriate approaches that can cope with low contrast-to-noise

ratio, rapid change in the size of brain structures, complex brightness changes in structural

MRI reflecting the rapid patterning of white matter by myelination, rapid change and high var-

iability in anatomical shapes. To address these challenges, many methods have been proposed

in the literature [11, 33].

In image segmentation tasks, algorithms based on deep learning have been at the forefront

of development in recent years, including in neonatal brain imaging. The U-Net architecture

[34], which provides a multi-scale representation of the data, is probably the most widely used

model in segmentation, particularly for neonatal data [35, 36]. We can also mention the use of

other architectures such as the hyperdense-net [37], transformer weighted network [38] or

attention-based networks [39].

In the context of neonatal brain imaging, deep learning segmentation algorithms are

trained on large image databases, such as data from the dHCP [40] project, for which ground

truth has been estimated with the DrawEM [41] method.

Deep learning methods have shown high-quality segmentation results on these research

databases. However, their application on clinical data remains a challenge due to the motion

artifacts present in images, the appearance variabilities of multisite data, and the anisotropic

resolution of clinical data. To this end, Khalili et al. [42] have proposed a method based on

generative adversarial networks (GANs) to reduce artifacts related to subject motion during

acquisition. Grigorescu et al. [43] have studied two unsupervised data adaptation methods for

transfer learning from one database to another. Chen et al. [44] investigated the use of GAN

methods for segmentation harmonization. Finally, Delannoy et al. [12] proposed a GAN-

based method for reconstructing data in highly isotropic resolution and jointly estimating a

segmentation of the cortex.

In this work, we focus on the SegSRGAN method [12] to analyze anisotropic clinical data

from the EPIRMEX [29] cohort associated with the EPIPAGE 2 [45] study.

2.3 Quality control for brain MRI segmentation

Quality control of brain segmentation is an important procedure for ensuring the relevance of

a morphometric study. Automated approaches have been proposed, offering potentially repro-

ducible and time-saving alternatives. For example, we can mention Qoala-T [46], a supervised

tool for quality control of FreeSurfer segmentation maps, or MRIQC [47], which uses T1w or

T2w images as input. Monereo et al. [48] recently studied the impact of these two tools for

quality control and concluded that global morphological estimates such as mean cortical thick-

ness, total surface area or estimated total intracranial volume, should be avoided to detect out-

liers. This study also showed that features such as Euler number could be useful for detecting
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inaccurate segmentation maps. Quality control of neonatal or fetal data [49–51] seems limited

to image quality, with a gap in assessing the accuracy of segmentation methods. There are cur-

rently no segmentation quality control studies dedicated to neonatal brain MRI. In this work,

we propose qualitative and quantitative scores to characterize segmentation maps of MR

images of the neonatal brain.

3 Materials and methods

3.1 Super-resolution reconstruction and segmentation—SegSRGAN

In this work, we aim to investigate the suitability of SegSRGAN for the analysis of MR images

of the neonatal brain. SegSRGAN is a hybrid method based on generative adversarial networks

(GANs) [52], which aims to simultaneously perform super-resolution (SR) reconstruction and

low-resolution image segmentation. Initially, SegSRGAN segmentation module was designed

for binary segmentation. We first recall (Section 3.1.1) this initial method, which has been pub-

lished and validated by comparison with state-of-the-art approaches in [12]. Next, we propose

an extended version of SegSRGAN that is capable of multi-label segmentation, i.e. providing a

parcellation of the intracranial volume into different regions. We present the modifications of

this new multilabel SegSRGAN compared to the binary SegSRGAN (Section 3.1.2). As SegSR-

GAN is a pixel-based segmentation / parcellation approach, we also propose a post-processing

procedure that aims to regularize segmentation results in a region-based paradigm, in order to

eliminate semantic noise (Section 3.1.3).

3.1.1 SegSRGAN: Reminder of the initial (binary) version. SegSRGAN is both an SR

reconstruction method and a segmentation method. We first discuss its SR reconstruction

aspect. An SR method aims at estimating a high-resolution (HR) image X 2 Rm from a low-

resolution (LR) image Y 2 Rn
(m> n). Such a problem can be formulated by a linear observa-

tion model:

Y ¼ H#BXþ N ¼ YXþ N ð1Þ

where N 2 Rn is an additive noise, B 2 Rm�m is a blurring matrix, H# 2 R
n�m is a decimation

matrix, and Y ¼ H#B 2 R
n�m

. (For low-resolution modeling, we rely on the framework pro-

posed by Greenspan in [53], with the same parameters as in [12]).

A common way of tackling this SR problem is to define the matrix Θ−1 as the combination

of a restoration operator F 2 Rm�m
and an interpolation operator S" 2 Rm�n

which computes

the interpolated LR image Z 2 Rm
associated with Y (i.e. Z = S"Y). In the context of supervised

learning, given a set of HR images Xi and their corresponding LR images Yi, this restoration

operator F can be estimated such that:

bF ¼ arg min
F

X

i

dðXi � FðZiÞÞ ð2Þ

where d can be, for example, a ℓ2 norm, a ℓ1 norm or a differentiable variant of ℓ1 as defined in

[54].

We now focus on the segmentation part of SegSRGAN. In order to manage the trade-off

between the contributions of the SR image and the segmentation in the cost function, the

image segmentation problem is considered as a supervised regression problem:

SX ¼ RðbXÞ ð3Þ

where R is a non-linear function from the interpolated image bX to the segmentation map SX.

As for the SR problem, we assume that we have a set of interpolated images bX i associated with

PLOS ONE Multilabel SegSRGAN—A framework for parcellation andmorphometry of preterm brain in MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0312822 November 1, 2024 5 / 29

https://doi.org/10.1371/journal.pone.0312822


images Xi and their corresponding segmentation maps SXi
. A general approach to solving this

segmentation problem is to find the match R such that:

bR ¼ arg min
R

X

i

dðSXi
� RðbX iÞÞ ð4Þ

GAN approaches are based on two networks. The first network, called the generator, aims

to estimate, for a given interpolated input image, the corresponding HR image and segmenta-

tion map. The second network, called the discriminator, aims to differentiate “real” HR and

segmentation image pairs from “generated” pairs.

Cost function. In order to avoid the potential problems associated with gradient saturation

that can occur with the so-called “minimax” cost function usually considered in GANs, the

alternative cost function WGAN-GP [55] is used. In this context, the objective is to minimize

the Wasserstein distance between two distributions Pr and Pg , corresponding here to real and

generated data. Here, the discriminator learns the parameterized function f while the generator

aims to minimize the distance. The antagonistic part of the cost function is then:

Ladv ¼ EX�PX ;SX�PSX
½DððX; SXÞÞ� � EZ�PZ ½DðGðZÞÞ� ð5Þ

where X and SX are the true HR image and segmentation map, respectively, D is the discrimi-

nator, G is the generator and Z is the interpolated image.

Finally, the cost function to be minimized is:

Ldis ¼ lgpE bXS
½ðkr bXS

DðdXSÞk2 � 1Þ
2
� � Ladv ð6Þ

with:

dXS ¼ ð1 � εÞðX; SXÞ þ εGðZÞ ð7Þ

and ε* U[0, 1], wherer and λgp> 0 are the gradient operator and its penalization coeffi-

cient, respectively.

The generator cost function is constructed by adding a pointwise comparison term ρ [54]

between the target and the estimated images:

Lgen ¼ ladvLadv þ EX�PX ;SX�PSX
½rððX; SXÞ � GðZÞÞ� ð8Þ

where λadv> 0 is a weight that handles the trade-off between reconstruction and segmentation,

and:

rððx1; . . . ; x2mÞÞ ¼
1

2m

X2m

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2
i þ n

2Þ

q

ð9Þ

and ν = 10−3 (with xi values normalized in [0, 1]). We recall that m is the image size. The sum

in the above equation is therefore 2m, since ρ is calculated on the concatenation of segmenta-

tion and reconstruction results.

Network architecture. The generator network (Fig 1a) is a convolution-based network with

residual blocks. It takes the interpolated LR image as input. It comprises 18 convolutional lay-

ers: 3 for the encoding part, 12 for the residual part and 3 for the decoding part. Let Ci
j � Sk be

a block consisting of the following layers: a convolution layer of j filters of size i3 with stride of

k, an instance normalization layer (InsNorm) [56] and a rectified linear unit (ReLU). Rk

denotes a residual block as Conv-InsNorm-ReLU-Conv-InsNorm that contains 33 convolution

layers with k filters. Uk denotes layers as Upsampling-Conv-InsNorm-ReLU layers with k
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Fig 1. Initial SegSRGAN architecture. (a) Generator architecture. (b) Discriminator architecture.

https://doi.org/10.1371/journal.pone.0312822.g001
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filters of 33 and stride of 1. The generator architecture is then: C7
16
� S1, C3

32
� S2, C3

64
� S2, R64,

R64, R64, R64, R64, R64, U32, U16, C7
2
� S1. During encoding, the number of cores is multiplied

by 2 at each convolution, from 16 to 64. The final convolutional layer produces two 3D images:

the first is transformed into a class probability map (using sigmoid activation); the second is

added to the original interpolated image. To improve the performance of the learning proce-

dure, instance normalization layers are applied to the result of each convolution (before the

activation function is applied).

The discriminator network (Fig 1b) is fully convolutional. It takes as input an HR image

and a segmentation map. It contains 5 convolutional layers with an increasing number of filter

kernels, increasing by a factor of 2 from 32 to 512 cores. Let Ck be a block consisting of the fol-

lowing layers: a convolution layer of k filters of size 43 with stride of 2 and a Leaky ReLU with a

negative slope of 0.01. The last layer C2
1

is a 23 convolution filter with stride of 1. No activation

layer is used after the last layer. The discriminator then consists of C32, C64, C128, C256, C512, C2
1
.

3.1.2 Multilabel SegSRGAN. The initial SegSRGAN method described in Section 3.1.1

has been extended to segment the intracranial volume into k labels (k> 2), with the assump-

tion that each xi point of the X image is assigned to a unique label. This multi-label extension

requires two main modifications to the initial binary version.

Firstly, the final part of the generator network dedicated to segmentation now relies on k
convolution modules (instead of just one for the binary part). Each of these convolution mod-

ules is dedicated to a specific label, and the output of the k convolutions is then merged to pro-

duce the final segmentation map.

Secondly, the ρ error measure, which relied solely on the Charbonnier metric defined in

Eq (9), now relies on two distinct metrics: Charbonnier for SR reconstruction and Dice multi-

label for segmentation. The new measure ρmulti is then defined as follows:

rmultiððX; SXÞ;GðZÞÞ ¼ rmultiððX; SXÞ; ðX
G; SG

XÞÞ ð10Þ

¼ rCharbonnierðX � XGÞ þ ð1 � rDiceðSX; S
G
XÞÞ ð11Þ

where ρCharbonnier is defined as in Eq (9) (by modifying 2m into m) and ρDice is the multilabel

version of the Dice measure [57]:

rDiceðSX; S
G
XÞ ¼

2 � TPðSX; S
G
XÞ

2 � TPðSX; S
G
XÞ þ FPðSX; S

G
XÞ þ FNðSX; S

G
XÞ

ð12Þ

¼ 2 � ð1þm=TPðSX; S
G
XÞÞ

� 1 ð13Þ

with m the size of the image and TP, FP and FN the true positives, false positives, and false neg-

atives, respectively. Note that in Eq (11), the two terms are not weighted since, by construction,

they both have values in [0, 1]. The Dice loss defined in Eqs (12) and (13) is a generalization of

the binary Dice loss. In practice, we assume that for any point, either the value of that point is

the same in SX and SG
X, thus contributing to TP, or the value of that point is distinct in SX and

SG
X, thus contributing symmetrically to both FP and FN. This justifies the formulation of

Eq (12), where Dice’s formulation boils down to a function depending only on TP.

3.1.3 Post-processing. The output of the segmentation process designed in SegSRGAN’s

multilabel extension is a mapping S:O! L, where O ¼ ½½0; dimx � 1�� � ½½0; dimy � 1�� �

½½0; dimz � 1�� � Z3 is the MR image support and L ¼ f‘ig
k
i¼0

is the set of labels, ℓ0 correspond-

ing to the background (“no anatomical label”) and the other k ℓi each corresponding to a spe-

cific anatomical region.
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The next two post-processing steps, mainly based on mathematical morphology and digital

topology, aim to improve the quality of the result by eliminating artifacts and noise.

Extracranial artifact removal. The proposed segmentation pipeline does not include skull

stripping pre-processing. Indeed, these approaches are sometimes not sufficiently robust, and

can induce false negative results in the intracranial region in the event of failure. In contrast,

we chose to process the entire MR image, which can lead to false positives in extracranial

regions, and post-process the results to remove these artifacts later, thus securing the results in

the intracranial region.

The most common artifacts are due to overestimation of external cerebrospinal fluid (CSF),

which can lead to segmentation leakage during subsequent segmentation of specific extracra-

nial structures, such as the eyes. Based on these assumptions, the post-processing proposed is

as follows.

1. We construct a first volume that is the principal connected component (denoted CCð�Þ) of

the part of O made up of labels that are neither background (BG) nor CSF. This first (con-

nected) volume is denoted T. In particular, noting X? the region of a given label ?, we have:

T ¼ CCðO n ðXBG [ XCSFÞÞ ð14Þ

We define a second volume V as the union of T and XCSF. We then have V = T [ XCSF with

T \ XCSF = ;.

2. Given a spherical structuring element Bρ of radius ρ, we first apply an erosion of V by Bρ.

We then retain only the largest connected component of the result. We dilate this con-

nected component by Bρ and finally find the T part of V (which must not be discarded from

the result). The overall process can be seen as a connectivity-based morphological opening

[58], topologically constrained by non-CSF brain tissue. It leads to the construction of a

final volume Vρ parameterized by ρ, defined as follows:

Vr ¼ ððCCðV � BrÞÞ � BrÞ [ T ð15Þ

In particular, for any r 2 Rþ, we have:

T � Vr � V ð16Þ

and for any two r1; r2 2 Rþ, we have:

r1 � r2 ) Vr1
� Vr2

ð17Þ

3. The definition of Vρ depends on ρ and the optimal result may not be the same for different

processed images. This optimal value br is determined for each image by an analysis of the

elbow curve of the volume size Vρ.

The optimal volume V
br

eliminates extracranial artifacts by assigning the label BG (non-

brain tissue) to all points, i.e.:

x 2 O n V
br
) x 2 XBG ð18Þ

Topological noise removal. The multi-label SegSRGAN method, like most multi-label seg-

mentation methods, does not provide guarantees as to the topological accuracy of the results.

In particular, the segmentation result may be corrupted by “label noise”, i.e. isolated voxels (or

very small regions) may be mistakenly assigned a given label. In order to solve this denoising
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problem while avoiding, as far as possible, modifying the segmentation result provided by

SegSRGAN, we propose the following post-processing, which can be considered as a multi-

label version of the morphological area opening [59].

Let P be the partition of O induced by the S segmentation and composed of the connected

components of O for each label. Given a limit size s 2 N (which can be defined as a parameter

or computed by an Otsu thresholding of the histogram of the size of the connected compo-

nents of the label image), our goal is to modify P to remove all connected components X 2P
of size |X|< s. This post-processing consists of the following steps:

1. Computation of a partially labeled image S0: O! L [ {?} from S as follows:

• 8j, |Xj|< s)8x 2 Xj, S0(x) =?

• 8j, |Xj|� s)8x 2 Xj, S0(x) = S(x)

We note O? = {x 2 O j S0(x) =?}.

2. Computation of a totally labeled image S1:O! L from S0 as follows:

• 8x 2 O\O?, S1(x) = S0(x)

• 8x 2 O?, S1(x) = S0(y) with y ¼ arg
~y2OnO?

min dðx; ~yÞ where d is the geodesic distance

inside O?.

Step 1 is a simple operation, similar to thresholding. Step 2 can be easily implemented by an

iterative process of geodesic dilations on a label image, in a framework similar to that defined

in [60]. Here, the topological modeling of the image is based on the standard framework of dig-

ital topology [61], and connectedness is derived from strong adjacency (aka 6-adjacency) in Z3
.

3.2 Segmentation quality control protocol

Evaluating the quality of an image processing/analysis method, particularly in the context of

medical image segmentation [62, 63], generally relies on calculating the usual error measures

(e.g. Dice, Hausdorff distance) that assess the similarity between the results obtained and the

hand-crafted annotations provided on a test dataset. In the context of segmentation of neona-

tal MR images, and a fortiori of premature neonates, annotations are generally not available. It

is therefore reasonable to devise alternative protocols for assessing segmentation quality. In

this section, we propose a segmentation quality control (SQC) protocol. It consists of three

parts, which are explained as follows.

The first part of the protocol is based on the idea that a segmentation result is good if it is

considered as such by experts. This part of the SQC protocol is therefore an expert-based anal-

ysis, which involves assigning scores related to specific qualitative properties that must be met

by a correct segmentation result. This first part, which requires the direct participation of

human experts, is described in Section 3.2.1. The second part of the protocol is based on the

idea that a segmentation result is good if it enables successful subsequent analysis of the pro-

cessed data. In the context of neonatal MRI, this analysis is often based on morphometric mea-

surements (e.g. length, surface area) on image slices [64, 65]. This part of the SQC protocol,

described in Section 3.2.2, requires the indirect participation of human experts, since it

involves comparing morphometric measurements made by doctors directly from the images,

with morphometric measurements derived from the segmentation results. The third part of

the protocol is based on the idea that a segmentation result is good if it has correct intrinsic

properties. These properties are linked in particular to the structure, i.e. the topology, of the

segmented objects, independently of their spatial embedding. This part of the SQC protocol,

described in Section 3.2.3, does not require the intervention of human experts. This involves
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comparing the topological properties of segmented structures with the topological properties

of real structures (which, in particular, do not depend on MR images but on anatomy).

In previous work [12], we have already assessed the suitability of SegSRGAN compared to

other state-of-the-art methods. Our objective here is different: to evaluate SegSRGAN’s ability

to segment certain clinical data provided by clinical cohorts. It was with this in mind that we

initially conceived and designed the proposed SQC protocol. In particular, in this section we

describe this SQC protocol with certain parameters (e.g. number of regions) and hyperpara-

meters (e.g. morphometric measurements, topological features) that are oriented towards our

own experimental study, proposed in Section 3.3. Of course, these elements can be adapted to

handle other types of images or applications that may be of interest to the reader. With this in

mind, this SQC protocol should be seen as a generic, adaptable framework that offers general

guidelines but no hard rules.

3.2.1 Qualitative analysis. The segmentation results provided by SegSRGAN subdivide

the brain into k regions. In our case, we set k = 14 (the corresponding brain regions are exam-

ined in detail in Section 3.3). Our aim in this first part of the SQC protocol is to propose a sim-

ple reading form for manually validating the segmentation results.

Here, segmentation quality is defined by the FCOO score, which is a vector score composed

of four criteria: (F)rontier, (C)onnectedness, (O)verlap and (O)verflow. These criteria are

detailed in Table 1. The FCOO score provides an assessment of the region’s morphology.

These four criteria are complementary and determine a local anatomical score for each of the

k specific regions. Although they are not equivalent, we can see that these four scores are in

some way related to the usual quality measures, namely:

• (F)rontier: with the Hausdorff distance;

• (C)onnectedness: with the first Betti number;

• (O)verlap: with sensitivity;

• (O)verflow: with precision;

An FCOO score must be provided for each labeled region of the segmentation result. This

is why these scores are binary (0: incorrect; 1: correct).

3.2.2 Morphometric analysis. We also want to go beyond qualitative analysis of seg-

mented data. To obtain quantitative information, we rely on morphometric measurements

generally recognized as relevant in the literature. In particular, we focus on 1-dimensional

(length) and 2-dimensional (area) measurements. Basically, our aim is to quantify the extent to

which these measurements made “manually” by a human expert on a native image are similar

to the same measurements obtained from the binary objects given by the segmentation results.

In our study, we have taken into account some of the measures proposed in [64, 65]. In this

pioneering work, measurements were made by human experts, based on their visual analysis

of image slice data in the main orientations (sagittal, coronal, axial).

Table 1. Definition of the FCOO score (the higher the score, the better the quality of each criterion). See Section

3.2.1.

Criteria Score Evaluated features

(F)rontier {0, 1} Boundary of the region.

(C)onnectedness {0, 1} Expected number of connected components.

(O)verlap {0, 1} No false negatives.

(O)verflow {0, 1} No false positives.

https://doi.org/10.1371/journal.pone.0312822.t001
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On the basis of this previous work, we have chosen to consider three specific measures:

• biparietal diameter (BPD);

• transcerebellar diameter (TCD);

• deep grey matter area (DGA).

The first two (BPD, TCD) are length measurements; the third (DGA) is an area measure-

ment. In particular, the paradigm considered here is that a good segmentation is one that pro-

vides accurate morphological measurements, saving time and effort for medical practitioners.

We define below the protocol used by clinicians to provide metrics manually, considered

the “ground truth”, and the protocol designed to reproduce the same metrics from segmented

images.

Manual measurements. Each MR image is analyzed by an experienced clinician. (In our

case, one expert analyzed 30 images, while a second expert analyzed 10 of these 30 images, in

order to assess inter-expert agreement; the analysis was performed with 3D Slicer (https://

www.slicer.org/).

The two length measurements (BPD, TCD) are obtained by calculating the Euclidean dis-

tance between two reference points positioned in specific coronal sections (see Fig 2). The area

metric (DGA) is obtained by calculating the area of a surface defined by a spline contour gen-

erated from control points positioned within a specific axial slice.

• Biparietal diameter (BPD) The coronal slice is chosen as the first one located in front of the

brainstem (visualized in the median sagittal slice). The beginning of the cochlea must be visi-

ble. Two points pBPD and qBPD are defined by the clinician. The biparietal diameter is then

defined as BPDman = kqBPD − pBPDk2.

• Transcerebellar diameter (TCD) The coronal slice is chosen as the one where the diameter

of the cerebellum is visually assessed as maximal. The plexus can be visible and used as a ref-

erence to locate the slice. Two end points pTCD and qTCD are defined by the clinician. The

transcerebellar diameter is then defined as TCDman = kqTCD − pTCDk2.

• Deep grey matter area (DGA) The axial slice is chosen as the one where the DGA region is

visually assessed as maximal. A series of points pi
DGA is set by the clinician, thus defining the

contour CDGA of a closed surface SDGA � R
2. The area of deep grey matter is then defined as

DGAman =
R R

SDGA.

Segmentation-based measurements. To assess the quality of the proposed segmentation, we

compared these manual measurements with the measurements induced by the labeled regions.

More precisely, we automatically extrapolate the morphometric measurements (length or sur-

face) associated with the segmentation from the landmarks (control points or slice) initially

determined by the human expert during his morphometric analysis. This is detailed below.

• Biparietal diameter (BPD) The points pBPD and qBPD define a line LBPD. This line is inter-

sected by the R region obtained from the label corresponding to the “Frontal No-cingulate”

region, providing a segment SBPD ¼ R \ LBPD. The biparietal diameter estimated from seg-

mentation is then defined as follows BPDseg ¼ kSBPDk2
.

• Transcerebellar diameter (TCD) The points pTCD and qTCD define a line LTCD. This line is

intersected by the RCer region corresponding to the “Cerebellum” label, giving a segment

STCD ¼ RCer \ LTCD. The transcerebellar diameter estimated from segmentation is then

defined as TCDseg ¼ kSTCDk2.

PLOS ONE Multilabel SegSRGAN—A framework for parcellation andmorphometry of preterm brain in MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0312822 November 1, 2024 12 / 29

https://www.slicer.org/
https://www.slicer.org/
https://doi.org/10.1371/journal.pone.0312822


• Deep grey matter area (DGA) In the S axial slice chosen by the clinician, the RDGA region

corresponding to the “deep grey matter” label provides a surface bSDGA ¼ S \ RDGA which is

the segmentation analogue of the SDGA surface defined by the clinician. The area of deep

grey matter estimated from segmentation is then defined as follows DGAseg ¼
R R

S
SbDGA

.

Comparison of manual and segmentation-based measurements. At this stage, for each of the

three metrics, we have two measurements, one manual and the other based on segmentation.

The error of segmentation-based measurement compared with manual measurement can be

calculated absolutely and relatively as follows:

rabs
M ¼ Mseg � Mman ð19Þ

Fig 2. Illustration of the manual computation of the metrics. (a) 3-dimensional view of the three (length and area)

measurements. (b–d) 2-dimensional view of the three measurements. (a) Biparietal diameter (BPD): the length is

computed in the coronal slice. (b) Transcerebellar diameter (TCD): the length is computed in the axial slice. (c) Deep

grey matter area (DGA): the area is computed in the axial slice. See Section 3.2.2.

https://doi.org/10.1371/journal.pone.0312822.g002
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and

rrel
M ¼

Mseg � Mman

Mman
ð20Þ

with M = BPD, TCD and DGA.

3.2.3 Topological analysis. Discrete topology provides efficient tools for digital image

analysis, particularly in the context of medical imaging [66]. In addition to the above quality

scores, which are derived from ground truth and/or clinical expert analysis, i.e. extrinsic infor-

mation, it is possible to design topological measures that assess the intrinsic quality of segmen-

tation. More specifically, these topological measurements aim to quantify the accuracy of

segmentation in relation to the topological properties of brain structures.

In our study, we consider a first topological metric that evaluates the connectedness of k
labels. To this end, we define two connectedness vectors:

C ¼ ½C‘�
k
‘¼1

ð21Þ

and

CðSÞ ¼ ½C‘ðSÞ�
k
‘¼1

ð22Þ

In the first, each Cℓ value indicates that the region labeled ℓ is anatomically composed of Cℓ

connected components. In the second, each Cℓ(S) value indicates that the segmented region

linked to the ℓ label is made up of Cℓ(S) connected components. For each ℓ label, the average

error over a population of n patients associated with n segments Si (1� i� n) is given by:

E‘

C ¼
1

n

Xn

i¼1

jC‘ðSiÞ � C‘j ð23Þ

For the set of labels ℓ 2 ⟦1, k⟧, the average error on a population of n patients associated with n
segmentations Si (1� i� n) is given by:

EC ¼
1

k

Xk

‘¼1

E‘

C ð24Þ

In particular, we have E‘

C; ECðSÞ 2 Rþ and the lower the error, the better the segmentation

quality with regard to connectedness (the best score being 0).

We consider a second topological measure, linked to the adjacency relationship between

the different labeling regions. Anatomically, each labeled region is adjacent to p other labeled

regions (1� p� k) and not adjacent to other k − p regions. It is then possible to design an

adjacency matrix, i.e. a symmetrical square Boolean matrix A = (ai,j)1�i,j�k where ai,i = 1 for all

labels i and ai,j = 1 (resp. 0) if the regions of distinct labels i and j are adjacent (resp. non-adja-

cent). A segmentation map S, with an adjacency matrix A(S) = (ai,j(S))1�i,j�k is defined in the

same way. In this matrix, the ai,i(S) elements on the diagonal are set to 1 if label i is present in

the final segmentation, and 0 otherwise. This matrix A(S) should satisfy A = A(S) if it is entirely

correct with regard to the adjacency between the labeled regions.

For each pair of labels (i, j), the average error on a population of n patients associated with

n segmentations Si (1� ℓ� n) is given by:

Eði;jÞA ¼
1

n

Xn

‘¼1

ai;jðS‘Þ � ai;j ð25Þ

where� is the “xor” operator (defined by x� y = (1 − x) � y + (1 − y) � x where true is
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associated to 1 and false to 0). For the set of label pairs (i, j) 2 ⟦1, k⟧2, the average error on a

population of n patients associated with n segmentations Si (1� i� n) is given by:

EAðSÞ ¼
1

k2

Xk

i¼1

Xk

j¼1

Eði;jÞA ð26Þ

In particular, we have Eði;jÞA ; Eði;jÞA 2 ½0; 1� and the lower the error, the better the segmentation

quality with regard to adjacency (the best score being 0).

3.3 Experiments

We initially designed the multilabel version of SegSRGAN (Section 3.1.2) and the SQC proto-

col (Section 3.2) with the aim of segmenting an entire clinical MRI cohort. In particular, our

first goal was to assess the strengths and weaknesses of SegSRGAN in relation to this purpose.

3.3.1 Training. Training dataset. The images considered for SegSRGAN training are part

of the dHCP (http://www.developingconnectome.org) project [40]. The first release of the

database was used. It includes infants between 37 and 44 weeks’ gestational age. T2w and

inversion recovery T1w multi-slice fast spin echo anatomical images, were acquired on a 3T

Philips Achieva. Infants were sleeping through the acquisition. Only T2w axial images were

used for the the training set with the following characteristics: 0.8 × 0.8 mm2 resolution in

axial planes and 1.6 mm slices overlapped.

MRI Protocol (from [67]). The dHCP MRI protocol is documented in [67]: “Imaging param-
eters were optimized for contrast to noise ratio using a Cramer Rao Lower bound approach with
nominal relaxation parameter values for gray matter T1/T2: 1800/150 ms and white matter T1/
T2: 2500/250 ms. T2w and inversion recovery T1w multi-slice FSE images were each acquired in
sagittal and axial slice stacks with in-plane resolution 0.8 × 0.8 mm2 and 1.6 mm slices over-
lapped by 0.8 mm (except in T1w Sagittal which used a slice overlap of 0.74 mm). Other parame-
ters were–T2w: TR/TE = 12000/156 ms, SENSE factor 2.11 (axial) and 2.60 (sagittal); T1w: TR/
TI/TE = 4795/1740/8.7 ms, SENSE factor 2.27 (axial) and 2.66 (sagittal). 3D MPRAGE images
were acquired with 0.8 mm isotropic resolution and parameters: TR/TI/TE = 11/1400/4.6 ms,
SENSE factor 1.2 RL (Right-Left). The FSE acquisitions were each reconstructed using a motion
correction algorithm and then the transverse and sagittal images were fused into a single 3D vol-
ume for each modality using slice-to-volume methods.”

dHCP provides a parcellation of the brain into 87 labels/classes (https://gin.g-node.org/

BioMedIA/dhcp-volumetric-atlas-groupwise/raw/master/config/structures.txt). We chose to

reduce the number of classes from 87 to 14 in order to train SegSRGAN. Designing these new

labels simply involved grouping the original 87 labels into 14 subsets, as defined in Table 2. In

our case, the choices leading to this grouping were motivated by a more in-depth analysis of

specific regions that could be used to define biomarkers. In other words, the definition of labels

(number and type) is a meta-parameter that depends on the clinical objective. In particular,

any other grouping can be considered, including the preservation of the original 87 labels. It

should be noted that each new grouping may require specific training. An exception can be

made where a second grouping refines a first. In this case, the second learning can be initial-

ized with the results of the first, following a fine-tuning paradigm. In practice, basal ganglia

labels were grouped together, along with ventricular system labels. Gray matter and white mat-

ter labels from the same lobe were grouped together as we observed a volume interdependence

between these two areas depending on imaging quality and degree of myelination. Moreover,

from a physiological point of view, the cortex is connected to the underlying white matter,

which contains axons originating from cell bodies located in the cortex. Finally, in the
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premature brain, subcortical white matter is occupied by the subplate, which is intimately

linked to the cortex. Assuming that a median cutting plane would enable the right and left

parts of each volume to be individualized, we grouped the right and left sides of each volume

together. Finally, we retained a higher level of temporal lobe segmentation to distinguish audi-

tory and language centers, whose functional maturation is central in premature infants and is

the subject of much research [28]. This finally led us to define the 14 macroscopic regions of

interest detailed in Table 2. Note that dHCP also provides a label grouping of the same order

as that proposed here. The proposed SegSRGAN multilabel implementation can handle any

partition of arbitrary size, allowing interested users to experiment according to their own

objectives.

A visual representation of the induced label map is shown in Fig 3. Note that cerebrospinal

fluid is one of the 14 regions. In practice, the segmentation of this region, which plays to some

extent the role of “background” in the intracranial volume, was not evaluated in our SQC

protocol.

Training SegSRGAN. Segmentation training was performed on compute nodes at the

ROMEO regional computing center (https://romeo.univ-reims.fr) with the following 2018

supercomputer parameters: a compute node is composed of 2× Intel Xeon Gold “Skylake”

6132 (2 × 14 core 2.60 GHz), 4× NVidia Tesla P100/16GB SXM2 GPU. Available memory

Table 2. The 14 labels corresponding to the considered anatomical regions (and their correspondence with the 87

dHCP label identifiers). See Fig 3.

Id Label Anatomical region dHCP Identifiers

1 A Occipital 22–23, 65–66

2 B Parietal 38–39, 81–82

3 C Cerebellum 17–18

4 D Corpus callosum 48

5 E Brainstem 19

6 F Deep grey matter 40–47, 85–87

7 G Frontal no-cingulate 36–37, 79–80

8 H Frontal cingulate 32–35, 75–78

9 I Temporal auditory 11–12, 30–31, 57–58, 73–74

10 J Temporal insula 20–21, 63–64

11 K Temporal internal 1–6, 9–10, 15–16, 24–27, 51–52, 55–56, 61–62, 67–70

12 L Temporal lateral 7–8, 13–14, 28–29, 53–54, 59–60, 71–72

13 M Ventricle lateral 49–50

14 N Cerebral spinal fluid 83

https://doi.org/10.1371/journal.pone.0312822.t002

Fig 3. Example of the 14-label map obtained from the the 87-label map of dHCP image. Each colour corresponds

to a distinct label. Axial, coronal and sagittal cross-section views.

https://doi.org/10.1371/journal.pone.0312822.g003
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consists of 12 times 8@2667MT/s DDR4 DIMMs (96GB per node) and 2× Bull BXI connection

for interconnection.

For the current study, different sets of parameters were tested to form the GAN architecture

(see Fig 1). Based on this analysis, we have chosen a batch size of 27 and 300 epoch iterations.

For the images, training was based on a stride of 20, a 128 patch size and a step 20 between

patches. Regarding the discriminator loss Ldis (see Eq (6)), we chose λgp = 1 � 102. Regarding

the generator loss Lgen (see Eq (8)), we set λadv = 1 � 10−3. We set a learning rate of 1 � 10−4 for

both networks. Training was performed on a set of 32 images of the dHCP dataset. Testing

was carried out on a set of 8 images from the dHCP dataset. We assessed the accuracy of seg-

mentation with respect to each label based on the Dice score. These Dice scores

(mean ± standard deviation) are given in Table 3. The numbers of the labels refer to the labels

as defined in Table 2. These results are satisfactory, with Dice values from 0.811 to 0.949.

3.3.2 Data. EPIRMEX cohort. The images considered in this study are part of the EPIR-

MEX dataset. EPIRMEX is a French research project aimed at establishing a correlation

between brain MRI at birth and cognitive outcomes in extremely premature infants. This is an

ancillary study of the EPIPAGE-2 project (https://epipage2.inserm.fr) [68], which recruited

5170 children born before 32 weeks’ gestation and collected demographic, clinical and follow-

up data up to 12 years. In the EPIRMEX subset, 581 children from 12 hospitals were recruited

from June 30, 2011 (the study ended on December 21, 2017) and underwent brain MRI at

term equivalent age (TEA-MRI). Neonatologists specializing in newborn brain MRI interpre-

tation participated in the centralized expert review of these data. In addition, DICOM files of

the images were collected for image processing purposes.

EPIRMEXMRI protocol (from [29]). The EPIRMEX MRI protocol is documented in [29]:

“MRI brain scans were performed in natural sleep at TEA (i.e., GA of 39-41 weeks), using a 1.5T
or 3T MRI system with a dedicated 8-channel head coil. MR devices with a magnetic field of 1.5T
were Philips Achieva, Philips Intera, Toshiba MRT 200, GE SignaHdxt (General Electric Health-
care), Siemens Avanto, Siemens Symphony, and Siemens SymphonyTim (Siemens Heathineers).
The MRI device with a magnetic field of 3T was a Philips Achieva (Philips Healthcare). T2 data-
sets were obtained using an axial T2 morphological sequence (fast spin echo/turbo spin echo with
a 90 flip-back pulse); slice thickness, 3 mm; pixel size, 0.39 × 0.39 mm2; field of view, 192 mm;
repetition time, 6680 ms; echo time, 142 ms; flip angle, 120˚. The axial MRI reference plane was
the bi-commissural plane. [. . .] A medical engineer visited all participating centers to check the
sequence parameters. The infants were fed, swaddled and had earplugs. No child has received
medicated sedation. Throughout the scan, infants were monitored using an apnea monitor and
an oxygen saturation probe, and if required, oral sucrose was administered with parental
consent.”

Choice of a subset of data. We only worked on images acquired at a single hospital center, as

the characteristics and settings of the MRI at each center may affect segmentation. Further-

more, we only analyzed images acquired with a TE of 280 ms. Indeed, the most visually satisfy-

ing results were obtained around 280 ms, which we have kept for future use. The subset of data

Table 3. Dice score ± standard deviation of segmentation results for each label.

1 2 3 4 5 6 7

0.920 0.925 0.946 0.811 0.949 0.879 0.937

±0.012 ±0.010 ±0.014 ±0.025 ±0.006 ±0.090 ±0.020

8 9 10 11 12 13

0.871 0.849 0.890 0.893 0.886 0.871

±0.010 ±0.031 ±0.035 ±0.014 ±0.018 ±0.020

https://doi.org/10.1371/journal.pone.0312822.t003
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from center A, which contained the largest number of MR images at 280 ms, was therefore

retained.

3.4 Ethics statement

dHCP data is publicly available (https://biomedia.github.io/dHCP-release-notes/index.html),

so its use does not require the approval of a local ethics committee. In particular it is stated in

[67] that “The studies involving human participants were reviewed and approved by United
Kingdom Health Research Authority (Research Ethics Committee reference number: 14/LO/
1169). Written informed consent to participate in this study was provided by the participants’
legal guardian/next of kin.”.

EPIPAGE-2 study was approved by the national data protection authority (Commission
Nationale de l’Informatique et des Libertés, CNIL n˚911009) and by the appropriate ethics com-

mittees, i.e. the advisory committee on the treatment of personal health data for research pur-

poses (CCTIRS: Comité Consultatif sur le Traitement de l’Information en matière de Recherche,
approval granted November 18, 2010; reference number 10.626) and the committee for the

protection of people participating in biomedical research (CPP: Comité de Protection des Per-
sonnes, approval granted March 18, 2011, reference CPP SC-2873); see [45].

4 Results

The EPIRMEX subset composed of the 70 images described in Section 3.3.2 was processed

by SegSRGAN. A segmentation result for one of these images is shown in Fig 4, by way of

illustration. These segmentation maps were used for the SQC protocol described in Section

3.2. The use of EPIRMEX images allows us to evaluate the relevance of SegSRGAN on real

clinical data.

4.1 Segmentation quality control—Part 1: Qualitative analysis

As indicated in Section 3.2.1, the first part of the SQC protocol is based on a qualitative anal-

ysis formalized by FCOO scores for each of the 13 labeled regions. For each score, namely

(F)rontier, (C)onnectedness, (O)verlap, (O)verflow, and for each label, the mean value over

all 70 patients was calculated. The results are summarized in the four Kiviat diagrams

described in Fig 5 (one diagram per score). These diagrams are oriented from 0 (diagram

center) to 1 (diagram border). The closer this boundary is to 1, the better the value of the

average score for a given score and a given label. The correlation between the four FCOO

scores is shown in Fig 6.

4.2 Segmentation quality control—Part 2: Morphometric analysis

As indicated in Section 3.2.2, the morphometric analysis part of the proposed SQC protocol

can be performed by calculating the error between manual measurements (length, area) of cer-

tain structures of interest obtained from native images, and the same measurements obtained

from segmentation of these structures. We focus here on three measures: biparietal diameter

(BPD), transcerebellar diameter (TCD) and deep gray matter area (DGA). For each, 30

patients from the dataset were involved. The absolute and relative errors obtained from these

experiments are summarized by the histograms in Fig 7.

4.3 Segmentation quality control—Part 3: Topological analysis

In order to assess the quality of the segmentation results with regard to connectedness and

adjacency, it is mandatory to determine the ground truth for these two features, i.e. to define
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the connectedness vector C (Eq (21)) and the adjacency matrix A. In particular, we define the

connectedness vector as follows:

C ¼ ½C‘�
13

‘¼1
¼ ½1; 1; 1; 1; 1; 1; 1; 1; 2; 2; 2; 2; 1� ð27Þ

From an anatomical point of view, each labeled region is connected, i.e. composed of one con-

nected component, with the exception of regions whose parts are symmetrical (left and right),

which are composed of two connected components. Labeled regions in a segmented image

should have the same connectivity properties.

Given a label ℓ, we denote Cℓ(S) the number of connected components of the label region ℓ
in the segmentation map S. A segmentation S correct with regard to connectedness should

then have a vector CðSÞ ¼ ½C‘ðSÞ�
k
‘¼1

equal to the vector C (see Eq (22)).

Fig 4. Segmentation result (labels A–M, see Table 2) on one MR image of the dataset For the sake of visualization,

each of the labels is represented standalone, as a binary segmentation map.

https://doi.org/10.1371/journal.pone.0312822.g004
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Fig 5. Kiviat diagrams for the qualitative analysis of the SQC protocol: (a) Frontier; (b) Connectedness; (c)

Overlap; (d) Overflow. Each point of a diagram corresponds to a mean score in [0, 1] obtained as the mean value over

the tested segmentations (See Tables 1 and 2).

https://doi.org/10.1371/journal.pone.0312822.g005

Fig 6. Correlation (symmetric) matrix between the four FCOO scores.

https://doi.org/10.1371/journal.pone.0312822.g006
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The overall quality of the S segmentation with respect to the connectedness feature is then

given by the global and label-level error measures E‘

C and EC defined in Eqs (23) and (24),

respectively. Here, the global error is EC ¼ 0:9593. The 13 error measurements per label E‘

C

are shown in Fig 8.

Fig 7. Histograms of the errors between hand-made morphometric measures and segmentation-guided

morphometric measures (see Sections 3.2.2 and 4.2). (a–c) Absolute errors. (d–f) Relative errors. (a,d) Biparietal

diameter (BPD). (b,e) Transcerebellar diameter (TCD). (c,f) Deep grey matter area (DGA). For the sake of

visualization, the number of bins has been optimized with respect to the distributions. The vertical dashed line

corresponds to the average error.

https://doi.org/10.1371/journal.pone.0312822.g007

Fig 8. Average connectedness error Eℓ
CðSÞ for each of the 13 labels ℓ, computed over 70 images, with a heatmap

coloration.

https://doi.org/10.1371/journal.pone.0312822.g008
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For the measurement of adjacency error, we set the adjacency matrix as induced by the

ground truth of dHCP:

A ¼ ðai;jÞ1�i;j�13
¼

1 1 1 0 0 0 0 0 0 0 1 1 1

1 1 0 1 0 1 1 1 1 1 1 1 1

1 0 1 0 1 0 0 0 0 0 1 1 0

0 1 0 1 0 1 1 1 0 0 0 0 1

0 0 1 0 1 1 0 0 0 0 1 0 0

0 1 0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 1 0 0 0 0 1

0 1 0 1 0 1 1 1 1 1 0 0 1

0 1 0 0 0 1 0 1 1 1 1 1 1

0 1 0 0 0 1 0 1 1 1 1 1 1

1 1 1 0 1 1 0 0 1 1 1 1 1

1 1 1 0 0 1 0 0 1 1 1 1 1

1 1 0 1 0 1 1 1 1 1 1 1 1

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

9
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð28Þ

The overall quality of the S segmentation with respect to the adjacency feature is then given by

the pairwise and global error measures E i;j
A and EA defined in Eqs (25) and (26), respectively.

Here, the global error is EA ¼ 0:1534. The 91 error measurements per label E i;j
A are represented

in the (symmetrical) matrix in Fig 9.

Fig 9. Average adjacency error Eℓ
AðSÞ for each of the pairs of labels, computed over 70 images, with a heatmap

coloration.

https://doi.org/10.1371/journal.pone.0312822.g009
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5 Discussion

In this section, we examine the results presented in Section 4, from both a methodological and

clinical point of view.

Firstly, the qualitative results illustrated in Fig 4 highlight the ability to correctly segment

structures and tissues with salient contours. The Kiviat diagrams presented in Fig 5, which

summarize the results obtained by the experts, confirm the robustness of the method in terms

of segmented region boundary accuracy. In fact, for 12ofthe13 regions, the associated scores

are very good. Again based on the Kiviat diagrams, the quality of the overflow also appears to

be very good. On the other hand, connectedness and overlap seem less consistent, with some

regions showing excellent results, while others are less satisfactory. As for the correlation

between these scores, summarized in Fig 6, we observe a low pairwise correlation for the four

FCOO scores (0.17 to 0.36). This tends to confirm the relevance of considering these 4, com-

plementary scores.

As far as morphological scores are concerned, we observe little dispersion of error between

segmentation-based and expertise-based measures. This error varies from −10% to + 2% for

the biparietal diameter and from −6% to + 2% for the transcerebellar diameter in relation to

the histogram maximum. It varies from 0% to + 30% for the deep gray matter zone. This con-

firms the ability of a segmentation-based morphometric measurement to remain consistent

with a human-based morphometric measurement. However, the histogram maxima have

shifted. For both biparietal and transcerebellar diameters, this systematic bias is + 2%. For the

deep gray matter zone, it is about + 15%. This may be due to two (not mutually exclusive) rea-

sons: (1) the behavior of the human expert, who may underestimate or overestimate the posi-

tion of landmarks in MR images, and (2) the position of segmentation boundaries, which may

be influenced by image properties. These biases can be corrected, for example by comparing

the results of human experts and segmentation on a small sample of data, in order to identify

and correct this bias before applying segmentation-based morphometric methods to a larger

cohort. This would pave the way for the development of automated morphometric analysis,

based on segmentation, which could save doctors precious time.

As regards the topological analysis of the segmentation results, the method’s connectedness

score is good, with an average error of less than 1 (i.e. there is no more than one erroneous

connected component per labeled region). In particular, the connectedness scores described in

Fig 8 are satisfactory for 11 out of 13 regions, with two exceptions, namely the Frontal no-cin-

gulate region and the Temporal internal region. In particular, the region with the worst con-

nectedness score (Frontal no-cingulate) was also the region with the worst connectedness

score in the Kiviat diagram.

As a result, these topological measurements can be evaluated automatically, saving doctors

time and effort. For adjacency analysis, the average error is low, on the order of 0.15. More pre-

cisely, looking at the pairwise region adjacencies given in Fig 9, this error is most often equal

to or very close to 0. In some cases, this error is very high, often equal to 1. This is due to the

variable strength of adjacency links, which depends on the size of the interface between

regions, and to the fact that the modeling of these adjacency links is currently binary. It may be

further improved by (1) defining the adjacency matrix by metric rather than symbolic charac-

terization and (2) constructing the ground truth adjacency matrix by agglomerating informa-

tion from several label images. This will form part of our future work.

On reading the segmentation, clinical experts noted excellent segmentation of many vol-

umes: the cerebellum, brainstem, corpus callosum, cingulum and temporal lobes taken as a

whole. However, the experts noted variability in the demarcation line between the temporal,

parietal and occipital lobes as segmented by SegSRGAN. Admittedly, these lobes are not

PLOS ONE Multilabel SegSRGAN—A framework for parcellation andmorphometry of preterm brain in MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0312822 November 1, 2024 23 / 29

https://doi.org/10.1371/journal.pone.0312822


anatomically separated by any easily discernible structure. A comparison with one or more

atlases may help remove any ambiguities. As we saw earlier, some connectivity anomalies were

observed in the frontal lobes, but given the overall volume of the frontal lobes, the impact on

the final volume estimate is limited. The orientation of the head in the orthogonal plane has an

effect on the effectiveness of SegSRGAN. Segmentation performance was considerably reduced

when the head axis was far from the orthogonal plane. Indeed, as most of the clinical data fol-

lowed an acquisition protocol where the orientation of the patient’s head was controlled, we

did not integrate data augmentation with regard to rotations. This question could be explored

further, drawing on recent work [69]. The FCOO score is easy for clinicians to use. The clini-

cian’s delineation choices on the low resolution image are partly responsible for the error

reported in the basal ganglia surface. In particular, the area behind the posterior limb of the

internal capsule was delimited more restrictively by the expert than it was by SegSRGAN. In

SegSRGAN, the area of the tail of the caudate nucleus was appropriately included in the deep

gray matter label, which was often difficult to see in the low resolution image. The entire vali-

dation procedure described in this article enables the selection of well-segmented MR images,

or some of their labels, that can be used in clinical studies. It will then be possible to correlate

potential changes in regional volume with each other to identify patterns and look for correla-

tions with outcome. If there is evidence of their relevance, these volume changes could provide

early endpoints for interventional studies, accelerating the pace of research in this field.

6 Conclusion

In this article, we have presented new contributions relating to the analysis of premature

babies’ brains from MR images. In particular, we have proposed an extended version of SegSR-

GAN [12], a super-resolution reconstruction and segmentation approach, which is now capa-

ble of handling multi-label segmentation instead of binary segmentation. We have also

proposed a segmentation quality control protocol dedicated to the multi-criteria evaluation of

multi-label segmentation results, based on morphometric and topological features. SegSRGAN

and the segmentation quality control protocol have been designed for use in MRI analysis of

the brain of premature infants. Nevertheless, this framework remains essentially generic. In

particular, it could be adapted, modified and used for other data and clinical purposes.

We used this framework for a preliminary analysis of a subset of a large clinical cohort,

namely EPIRMEX, composed of multicenter MR images. Here, our aim was to assess the abil-

ity of SegSRGAN to be applied to the whole cohort, and to identify its strengths, weaknesses

and biases. The results of this study suggest the potential of SegSRGAN as a robust tool for

morphometric analysis of clinical data. Further validation with multicenter data and varied

resolutions is required to consolidate these results. Nevertheless, it can be further improved,

for example by integrating topological information into the learning process, as studied in

[70]. We can also explore the benefits of incorporating data augmentation and multi-contrast

information, particularly in comparison with synthetic methods such as SynthSeg [71]. Our

future work will also involve applying it more systematically to all EPIRMEX data, to enable

more in-depth clinical research studies. Other applications involving the use of SegSRGAN

can be envisaged. For example, we have not yet tested SegSRGAN on brains with obvious

brain damage. Indeed, in the current cohort, we had too few MR images with such defects to

start training the algorithm on pathological areas with dedicated labels. It would be interesting

to study how SegSRGAN handles cystic leukomalacia, for example.

From a methodological point of view, we will also seek to improve / extend the proposed

segmentation quality control protocol. On the topological side, based on the above discussion,

we will study the coupling of topological and geometric information in the adjacency matrix,
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transforming it from a binary to a metric mapping. We will also seek to integrate a new mod-

ule into segmentation quality control to assess the uncertainty of segmentation results.
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32. Gui L, Loukas S, L F, Hüppi PS, Meskaldji DE, Borradori Tolsa C. Longitudinal study of neonatal brain

tissue volumes in preterm infants and their ability to predict neurodevelopmental outcome. NeuroImage.

2019; 185:728–741. https://doi.org/10.1016/j.neuroimage.2018.06.034 PMID: 29908311

33. Devi CN, Chandrasekharan A, Sundararaman VK, Alex ZC. Neonatal brain MRI segmentation: A

review. Comput Biol Med. 2015; 64:163–178. https://doi.org/10.1016/j.compbiomed.2015.06.016

PMID: 26189155

34. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.

In: MICCAI, Proceedings; 2015. p. 234–241.

35. Fetit AE, Cupitt J, Kart T, Rueckert D. Training deep segmentation networks on texture-encoded input:

application to neuroimaging of the developing neonatal brain. In: MIDL, Proceedings; 2020. p. 230–240.

36. Richter L, Fetit AE. Accurate segmentation of neonatal brain MRI with deep learning. Front Neuroin-

form. 2022; 16:1006532. https://doi.org/10.3389/fninf.2022.1006532 PMID: 36246394

37. Ding Y, Acosta R, Enguix V, Suffren S, Ortmann J, Luck D, et al. Using deep convolutional neural net-

works for neonatal brain image segmentation. Front Neurosci. 2020; 14:207. https://doi.org/10.3389/

fnins.2020.00207 PMID: 32273836

38. Zhang S, Ren B, Yu Z, Yang H, Han X, Chen X, et al. TW-Net: Transformer Weighted Network for Neo-

natal Brain MRI Segmentation. IEEE J Biomed Health Inform. 2022.

39. Fan X, Shan S, Li X, Li J, Mi J, Yang J, et al. Attention-modulated multi-branch convolutional neural net-

works for neonatal brain tissue segmentation. Comput Biol Med. 2022; 146:105522. https://doi.org/10.

1016/j.compbiomed.2022.105522 PMID: 35525069

PLOS ONE Multilabel SegSRGAN—A framework for parcellation andmorphometry of preterm brain in MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0312822 November 1, 2024 27 / 29

https://doi.org/10.1136/archdischild-2017-313414
http://www.ncbi.nlm.nih.gov/pubmed/29146572
https://doi.org/10.1016/j.pediatrneurol.2019.02.016
http://www.ncbi.nlm.nih.gov/pubmed/30975474
https://doi.org/10.1016/j.semperi.2021.151473
http://www.ncbi.nlm.nih.gov/pubmed/34452753
https://doi.org/10.3390/children9030356
http://www.ncbi.nlm.nih.gov/pubmed/35327728
https://doi.org/10.1007/s00429-021-02256-1
http://www.ncbi.nlm.nih.gov/pubmed/33738578
https://doi.org/10.1001/jamapediatrics.2016.0781
http://www.ncbi.nlm.nih.gov/pubmed/27368090
https://doi.org/10.1007/s11682-019-00039-1
http://www.ncbi.nlm.nih.gov/pubmed/30684152
https://doi.org/10.1016/j.neubiorev.2023.105082
http://www.ncbi.nlm.nih.gov/pubmed/36775083
https://doi.org/10.1016/j.diii.2020.10.009
http://www.ncbi.nlm.nih.gov/pubmed/33187906
https://doi.org/10.1016/j.neuroimage.2022.119815
http://www.ncbi.nlm.nih.gov/pubmed/36529204
https://doi.org/10.1038/s41598-017-02307-w
http://www.ncbi.nlm.nih.gov/pubmed/28526882
https://doi.org/10.1016/j.neuroimage.2018.06.034
http://www.ncbi.nlm.nih.gov/pubmed/29908311
https://doi.org/10.1016/j.compbiomed.2015.06.016
http://www.ncbi.nlm.nih.gov/pubmed/26189155
https://doi.org/10.3389/fninf.2022.1006532
http://www.ncbi.nlm.nih.gov/pubmed/36246394
https://doi.org/10.3389/fnins.2020.00207
https://doi.org/10.3389/fnins.2020.00207
http://www.ncbi.nlm.nih.gov/pubmed/32273836
https://doi.org/10.1016/j.compbiomed.2022.105522
https://doi.org/10.1016/j.compbiomed.2022.105522
http://www.ncbi.nlm.nih.gov/pubmed/35525069
https://doi.org/10.1371/journal.pone.0312822


40. Makropoulos A, Robinson EC, Schuh A, Wright R, Fitzgibbon S, Bozek J, et al. The developing human

connectome project: A minimal processing pipeline for neonatal cortical surface reconstruction. Neuro-

Image. 2018; 173:88–112. https://doi.org/10.1101/125526 PMID: 29409960

41. Makropoulos A, Gousias IS, Ledig C, Aljabar P, Serag A, Hajnal JV, et al. Automatic Whole Brain MRI

Segmentation of the Developing Neonatal Brain. IEEE Trans Med Imaging. 2014; 33:1818–1831.

https://doi.org/10.1109/TMI.2014.2322280 PMID: 24816548

42. Khalili N, Turk E, Zreik M, Viergever MA, Benders MJNL, Išgum I. Generative adversarial network for
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