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ABSTRACT: Cancer is one of the major causes of death worldwide, even the
second foremost cause related to non-communicable diseases. Cancer cells
typically possess several cellular and biological processes including, persistence,
propagation, differentiation, cellular death, and expression of cellular-type specific
functions. The molecular picture of carcinogenesis and progression is unwinding,
and it appears to be a tangled combination of processes occurring within and
between cancer cells and their surrounding tissue matrix. Polyphenols are plant
secondary metabolites abundant in fruits, vegetables, cereals, and other natural
plant sources. Natural polyphenols have implicated potential anticancer activity by
various mechanisms involved in their antitumor action, including modulation of
signaling pathways majorly related to cellular proliferation, differentiation,
relocation, angiogenesis, metastatic processes, and cell death. The applications of
polyphenols have been limited due to the hydrophobic nature and lower oral
bioavailability that could be possibly overcome through encapsulating them into
nanocarrier-mediated delivery systems, leading to improved anticancer activity.
Nanoemulsions (NEs) possess diverse feasible properties, including greater surface
area, modifiable surficial charge, higher half-life, site-specific targeting, and
formulation imaging capability necessary to create a practical therapeutic impact, and have drawn increased attention in cancer
therapy research. This review has summarized and discussed the basic concepts, classification, delivery approaches, and anticancer
mechanism of various polyphenols and polyphenols-encapsulated nanoemulsions with improved cancer therapy.
KEYWORDS: Cancer, Cancer therapy, Biodegradable, Biocompatible, Nanoemulsions, Polyphenols, Targeted delivery

1. INTRODUCTION
The complexity of cancer’s diversity, which includes genetics,
cell and tissue biology, pathology, and therapeutic response, is
intimidating.1 Cancer is marked by uncontrolled cell growth
and the development of metastatic properties.2 A wide-range of
literature reported about numerous symptoms of cancer-
related disorders is being generated by ever more powerful
experimental and computational instruments and technolo-
gies.3 Cancer is also classified as a developmental abnormality,
as it disrupts the normal development of cells regarding
differentiation and proliferation.4−8 Cancer cells typically
possess several cellular and biological processes including,
persistence, propagation, differentiation, cellular death, and
expression of cellular-type specific functions. Unfortunately,
the control of key components of cellular function has been
disrupted.9 In most of the situations, activation of oncogene(s)
and/or deactivation of tumor suppressor genes leads to
unrestrained cellular cycle progression and deactivation of
the apoptosis process.10,11 Compared with benign tumors,
malignant cancers develop metastasis, partly facilitated by

downregulation of cell adhesion receptors entailed for tissue-
specific cellular-cellular association and receptors upregulation
that specifically boosts cellular motility.2

Cancer development and progression is a complex process
involving various epigenetic alterations, including variations in
the histone acetylation and DNA methylation, genomic
mutational development leading to rehabilitated gene
expressions, and also affecting overall cellular functionality
within the normal cell.12 These phenotypic changes make the
normal transitional cell cancerous, eventually producing a
malignant phenotype.9 The major cause for the necessity of
developing numerous new diagnostic and therapeutic plat-
forms is to unravel and understand various molecular
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mechanisms associated with malignant alterations and
metastatic progressions in carcinogenic cells.9 According to
research, substantial genetic modifications may emerge early in
the natural history of a tumor.13 A greater understanding and
exploration of pharmacological conditions associated with
carcinogenesis might allow one to establish more sensitive
testing tools and targeted therapeutic anticancer strategies,
based on virulence mechanisms.13 The molecular picture of
carcinogenesis and progression is unwinding, courtesy of
modern technologies, and it appears to be a tangled
combination of processes occurring within and between cancer
cells and their surrounding tissue matrix.9

Tumors can originate and progress due to the loss of tumor
suppressor activity, the stimulation of oncogene functions, or
both.14 The major cellular mechanisms involved with the
alterations in tumor suppressor genes and oncogene vary
among tumor histology’s and may even differ between patients
with the same histology.14 For example, chromosomal
rearrangements that activate multiple oncogenes are involved
in developing several soft-tissue sarcomas and papillary thyroid
carcinomas. In contrary, the beginning of several colon and
pulmonary cancer types are demonstrated to entail oncogenes
and tumor-specific suppressor changes.14 Cancerous cell
growth and progression start with the tumor initiation steps,
which are followed by various steps in the tumor cell
proliferation stage.15 Tumor initiation begins with the first
cell to show growth dysregulation. The process is assumed to
necessitate at least two genomic changes, leading to the loss of
cellular capability to alleviate the operational deficiency and
becomes immortal as a result.16 If the progeny cells survive,
they may evolve into a progressive clonal populace, leading to
the formation of the primary tumor, and eventually leading to
the main tumor.16

The lack of normal cell proliferation restraint is the first and
most visible symptom observed during the progression of
cancer.17 Inhibition of regular contact occurs when cells
multiply until they attain a finite mass, which is identified and
established by the presence of specific growth factors; however,
the cancer cells do not exhibit this behavior.17 Suggested as a
factor in metastatic cell growth and survival in ectopic sites is if
the cells fail to experience apoptosis under a condition of
scarcity.18 Cancer cells ignore the cellular signaling that tells
normal and healthy cells to stop proliferating and move into
the cell cycle’s G0 phase, continuing to expand above the
typical density ratio.18 Senescence and apoptosis are ordinarily
tightly regulated processes that are severely disturbed. The
progression of these anomalies leads to the clinically significant

malignant phenotype.3,18 As the tumor grows, more mutations
occur, resulting in a diverse cell population. New phenotypes
that predict lower apoptosis rates, quicker division rates, low
metabolic necessities, improved capacity to attract neo-
vasculatures, and metastatic competencies acquire an advant-
age and eventually account for a larger extent of the tumor
size.19,20

Polyphenols are plant secondary metabolites that are
abundant in fruits, vegetables, cereals, and drinks. Because of
their possible beneficial impacts on human health, polyphenols
and other dietary phenolics are attracting growing scientific
attention.21 Epidemiological studies and meta-analyses strongly
suggest that long-term consumption of a plant polyphenol-rich
diet may protect against several ill health conditions, including
malignancy, cardiovascular and neurological complications,
diabetes, and osteoporosis.22,23 In various plant species, over
8000 polyphenolic chemicals have been found and nearly 4000
flavonoids have been discovered among them.24

The applications of polyphenols have been limited due to
their hydrophobic nature and lower oral bioavailability, which
can be overcome by encapsulating them into nanoformulations
leading to improved anticancer activity.25,26 The creation of
nanosystems to improve the physicochemical stability of
flavonoids can be done using novel techniques made possible
by nanotechnology.27,28 Both oil-in-water (O/W) and water-
in-oil (W/O) nanoemulsions (NEs), but particularly O/W
types, have been shown to be very successful for the delivery of
various lipophilic drugs, enhancing the in vitro activity of
chemotherapeutic agents, or improving the bioavailability of
flavonoids, but can only encapsulate drugs with similar
lipophilicity.29,30 Water-in-oil-in-water (W/O/W) NEs strat-
egies containing lipophilic, hydrophilic, and amphiphilic
molecules were developed to get around this restriction.31

Growing interest recently has been seen in using the principles
of structural design to increase the functional performance of
products based on emulsions.32 Traditional microencapsula-
tion techniques cease to provide polyphenols stability in
physiological environments, because of their greater particle
size, lower zeta potential, and also lower drug entrapment
efficiency.32 Thus, herein in this review work we have
summarized and discussed the basic concepts, classification,
delivery approaches, and anticancer mechanism of various
polyphenols and polyphenols-encapsulated NEs with improved
cancer therapy.

Figure 1. Various high and low energy processes for manufacturing nanoemulsion-based drug delivery strategies.
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2. NANOEMULSION: A POTENTIAL CARRIER FOR
DELIVERING POLYPHENOLS IN CANCER THERAPY

Nanoemulsions are a class of drug delivery system, mostly used
to deliver compounds with low water solubility.32,33 NEs are
dispersions of either O/W or W/O in colloidal forms, where
an appropriate surfactant stabilizes the two immiscible
liquids.34 NEs are further classified as multiphase NEs (W/
O/W) and biphasic (O/W or W/O) based upon the
composition and relative distribution of the continuous
dispersion medium and the internal dispersed phase. The
proportional volumes of internal and external mediums in a
NE are measured using the phase volume ratio (Φ), which also
determines its droplet number and overall stability.35 The NEs
can be designed and fabricated using various high and low
energy processes (Figure 1).36,37

Nanoemulsion is mainly a type of a colloidal dispersion, that
usually contains an oil(s) phase, surfactant(s), cosurfactant(s),
and an aqueous phase, while its core determines the influence
over the drug’s therapeutic effect, globular size, and other
physico−chemical properties, along with its stability.34,38

Unlike coarse emulsions which have a milky white color
appearance (due to the presence of micron size droplets that
participate in multiple light scattering), colloidal emulsions
exhibit a clear or cloudy appearance because of the small
droplet size (mean droplet diameter less than 500 nm).39,40

Moreover, the encapsulation further increases the plasma half-
life and protects the drug from degradation.41 The optimal
concentration of emulsifiers or surfactants should lower the
interfacial tension, absorb quickly at the interface, and use
stearic or electrostatic interactions to stabilize the surface.30 An
amphiphilic molecule, such as phospholipids, polysaccharides,
amphiphilic proteins, surfactants, or polymers are a few
examples of emulsifiers. PEG-modified NEs allow prolonged

circulation times and selective targeting.30 Additional options
include ripening retarders, weighing agents, and texture
modifiers. Nonionic surfactants such as Spans (sorbitan fatty
acid esters) could also be employed.30

Either a spontaneous emulsification process, like that of a
self-nanoemulsifying drug delivery system (SNEDDS), or a
high-energy dispersion approach can be used to prepare NEs.42

When poorly water-soluble drugs are prepared as NEs, they
possess superior both in vivo bioavailability and in vitro
dissolution.42 As a result, for poorly soluble anticancer drugs,
NEs have emerged as a viable drug delivery method.43,44 NEs
can be formulated into variety of biphasic delivery systems
including creams, gels, sprays, foams, aerosols, foams and can
equally be delivered employing various routes such as oral,
topical, transdermal, nasal, intravenous, ocular, and pulmo-
nary.35 The properties of NEs such as greater surface area,
modifiable surface charge, higher circulation half-life, precise
targeting, and formulation imaging capability that are necessary
to create an effective therapeutic impact have drawn increased
attention in the field of cancer therapy research.45

NEs, because of their versatile characteristic features, have
been a preferred choice of researchers in treating several types
of cancer including colorectal,46 breast,47 ovarian,48 lung,49

brain,50 leukemia,51 prostate,52 and melanoma.53 NEs ranging
in size from 20 to 100 nm can get encapsulated and
accumulate in tumor tissues (Figure 2) because they are
both large enough to evade rapid renal clearance and small
enough to flow through blood arteries.54 The probability of
opsonisation by the mononuclear phagocytic systems (MPS)
does, however, rise with this range of sizes.54 NEs can readily
concentrate in vascularized tissues that surround cancer cells
because of their particle size and capability to permeate
through barriers and can be modified based on the type of

Figure 2. Schematic representation showing the general mechanism of targeted delivery of drug encapsulated in nanoemulsion. The major
anticancer mechanism includes (1) cell growth inhibition and apoptosis; (2) oncogene receptor targeting; (3) necrosis; (4) DNA targeting and
rupturing nucleic acid sequence; and (5) chemokine and cytokine receptor activation triggering pro-/anti-inflammatory cellular and molecular
responses.
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drug(s) encapsulated, and site-specific targets.45 The technique
by which ligands attached to the surface of NEs can identify a

specific molecule on the tumor tissue is referred to as active
targeting.55 Additionally, it exploits the surroundings of the

Figure 3. Schematic illustration representing different biological mechanisms involved in the chemotherapeutic potentials of natural dietary
polyphenols. Created with BioRender.com.

Figure 4. Schematic illustration representing biosynthesis and chemical structures of various flavonoids. Reproduced with permission from ref 63.
Copyright 2021 MDPI.
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tumor. Because it also creates a novel approach of delivering
the medicine precisely to specific carcinogenic cells, it is more
effective than passive targeting.55 This issue can be avoided by
coating the NEs with hydrophilic polymers.56 Phosphatidyl-
serine, a negatively charged molecule found on the surface of
tumor cells, makes positively charged particulates the most
prospective to be preserved by cancer cells for extended
periods.57 Nevertheless, passive targeting cannot distinguish
malignant tissues from healthy tissues.58 Comparing NEs to
other drug delivery systems, their primary advantage is that
they could be engineered to selectively target the tumor or
cancerous cells while preventing multidrug resistance (MDR)
situations.30 Delivery by passive targeting relies on the ERP
effect, which is prevalent in tumor tissues. Since active
targeting employs targeting moieties for cancer cells in
addition to the EPR effect, it may add even more beneficial
characteristics to the formulation.59 Compounds that resist
MDR mechanisms can coencapsulate, or bind, to the surface of
multifunctional NEs.15,17,30

3. CLASSIFICATION OF VARIOUS POLYPHENOLS
AND THEIR ROLE IN CANCER THERAPY

Polyphenol’s diversity and vast dispersion in plants have
resulted in various classifications for these naturally occurring
chemicals. Polyphenols have been categorized based on their
chemical structure, biological function, and source of origin.
Additionally, the bulk of plant-mediated polyphenols are
primarily found in the form of glycosides with several sugar
units and acylated sugars that are arranged at different
positions throughout the polyphenol skeleton.25,26

Chemically, the polyphenols are defined as phytocompounds
having phenolic structure-based properties and exhibit diverse
multiple subtypes, including flavonoids, phenolic acids, lignans
(LIG), and stilbenes (STB), that are also further individually
classified in various subgroups.25,26,60 In accordance to
epidemiologic evidence, a food intake having a high content

of fruits and vegetables could minimize the probability of
occurrence of specific cancers.61 Natural polyphenols have
implicated potential anticancer or antitumor activity due to
various biological mechanisms associated with different
signaling pathways such as cell propagation, differentiation,
relocation, angiogenesis, metastasis, and cellular death (Figure
3). These phytocompounds have shown the capability to
specifically inhibit the growth or kill carcinogenic cells due to
dysregulation of death processes that are typically associated
with cancer etiopathology and thus can be used as potential
chemotherapeutic agents.60,62

3.1. Flavonoids. The flavonoids, broadly categorized as
anthocyanidins, flavanols, flavanones, flavones and flavonols
(Figure 4), are mainly synthesized from 2′-hydroxychalcone
produced through catalysis of p-coumaroyl CoA and malonyl
CoA using chalcone synthase enzyme.63 Flavonoids have
several biological properties that may assist in understanding
why vegetables and fruits are associated with a lesser risk of
lung cancer, along with antioxidant activity, inflammation

Figure 5. Chemical structures and configurations of various phenolic acids: (a) hydroxycinnamic acid derivatives and (b) hydroxybenzoic acid
derivatives. Reproduced with permission from ref 97. Copyright 2021 MDPI.

Figure 6. Chemical structures of various stilbenes. Reproduced with
permission from ref 104. Copyright 2022 MDPI.
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inhibition, and antimutagenic and antiproliferative proper-
ties.64 Throughout the plant kingdom, the anthocyanidins (or
anthocyanins) are omnipresent. Anthocyanins (ACNs) are
typically glycosylated with glucose, galactose, arabinose,
rutinose, and other plant sugars.65 Anthocyanidin (ACDs)
refers to the aglycone forms of cyanidin, delphinidin, peonidin,
petunidin, pelargonidin, and malvidin.65 Nonacylated mono-
glycosylated ACNs more competitively inhibited the cell
growth of cancerous cells than triglycosylated ACNs and
pelargonidin aglycones.66 On either hand, it has been
recommended that a combination of several ACNs might be
more efficient than individual ones in cancer therapy.66 A
combined effect of suboptimum concentration levels of ACDs,
vanquished the advancement of lung cancerous cells synergisti-
cally.67 In accordance with the available evidence, the
absorption and elimination parameters were influenced mostly
by the sugar moiety and the structure of the ACDs aglycone.68

Delphinidin, one of the many ACNs, has potent anticancer
properties. Several research findings have shown that
delphinidin treatment causes apoptotic cell death and seizes
the cell cycle in different types of cancer.69 Two types of
ACNs, cyanidin-3-glucoside and peonidin-3-glucoside(P3G),
extracted from black rice significantly induced apoptosis and
preferentially minimized proliferation and growth of HER2
positive breast cancer cells.70 Furthermore, P3G significantly
reduced invasion of lung cancer cells and cyanidin-3-O-
sambubioside extracted from fruits of the Acanthopanax
sessiliflorus plant restrained angiogenesis and breast cancer
cell progression.67

Flavonols, another subgroup of flavonoids, is used in
remedying breast and gynecological cancer. Breast cancer is a
heterogeneous disease because the underlying cause, response
to treatment, and diagnosis of hormone receptor-positive and
negative breast cancers differ.7 Women who consumed more
flavan-3-ols had a reduced risk of ER2, but not ER+, breast
cancer.5 One member of flavonol is epigallocatechin gallate
(EGCG). EGCG suppressed the nicotine migration and
growth of A549 lung cancerous cells, which was nicotine
induced, as tobacco use is a familiar risk factor for lung
cancer.71 The anticancer properties of EGCG may involve
hormone activity modulation, due to which it is used in cancer

treatment.72 Chemo preventive effects of EGCG involve
preventing many signaling pathways in gastric and colon
cancer.73 Furthermore, the cancer stem cell is involved in
chemo resistance and cancer recurrence. EGCG has been
shown to inhibit cancer stem cell advancement in breast,
colorectal, neck, and head cancers in both in vitro and in vivo
studies.74−76 Since androgen deficiency is a primary remedy for
prostate cancer, it was confirmed that EGCG can biologically
alienate the androgen level, indicating to downregulation of
prostate tumor progression.77 Procyanidins also show a
chemotherapeutic effect in colorectal cancer as an Caco-2
colon cancer cell.78

In the subgroup of flavanones, prenylated flavanones show
potent anticancer activity in human prostate cancerous cell
lines (PC-3 and DU-145) as well as a human hepatocarcinoma
cell line.79 Both naringenin (NG)80 and hesperetin (HP)81

alleviated cancer cell proliferation, which lead to death of the
cancer cells in gastric cancer cells. Besides this, NG inhibited
cancer cell invasion in HCC cells by down-regulating multiple
signaling pathways, which was also used in the treatment of
HepG2 liver cancer cells as well as breast cancers.82 Because
cancer cells have a high glucose uptake rate and utilization, this
plays a crucial role in cancer development.83 As per one study,
the antiproliferative effects of HP on breast cancer may be due
to the reduction of glucose uptake.84 Furthermore, dietary HP
demonstrated antiproliferative properties against chemical-
induced colonic cancer and showed potent anticancer
properties in cervical cancer cells.67 Another category
consisting of apigenin (AG),85 chrysin,86 and luteolin (LT)87

exhibits potential effects in lung cancer cell apoptosis. In the
group of flavonols, quercetin (QT) and kaempferol (KF), the
two most ubiquitous flavonol aglycones, each have at least 279
and 347 unique glycosidic combinations.23 The most
significant attribute of this flavonoid, QT, is its ability to
showcase an effective antioxidant property and prevent
cancer.88 QT’s ability to permeate through cellular membranes,
due to its lipophilicity, causes inhibition of several intracellular
pathways and are primarily involved in the prevention of
various cancer types such as lung, liver, breast, prostate, colon,
and cervical.89 It also exhibits anticancer activity through a
variety of cellular signaling mechanisms and the ability to block

Figure 7. Chemical structures of various dietary lignans. Reproduced with permission from ref 107. Copyright 2018 MDPI.
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enzymes that cause carcinogens to be produced.90 KF also
shows high potential as a chemotherapeutic agent in cancer of
the lung, gastric, colon and breast.91 Daidzein (DZ) induces
apoptosis through mitochondrial apoptotic pathways in various
cancer types, including breast, gastric, and hepatic, by varying
the Bax/Bcl-2 ratio and triggering the caspase cascade.92

Genistein (GT) exhibits anticancer potential by inducing
various mechanisms, including apoptotic induction, antimeta-
static, cell cycle arrest, antiangiogenic, and anti-inflammatory
effects.93

ACDs are commonly called anthocyanin, and out of the 31
anthocyanins, the most widely available are cyanidin,
delphinidin, and pelargonidin, which along with their
methylated derivatives account for 90% of the ACNs. Major
dietary sources for this are berries, grapes, cherries, plums, and
pomegranates.94 Catechins, also known as flavan-3-ols or
flavanols, are a subtype of flavonoid. Flavanols are composed of
simple monomers (catechins), which consist of epicatechin,
epigallocatechin (EGC), EGCG, and polymers and/or
oligomers, the latter two of which are identified as pro-ACDs
or condensed tannins. Flavanols are mostly found in variety of
foods, including apples, pears, legumes, tea, cocoa, and wine.95

NG from grapefruits and HP from oranges are the two most
important flavanones.96 Prenylated flavanones, furanoflava-
nones, pyranoflavanones, and benzylated flavanones, for
example, have distinct substitution patterns, resulting in
many substituted derivatives in this subgroup.96 Flavones is
another sub group of flavonoids and typically consist of AG
and LT glycosides. Parsley and celery are excellent sources of
flavones.96 Another important group of flavonoids is flavonols
that consist of QT, KF, myricetin, isorhamnetin, galangin
(GG). Major sources of flavonols are berries, apples, broccoli,
beans, tea.25 GG is a flavonoid naturally present in oregano.
Isoflavones have been classified as phytoestrogens due to
structural similarities to estrogen. Representative groups of this
subclass include GT and DZ from soy.25

3.2. Phenolic Acids. Hydroxybenzoic acid (HBA) and
hydroxycinnamic acid (HCA) are the two main groups
classified under phenolic acids (PAs) (Figure 5). Hydrox-
ybenzoic acid consists of ellagic acid (EA) and gallic acid
(GA). These are found in grapes, walnuts, pomegranate,

berries, wine, and green tea.26,97 HCA comprises of two major
types chlorogenic acid and ferulic acid. The cereal grains,
specifically the external surface of grain, are the main
nutritional sources of ferulic acid.26

PAs are well-known for their beneficial effects as medicinal
compounds in treating various diseases, including hyper-
glycemia, cardiovascular, neurodegenerative diseases, and
cancer.98 EA acts as a potential chemotherapeutic agent in
colon carcinogenic cells and suppresses breast cancer tumor
development and angiogenesis as well as prostate malignant
tumors invasion and motility.99 GA has a variety of therapeutic
activities, including anticancer, antimicrobial, and anti-inflam-
matory.100 GAs manifest effective anticancer properties in
various cancer cell lines like gastric, cervical, breast, and
prostate cancers.101 Ferulic acid, a pro-oxidant at high levels,
has gotten a lot of attention for its anticancer properties. As
many cancer cells possess metal ions like copper, ferulic acid is
selectively cytotoxic to them as compared to cancer cell
lines.102

3.3. Stilbenes and Lignans. One more important class of
polyphenols is natural stilbenes (STBs). Although the
existence of natural STBs is very limited to only few plant
varieties, numerous studies have been conducted on natural
STBs due to the notable biological advantages of resveratrol
(RVT), a key constituent of this class.103 Pterostilbene and
piceatannol are few other representative members of this class.
They are found in grapes, berries, and red wine.
Natural STBs (Figure 6) are an essential member of

nonflavonoid phytocompounds containing polyphenolic chem-
ical configuration and indicated by the existence of a 1,2-
diphenylethylene nucleus.103,104 One of the most studied
STBs, RVT (3,4′,5-trihydroxy-trans-stilbene), exhibits poten-
tial anticancer properties preventing and treating different
cancer types.105 Anticancer molecular mechanisms of RVT
includes signaling pathways associated with cell propagation
and genome uncertainty, receptor tyrosine kinases and
extracellular growth factors, formation of multiprotein
complexes and cellular metabolism, cytoplasmic tyrosine
kinase signaling, signal transduction, apoptosis, immune
surveillance, and hormone signaling.106

Figure 8. Schematic representation of the combined use of PTX/DCK and QRN in oral treatment had inhibitory effects on cell migration and
proliferation in human lung carcinoma (A549). Reproduced with permission from ref 115. Copyright 2018 MDPI.
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Lignans (LIGs) due to their structural resemblance steroids
are classified as phytoestrogens.26 Representative members of
this group are secoisolariciresinol, matairesinol, medioresinol,
lariciresinol, pinoresinol, syringaresinol (Figure 7).107 LIGs are
found in many plants, including flaxseed and sesame.26,108

Studies have investigated the anticancer bioactivity of dietary
lignans. LIGs have historically been linked to therapeutic
benefits like cardioprotective effects, osteoporosis, and cancer
management, especially hormone-related cancer like breast
cancer.109

According to a study, RVT treatment increases the
chemosensitivity of certain human nonsmall-cell lung carcino-
ma cells.110 RVT and RVT-conjugates show potent anticancer
properties in gastric, colon, and breast cancer cells.105

Pterostilbene is primarily found in blueberries and is a
naturally occurring dimethoxylated analogue of RVT.111 The

lipophilicity, oral bioavailability, and biological half-life of
pterostilbene are greater than those of RVT, showing better
chemotherapeutic activity.67

4. POLYPHENOLS-LOADED NANOEMULSION IN
CANCER THERAPY
4.1. Flavonoids-Loaded Nanoemulsion in Cancer

Therapy. Combining anticancer agents is a common practice
to prevent toxic side effects, overcome cross resistance, and
achieve a therapeutic effect that is synergistically enhanced.112

Flavonoids have intriguing anticancer effects, including the
ability to reverse anticancer drug resistance and activity against
cancer metastasis or growth-related mechanisms.96 Usually,
incorporating a chemotherapeutic drug to flavonoids may
increase therapeutic efficiency synergistically, leading to
reduced dose and dosing frequency and so chances of toxicity

Figure 9. (a) Size and shape by transmission electron microscope. Effects of CE and CNE on (b) caspase-3 (b), caspase-8 (c), and caspase-9 (d)
activities of prostate cancer cell DU-145 [CE treatment: E10 (10 μg/mL), E15 (15 μg/mL), and E20 (20 μg/mL); CNE treatments: N10 (10 μg/
mL), N15 (15 μg/mL), and N20 (20 μg/mL). Data represented as mean ± s.d. (n = 3), with data bearing different capital letters (A−F) to denote
significantly different values at p < 0.05. Effects of CE, CNE, and paclitaxel (PTX) on (e) body weight, (f) tumor volume, (g) tumor weight, and
(h) serum EGF and VEGF levels of nude mice. [E10 (10 mg/kg BW) and E20 (20 mg/kg BW), with the same injection volume (0.2 mL), while
N10 and N20 are CNE treatments at the same dose. For PTX treatment (0.2 mL and 10 mg/kg BW) was used. Data are shown as mean ± s.d. (n =
3), and capital letters (A−E) and small letters (a−d) denote significant different values at p < 0.05. Reproduced with permission from ref 122.
Copyright 2021 MDPI.
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is less or ngligble.113 In a study, researchers developed roselle
extract-loaded NE (W/O) for pulmonary delivery. At pH 6.5
buffer, the roselle extract’s in vitro release was 44.7%; at pH 7.4,
it was 40.7%. ACNs are used to treat lung cancer, but their use
is limited due to physiological instability and lower oral
bioavailability. This study created a stable roselle extract NE
without them. The anthocyanin release rate was relatively slow,
demonstrating its applicability as a nanocarrier for pulmonary
delivery.114

Pangeni et al.115 formulated W/O/W multiphase NEs for
the simultaneous administration of Pemetrexed (PTX) and
QT. This formulation had synergistic anticancer effects and
improved oral absorption, as it increased the PTX’s permeation
through the intestinal membrane and also enhanced the
solubility of QT. The ideal NE had a droplet size, PDI, and
zeta potential of 13.2 nm, 0.095 nm, and 3.99 mV, respectively.
As shown in Figure 8, the combined use of PTX/Nα-
deoxycholyl-L-lysyl-methylester (DCK) and QT in oral
treatment had inhibitory effects on cell migration and
proliferation in human lung carcinoma (A549).115 Arbain et
al.116 created a palm-based NE to deliver QT to the lung via an
aerosol. Zetasizer results showed that the NE had a globular
size of 106.1 ± 0.44 nm and a surface charge of −43.7 ± 3.57
mV.116 Samadi et al.117 conducted a novel approach to increase
loading effectiveness and achieve QT sustained-release
simultaneously. They loaded QT into an agarose-polyvinyl-
pyrrolidone (PVP)-hydroxyapatite (HAp) hydrogel nano-
composite, increased loading efficiency by up to 61%,
encapsulated it within W/O/W Nes, and exhibited potential
cell apoptosis against the MCF-7 human breast cancer cell
line.117

Hesperidin (HP)-loaded NEs (HP-NE) were prepared by
Magura et al.,118 via spontaneous emulsification to improve the
solubility, bioavailability, and efficacy of hesperidin for treating
breast cancer using MCF-7 cell lines. Cell cycle seizure in the
G2/M phase and death of cells through apoptosis were both
brought on by treatment with HP-NE, indicating that HP-NE
may be used as a therapeutic agent to treat breast cancer.118

The anticancer effect of optimized NG-loaded showed high
stability, and controlled NG release from the NE was followed
by an initial burst release. It also exhibited potential anticancer
effect studies against A549 lung carcinoma cells. Thus, results
indicated that the NE may be an appropriate route of drug
administration to improve NG’s therapeutic potential of lung
cancer.119

QT combined with vincristine exhibited a similar effect as
that of verapamil, and docking studies revealed that QT binds
specifically to ABCB1 in the analogous region. QT-loaded NE
maintained its cytotoxic and cytostatic effects, and the
unloaded-NE was capable to restrain efflux effects of ABCB1.
The results indicated that QT might be a potential drug that
can help in overcoming resistance in cancerous cells.120 In
another study, researchers stated the chemotherapeutic
potential of QT-loaded NE (∼50 nm) against human cancer
cells in cytotoxicity activity (IC50 values; 24 h) order: HeLa >
A549 > MIA PaCa-2.29 Altamimi et al.121 formulated LUT-
loaded cationic NEs (LCNs) composed of bergamot oil (BO).
The optimized formulation exhibited spherical appearance
with particle size, PDI, and zeta potential values of 112 nm,
0.15, and +26 mV, respectively. The release rate of the drug
was significantly improved after encapsulating to an emulsion
system. Moreover, optimized formulation also exhibited an
improved permeation flux, drug loading, and enhancement
ratio than the drug suspension. Thus, this system can be used
for targeting various cancer types, specifically breast cancer.121

Catechin NEs (CNE) fabricated from the Oolong tea leaves
wastes were investigated against the prostate cancerous cell
lines DU 145 and DU 145-induced tumors in animal model
(mice) (Figure 9). CNE, compared to catechin extract (CE),
exhibited greater stability with particle size, zeta potential, and
entrapment efficiency 11.3 nm, −67.2 mV, and 83.4%,
respectively. CNE effectively inhibited growth of DU 145
cells and upregulated caspase-8/-9/-3 levels, causing cellular
apoptosis. CNE (20 g/mL) and PTX (10 g/mL) showed
maximum therapeutic efficacy and inhibited tumor weight and
volume.122 Tran et al.123 synthesized gold nanoparticles (GNs)
using mountain ginseng (MG) and further loaded them to O/
W NE (MG-GNNEs). MG-GNNEs significantly exhibited
greater inhibitory effects against pro-inflammatory genes and
proteins than blank MG-GNs and silydianin.123

Chitosan-coated LT-loaded NEs (CLNEs) were developed
which exhibited improved permeation through the nasal
mucosal membrane ex vivo with extended LT release up to
72 h in vitro. Pharmacokinetic studies results showed that the
intranasal administration of CLNE showed a 10-fold upsurge
in half-life and 4.4 times augmentation in drug’s biodistribution
in brain tissues. These findings suggest that CLNE could act as
a potential strategy for the management of brain disease/
disorders like neuroblastoma.124 Arachis hypogaea oil NE
(ANE) was formulated and exhibited improved therapeutic
efficacy against A549 lung carcinoma cells by inhibiting the cell
viability and also antioxidant activity at 270.42 g/mL and
208.51 g/mL.31

Figure 10. Schematic of proposed mechanism associated with vanillic
acid: cell proliferation and angiogenesis inhibitory effect mainly by
promoting downregulation of Hypoxia-Inducible Factor-1 alpha
(HIF-1α) through inhibiting mTOR/p70S6K/4E-BP1 and Raf/
MEK/ERK signaling pathways. Reproduced with permission from
ref 125. Copyright 2019 MDPI.
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4.2. Phenolic Acids-Loaded Nanoemulsion in Cancer
Therapy. PAs are plant secondary metabolites which in recent
years have gained tremendous recognition as potential
anticancer properties. These comprise of numerous phenolic
compounds which contain one or more carboxylic acid
groups.98 These can act as a promising anticancer agent by
inducing apoptosis and reducing cell proliferation, by
influencing diverse attributes of cancer including angiogenesis,
tumor growth, cellular differentiation, and metastasis.98 Dietary
vanillic acid (VA) inhibited Raf/extracellular signal-regulated
kinase (ERK) kinase (MEK)/ERK, rapamycin-p70 ribosomal
protein S6 kinase (p70S6K), and eukaryotic initiation factor
4E-binding protein-1 (4EBP1) pathways, when investigated in
vitro on human colon cancer HCT116 cell lines (Figure 10).
Moreover, they also distorted the tube formation and inhibited
the expression of proteins VEGF and EPO, inhibiting
angiogenesis. Cell cycle arrest at G1 phase and inhibition of
proliferation was also observed in in vitro studies. Similar
results were observed when VA was administered to a
xenografted tumor model.125

Raviadaran et al.126 evaluated the therapeutic potential of
tocotrienols (TT) and caffeic acid (CFA) loaded in W/O/W
multiphase NEs, further coloaded with anticancer agent
(cisplatin’ CP), against carcinoma cells. The prepared
nanoformulation was successful in improving the apoptosis
by 23.1% and 24.9% in the A549 and HepG2 cells,

respectively. The production of ROS was also found to be
doubled in HepG2 cells (30.2%) when compared to A549 cells
(16.9%), while cell cycle arrest was observed at G0/G1 in both
the cell lines used for the study.126

4.3. Stilbenes/Lignans-Based Nanoemulsion in Can-
cer Therapy. Stilbenes (STBs) compounds are found in
numerous plant and tree species. They are commonly found in
any medicinal plants. Compounds such as RVT, piceatannol,
isorhapontigenin, pinosylvin, rhapontigenin, pterostilbene
constitute stilbenes. They have shown various pharmacological
activities including anticancer activity.127 Rinaldi et al.
encapsulated RVT into an O/W NEs, which exhibited
improved bioavailability and decreased cell viability in
human T24 bladder cancer cells.128 Similarly, in another
study, lipid-based self-nanoemulsifying delivery system encap-
sulating RVT was prepared, which exhibited improved
cytotoxicity against the MCF-7 breast cancer cell line.129

Isorhapontigenin (IRP), an analogue of RVT, also has
shown promising results as a potential anticancer molecule.
The anticancer effects of IRP (Figure 11) were evaluated
against the MCF7, T47D, and MDA-MB-231 cell lines, where
they inhibited cancer cell growth and controlled tubulin
polymerization using the MAPK/PI3K pathway.130

Lignans, a class of polyphenols, are abundantly found in
various plants, exclusively in seeds and whole grains.
Antioxidant and anticancer properties of LIGs have been

Figure 11. Graphical representation highlighting the anticancer effects of isorhapontigenin that was evaluated against the breast cancer (MCF7,
T47D, and MDA-MB-231) cell lines. IRP-loaded nanoemulsions inhibited cancer cell growth and controlled tubulin polymerization using the
MAPK/PI3K pathway. Reproduced with permission from ref 130. Copyright 2019 MDPI.
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previously discussed. The antiproliferative property of
secoisolariciresinol diglucoside, a LIG extracted from the
plant Linum usitatissimum seeds, was evaluated on a MCF-7
cell line, where it inhibited tumor growth.131 Similarly, the
anticancer properties of secoisolariciresinol and its metabolites
secoisolariciresinol, enterolactone, and enterodiol have been
discussed. In a study by Chen at al., incidence of mammary
tumor was reduced in a rat model.132 Moreover, in rat models,
morphological changes were observed in terminal bud end of
mammary glands with administration of flax seed extracts. An
enterolactone-induced apoptotic mechanism inhibited tumor
growth in colo201 (human colonic carcinoma cell line), when
investigated both in vitro and in vivo.
Demark-Wahnefried et al. investigated the use of flaxseed

extracts for their antiproliferative effects on the antigens
specific to prostrate and benign prostrate epithelium.133

Similarly, Inbaraj et al.134 synthesized the RVT-NEs, which
exhibited a higher storage stability with a mean particle size,
zeta-potential, and entrapment efficiency of 14.1 nm, −49.7
mV, and 95.5%, respectively. The NE inhibited the pancreatic
cancer cells (BxPC-3) by down-regulating cyclin A, cyclin B,
CDK1, and CDK2 expressions and up-regulating p53 and p21
expressions, leading to cellular apoptosis.134 Kotta et al.135

developed RVT-loaded thermosensitive hydrogels for effective
delivery of RVT against breast cancertherapy, as it exhibited
cytotoxic effects on breast cancer cells.135 Furthermore, few
specific findings of anticancer effects and associated mecha-
nism of polyphenols-loaded NEs against various cancer types is
tabulated in Table 1, and the preclinical/clinical evidence of
various polyphenols-loaded NEs have been enlisted in Table 2.

5. CONCLUSION AND FUTURE PERSPECTIVE
Cancer is one of the major causes of death worldwide, even the
second foremost cause related to noncommunicable diseases.
Even though, a significant reduction of 31% in cancer-related
deaths is observed in the previous 30 years, possibly due to
improved lifestyle choices, the disease still poses a significant
threat to public health systems across the globe. Natural
polyphenols are organic compounds obtained from plants that
are identified by the presence of two or more phenol units in
their structure.158 A plethora of research has been conducted
on polyphenols to investigate potential health advantages,
including antioxidant, anticancer, antimicrobial, diabetes,
antiviral, cardioprotective effects, neurodegenerative disease,
and aging.159 The polyphenols can block cell cycle events,
induce apoptosis, and modify signaling pathways to eliminate
cancer cells. Moreover, polyphenols regulate the actions of
enzymes that promote the malignant cells growth. Recent
investigations have come up with findings showing association
of the natural polyphenols with anticancer effects mostly due
to inhibiting DNA interaction, antiangiogenic, and antimeta-
static effects against various cancer types.160,161

NEs possess some desirable characteristics such as (1) they
are usually transparent giving them a pleasing appearance, (2)
naturally resistant to the typical destabilizing mechanisms that
are present in emulsions, (3) offer numerous chances to
increase the oral bioavailability of very lipophilic drugs.33,35

Since NEs allow for real-time cancer surveillance with minimal
invasion and destruction, their usage as imaging agents is
rapidly growing. Conventional imaging techniques, such as
magnetic resonance imaging, ultrasound, and X-ray tomog-
raphy, all depend on labeling a target NE with a fluorophore or
radioactive isotope.33 Vaccine carriers in NE formulations thatT
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target tumors are also in the more recent stages of research. As
was previously mentioned, antigens and other macromolecules
can be delivered via NEs and trigger an advantageous immune
system response that is particular to the antigen. Thus, to
develop a highly precise interaction, NEs allow a extended
circulation duration and uptake of cells having the specific
antibody for that antigen over their exterior surficial phase, or
vice versa.162 In the future, additional epidemiological findings
using polyphenol-mediated biomarkers are desired and can be
helpful to measure the anticancer effect of dietary polyphenols
on cancer types. More extensively, randomized clinical trials
must be conducted to offer more dependable evidence.
Furthermore, the bioavailability of polyphenols should be
assessed and improved with focused consideration for their
safety.
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