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eLife assessment
Through a theoretical approach, this study makes important contributions to our understanding of 
the evolutionary causes of the ageing process. Using a simple individual-based model and computa-
tional simulations, the authors provide convincing evidence that ageing can be a trait under natural 
selection, opening the door for further discussion in the context of lifespan extension research.

Abstract Signs of ageing become apparent only late in life, after organismal development is 
finalized. Ageing, most notably, decreases an individual’s fitness. As such, it is most commonly 
perceived as a non-adaptive force of evolution and considered a by-product of natural selection. 
Building upon the evolutionarily conserved age-related Smurf phenotype, we propose a simple 
mathematical life-history trait model in which an organism is characterized by two core abilities: 
reproduction and homeostasis. Through the simulation of this model, we observe (1) the conver-
gence of fertility’s end with the onset of senescence, (2) the relative success of ageing populations, 
as compared to non-ageing populations, and (3) the enhanced evolvability (i.e. the generation of 
genetic variability) of ageing populations. In addition, we formally demonstrate the mathematical 
convergence observed in (1). We thus theorize that mechanisms that link the timing of fertility and 
ageing have been selected and fixed over evolutionary history, which, in turn, explains why ageing 
populations are more evolvable and therefore more successful. Broadly speaking, our work suggests 
that ageing is an adaptive force of evolution.

Introduction
Ageing is the umbrella term used to describe the processes that take place when an organism’s 
capacity to thrive diminishes with time. Patterns of ageing vary greatly given the organism, from negli-
gible senescence to post-reproductive death through progressive age-dependent mortality increase 
(Jones et  al., 2014). While ageing, as an observable process, is evident, the evolutionary role of 
ageing is unclear and conceptually challenging. An ageing individual is less fit, nevertheless, ageing 
seems to be broadly present through evolutionary time. Our work aims to explore the question, "is 
this mere chance– is ageing strictly a by-product of other things under selection– or is it somehow 
adaptive”? Soon after Charles Darwin published his theory of evolution, August Weismann situated 
ageing within this framework (Weismann, 1882) by theorizing that, “there exists a specific death-
mechanism designed by natural selection to eliminate the old, and therefore worn-out members of a 
population” (Gavrilov and Gavrilova, 2002). Since then, however, it is mostly accepted that “ageing 
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is not adaptive since it reduces reproductive potential” (Kirkwood and Holliday, 1979) and hence, 
fitness. Weismann’s own theories eventually evolved to more closely represent this current position.

At present, ageing is typically viewed as a ‘side-effect’, or byproduct, of other processes under 
selection (Fabian, 2011), which implies that ageing, or the mechanisms that cause ageing, are neither 
selected nor adaptive— precisely as capacities that would prove advantageous for a given population. 
This view took precedent starting in the 1950s and it is now assumed that the genetics or molecular 
processes that drive ageing help to explain how ageing has evolved (Gavrilov and Gavrilova, 2002). 
Peter Medawar’s theory of mutation accumulation defends that ageing is caused by the progres-
sive accumulation of deleterious mutations with effects that show only late in life (Medawar, 1953). 
Williams’ antagonistic pleiotropy theory goes further than Medawar’s by presupposing the existence 
of antagonistic genes and mutations: beneficial at an early age, these genes/mutations prove disad-
vantageous at a later age (Williams, 1957). Evolutionary conserved genes involved in both the regu-
lation of longevity and organismal growth were discovered in the model organism Caenorhabditis 
elegans (Kenyon et al., 1993) and later shown to be conserved in flies (Clancy et al., 2001), mice 
(Blüher et al., 2003), and humans (van Heemst et al., 2005). Thus, genetic modulators for longevity 
exist and express themselves through evolutionarily conserved physiological mechanisms. With genes 
involved in the onset of longevity, there is a potential substrate for selective pressure to apply. Regard-
less, it is generally accepted that ageing is neither a programmed nor beneficial trait for species 
(Kowald and Kirkwood, 2016).

The Smurf phenotype is a simple age-associated intestinal permeability phenotype that was 
first observed in Drosophila (Rera et  al., 2011). Evolutionarily conserved in nematodes, zebrafish 

eLife digest It is a question as old as Darwin’s theory of evolution itself: how is ageing affected 
by natural selection? The prevailing view is that the process of biological ageing is not adaptive and 
therefore not directly subject to selection pressures. Take for example a gene causing a fatal disease 
late after an average individual had reproduced, thus being passed on to the next generation despite 
its detriment to the individual. This suggests that natural selection acts less strongly on such genes, 
which can therefore accumulate and cause aging if they do not impact an organism’s reproductive 
fitness earlier in life.

However, many studies have shown that specific genes control an animal’s lifespan and the onset 
of ageing through evolutionarily conserved mechanisms. For example, in fruit flies, aging can be 
categorised into two distinct phases determined by the manifestation of the so-called Smurf pheno-
type associated with accelerated signs of ageing and an increased risk of death. A pattern where the 
offspring of older parents live less long than those of younger parents has also been observed across 
species, also known as the Lansing effect. In this case, ageing can affect the reproductive success of 
future generations and can therefore be subject to selection pressures.

Roget et al. looked at the trade-offs between an individual’s reproduction and homeostasis using 
a mathematical model to address whether the distinct phases of aging – as seen in the Smurf pheno-
type – can appear and be maintained throughout evolution. Using a mathematical model, Roget et al. 
simulated individuals possessing only one copy of two genes. One controls the duration of reproduc-
tive ability, and the other defines the age at which the risk of death becomes non-zero.

This revealed that a simple hypothetical haploid and asexually reproducing system can evolve a 
life history separated into two phases in the computer simulations. Interestingly, the modelled organ-
isms evolved in a way that the duration of reproduction exceeded the homeostatic maintenance 
duration. This generated a phase where individuals are capable of reproduction with a high risk of 
death, similar to the previously described Smurf phase. Roget et al. observed that aging populations 
showed a lower risk of extinction than non-aging ones, as well as an increased genetic variability of 
the offspring.

The apparent benefits of ageing in this model imply that ageing can be an adaptive force of evolu-
tion and subject to positive selection or, at least less negative selection than expected. This minimal 
model helps explain trade-offs between reproduction and homeostatic maintenance during evolu-
tion. Further work may include parameters such as sexual reproduction and multiple gene copies.

https://doi.org/10.7554/eLife.92914
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(Dambroise et al., 2016). and mice (Cansell et al., 2023), this phenotype allows for the identification 
of two distinct subpopulations– non-Smurf individuals and Smurf ones– at any time in a given popu-
lation. All individuals undergo the transition (from non-Smurf to Smurf) prior to death (Rera et al., 
2012; Tricoire and Rera, 2015). In flies, the Smurf phase is characterized by multiple physiological 
marks of ageing such as the high risk of impending death, loss of energy stores, systemic inflamma-
tion, reduced motility (Rera et al., 2012), and reduced fertility (Rera et al., 2018). More generally, 
the transcriptional hallmarks (Frenk and Houseley, 2018) usually associated with ageing are mostly 
observed in the latter phase (Zane et al., 2023). To summarize, this phenotype allows for the identi-
fication of two successive and necessary phases of life with all the age-related changes occurring in 
the last. Motivated by these biological observations, we recently assessed (Méléard et al., 2019) the 
possibility of obtaining, over time, such two phases of life. In order to simplify, we decided to consider 
the evolution of such a process in a bacteria-like organism, through the design and implementation 
of an asexual and haploid age-structured population mathematical model. We constrained the evolu-
tive trajectory of ageing (within this model) through the Lansing effect– a transgenerational effect 
impacting longevity. Smurf individuals carry the propensity to demonstrate this effect. The Lansing 
effect is a transgenerational phenomenon, first described by Albert Lansing in the late 1940s, whereby 
the ‘progeny of old parents do not live as long as those of young parents’ (Lansing, 1954; Lansing, 
1947). This was first observed in rotifers. More recently, it has been shown that older Drosophila 
females, and to some extent males tend to produce shorter lived offspring (Priest et  al., 2002). 
Older zebra finch males give birth to offspring with shorter telomere lengths and reduced lifespans 
(Noguera et al., 2018). In humans, ‘older father’s children have lower evolutionary fitness across four 
centuries and in four populations’ (Arslan et al., 2017). Despite the absence of consensus regarding 
any underlying mechanism, the Lansing effect is broadly conserved and therefore relevant (Monaghan 
et al., 2020). We observed, through this Lansing-positive model, that the ageing phase overlaps with 
the pre-ageing phase in evolutionary time.

Here, we decided to generalize this model to any system able to reproduce and maintain homeo-
stasis, without the necessary constraint of the Lansing effect, and in hopes of understanding how such 
a two-phase ageing process might have evolved. We thus show the following:

1.	 Through time, the end of the healthy phase and the beginning of the senescent phase converge 
even in the absence of a transgenerational effect (the Lansing effect).

2.	 With an equal Malthusian parameter at t0, Lansing populations are more successful than non-
Lansing populations, suggesting that the individual loss of fitness is compensated at the popu-
lation level.

3.	 Ageing (or senescence-carrying) populations are more evolvable than non-ageing populations. 
We theorize this is because ageing populations are quicker to explore genotypic space.

This is all to suggest that ageing is, as a function, decreasing both reproductive and homeostatic 
capabilities of an organism, both an attractor configuration and an adaptive force of evolution, in 
opposition to what is most commonly assumed.

Results
The model (called bd model) and its population dynamics follows those described in Méléard et al., 
2019. Briefly, the model delineates an asexual and haploid population, structured by a life-history trait 
that is defined by a pair of parameters - genes - (xb, xd) where xb defines the fertility span and xd, the 
age at which the mortality risk becomes non-null. Here, we generalized the model to any intensities 
of birth and death denoted (ib, id) as well as to populations without Lansing effect (Figure 1, see also 
Appendix 1). The selective pressure is enforced by a logistic competition c mimicking a maximum 
carrying capacity of the environment, thus no explicit adaptive value is given to any particular trait. 
Additionally, for each reproduction event, a mutation (h) of probability p can affect both genes xb 
and xd independently, following a Gaussian distribution centered on the parental trait. In Figure 1, 
the different cases are explored, depending on the respective values of xb and xd. Individuals in the 
Figure 1b–c configuration (for xb≤xd) will always give progeny with a genotype (xb, xd) ∓ (hb and/or 
hd). The evolutionary outcome of individuals carrying a genotype with xd <xb (Figure 1a) is slightly 
more nuanced and depends on the parental age a and whether the parent carries the possibility 
for a Lansing effect or not (Figure 1d–f). If a<xd, or if the parent does not carry a Lansing effect, the 

https://doi.org/10.7554/eLife.92914
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genotype of the progeny will be as previously described. But if a>xd, and if the parent carries the 
Lansing effect, the progeny then inherits a dramatically reduced xd (here xd is set to 0), mimicking a 
strong Lansing effect.

In our previous work (Méléard et al., 2019), we formally and numerically showed the long-time 
evolution of the model to converge towards (xb - xd)=0 in the case of individuals carrying a Lansing 
effect. Here, we explore the convergence of (xb - xd) without the strong transgenerational effect of 
ageing. We implemented a new version of the model, devoid of the Lansing effect, and simulated 
its evolution for a viable - that is allowing the production of at least one progeny - trait (xb = 1.2, xd 
= 1.6). Surprisingly, we still observe a convergence of (xb - xd) in finite time. The dynamics of the trait 
(xb, xd) is described by the canonical equation of adaptive dynamics, which depends on the Malthu-
sian parameter and its gradient (Appendix 1). The Malthusian parameter can be interpreted as the 
age-specific strength of selection (Hamilton, 1966). The speed at which xb and xd evolves, decreases 
with time, just as in the previous form of the model (Méléard et al., 2019), allowing us to recover the 
well-observed, age-related decrease in the strength of selection (Haldane, 1941; Hamilton, 1966; 
Medawar, 1953). Simulations of the generalized bd model presented here show that the xb - xd 
distance (the time separating the end of fertility from the increasing risk of death) converges, for any 
initial trait, towards a positive constant. Thus, the long-term evolution of such a system is a config-
uration similar to Figure 2a (xd <xb). The formal analysis of the generalized bd model confirms that 
the long-time limit of the traits (xb - xd) is the positive constant (defined by the formula in Figure 2b, 
mathematical analysis presented in Appendix 1), reached after a few dozen simulated generations 
(Figure 2c). Although we formally demonstrate the long-time limit for any ib and id, all our simulations 
are run using ib=id=1, in order to limit the number of conditions to assess and report. Surprisingly, the 
limit value of the trait is not affected by xb or xd values - the fertility span and mortality per se - but only 

Figure 1. Three typical configurations of the model with ib >id and their effect on progeny’s genotypes as a function of parental age. (upper panel) Each 
haploid individual is defined by a parameter xb defining its fertility span of intensity ib and a parameter xd defining the time during which it will maintain 
itself, with an intensity id. These parameters can be positive or null. (a) ’Too young to die’: it corresponds to configurations satisfying xd <xb. (b) ’Now 
useless’: it corresponds to configurations where xb = xd. (c) ‘Menopause’: it corresponds to configurations where xd >xb. (lower panel) Each individual 
may randomly produce a progeny during its fertility span [0; xb]. (d) In the case of physiologically young parents (a<xd), the progeny’s genotype is that 
of its parent ∓ a Gaussian kernel of mutation centered on the parental gene. In the case of the reproduction event occurring after xd, for configuration 
(a) above, two cases are observed, (e) if the organism carries a Lansing effect ability, the xd of its progeny will be strongly decreased. (f) In the absence of 
the Lansing effect, the default rule applies.

https://doi.org/10.7554/eLife.92914
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by their respective intensities ib and id. These intensities can be interpreted as the instant mortality 
risk id and the probability to give a progeny ib. Interestingly, the long-time limit values for any ib and 
id shows a significantly stronger sensitivity to the increasing mortality risk id than to reproduction by 
almost two orders of magnitude (Figure 2d). In addition, for extremely low values of ib and id - that is 
below 0.01 - the apparent time correlation of the fertility span and mortality onset is almost nonex-
istent; this is because (xb - xd) is large. Biologically, this would appear to an observer as the mortality 
onset occurring long before the exhaustion of reproductive capacity. Such an organism would be thus 
characterized as having no significant fertility decrease during the ageing process. On the other end, 
for individuals showing either a high instant mortality risk or a high probability to give a progeny, 
the (xb - xd) trait is close to 0, meaning that fertility and organismal integrity maintenance are visibly 
- that is observable by an experimenter - correlated. It is important to note that this mathematical 
study concerns individuals for which the mean number of descendants per individual is large enough, 
allowing us to define a viability set of traits (xb, xd) (see data availability statement). Because of these 
mathematical properties, a tradeoff emerges between ib, id, xb and xd. Let’s consider an organism - for 
both the Lansing and non-Lansing cases - with a low reproductive intensity ib=0.01 and id=1. For this 
organism to propagate, the product ib * xb has to be strictly superior to 1, hence here xb ⩾ 100 (see 
data availability statement). In this example, the long-time limit of the trait (xb - xd) is equal to log(2), 
thus xb and xd are of the same order of magnitude. With the same reasoning, the long-time evolution 
lower limit of (xb - xd), of an organism that is significantly more fertile (with ib=1, id=1), is 1/√3. This 
model thus allows an elegant explanation for the apparent negative correlation previously described 
between longevity and fertility without the need of implementing energy trade-offs or relative effi-
ciency of energy allocation between maintenance and reproduction (see data availability statement 
- examples).

In our model, regardless of the initial trait (xb, xd) in the viability set, evolution leads to a config-
uration of the trait such that the risk of mortality starts to increase before the fertility span ends. 
Similar to biochemical reactions involved in a given pathway that are evolutionarily optimized (e.g. 
through tunneled reactions and gated electron transfers), we hypothesize here that such a configura-
tion, caused by simple mathematical constraints, creates the conditions for the apparition, selection, 
and maintenance of a molecular mechanism coupling xb and xd. Such a coupling mechanism could 
thus be the so-called Lansing effect— the only described age-related decline in progeny’s fitness that 
seems to affect numerous iteroparous species (Lansing, 1947; Monaghan et al., 2020). We assessed 
the likelihood of survival of an organism carrying such a non-genetic and pro-senescence mechanism 
when in competition with a population devoid of such a mechanism. To do so, we examined a popu-
lation divided into two sub-populations: one made of individuals subject to the Lansing effect and 
the other made up of individuals not subject to the effect. We assume, as before, that each individual 
is under the same competitive pressure. The two initial sub-populations have the same Darwinian 
fitness approximated by their Malthusian parameter (see data availability statement, Figure 3—figure 

Figure 2. The bd model shows a convergence of xb - xd towards a positive value. Dynamics of the individual-based model shows a convergence of xb - 
xd towards a positive constant value in the absence of the Lansing effect. (a) The generalized b-d model shows a convergence of (xb - xd) for any ib and 
id towards a positive value given by (b) (Annexe 4.3, Figure 2). (c) Simulation of 1000 individuals with initial trait (xb=1.2, xd=1.6) of intensities ib=id=1, a 
competition c=0.0009 and a mutation kernel (P=0.1, σ=0.05) show that the two parameters co-evolvetowards xb - xd ≅ 0.55 that is log(3)/2. (d) Landscape 
of solutions (xb - xd) as a function of ib and id (colors separate ranges of 50 units on the z-axis).

https://doi.org/10.7554/eLife.92914
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supplement 1). Their traits are thus (1.5; 1.3)Lansing and (1.5; 0.83)non-Lansing. In order to simplify the anal-
ysis, both the birth and death intensities are as follows: ib=id=1 (the model is nevertheless generalized 
to any (ib; id), see data availability statement). We simulated the evolution of such mixed populations 
for discrete pairs of mutation rate (p) and competition (c) parameters. Three indexes were calculated 
for each set of simulation: (Table 1) the ratio of Lansing and non-Lansing populations that collapsed 
(“-” indicates that all survived), (Table 1) the ratio of total number of progenies produced during the 
simulation by each population and (Table 1) the relative proportion of the Lansing population at the 
end of the simulation (Table 1—source data 1). Our 1200 simulations, each with 2.105 birth-death 
events, summarized in Table 1, show that the Lansing populations survive at least as well as non-
Lansing ones (Table 1) especially for a moderate competition parameter (c=9.10–4) and low (in our 
simulations) mutation rate (P=0.1). With such conditions, Lansing populations show almost half the 
risk of disappearance of non-Lansing ones (Table 1), producing nearly three times as many descen-
dants as non-Lansing populations (Table 1), for up to a 20% faster growing population (Table 1). The 
plots for a single. Thus, although the Lansing effect gives way to a significant proportion of progeny 
with an extremely low fitness (xd = 0), pro-ageing populations show a decrease in the risk of collapse. 
Moreover, we observe a slightly better growth of the population, independent of the magnitude of 
the Lansing effect (Figure 3—figure supplement 2).

In order to understand the evolutionary success of a characteristic that seems to decrease an 
organism’s fitness, we computed the average Malthusian parameter of each population through time. 
We had previously identified that this intermediate set of c and p was associated with the highest 
success rate of Lansing bearing populations and presented the results for this set (highlighted in 
green, Table 1). First, we observe that, on average, Lansing populations (blue) grow while non-Lansing 
ones (red) decrease in size (Figure 3a - blue and red curves represent deciles 1, 5, and 9). In the 
simulations where both populations coexist, the higher fitness of the Lansing population is marginal, 
with these populations growing 20% more than the non-Lansing population (Figure 3b). This higher 
success rate seems to be driven by a faster and broader exploration of the Malthusian parameter 
space in the Lansing population (Figure 3c). This maximization of the Malthusian parameter is not 
associated with any significant difference of individual lifespan (time of death - time of birth) distribu-
tions of either population (Figure 3d). Although subjected to the same competition c, the distribu-
tion of the progeny from non-Lansing populations is essentially that of the parental trait in the first 5 
generations, while Lansing progenies (not affected by the Lansing effect; we excluded progeny with 
xd=0 for the comparison) explore a broader part of the trait space (Figure 3e). Interestingly, low fitness 
progeny (xd=0) represents up to 10% of the population for a significant amount of time (Figure 3f). 

Table 1. Populations with Lansing effect are favorably selected under logistic competition when the mutation rate is non-zero.
p is the mutation rate and c the intensity of the logistic competition. For each couple (p, c), 100 independent simulations were run 
with 500 individuals per population at t0 of which traits are (1.5; 1.3) Lansing and (1.5; 0.83)non-Lansing so that their respective 
Malthusian parameters are equal. Each simulation corresponds to 2.105 events of birth or death. Table (a) shows the ratio of Lansing 
and non-Lansing populations (out of 100 simulations in each case) that did collapse by the end of the simulation. For the lowest 
competition, none of the populations collapsed within the timeframe of simulations (-). For an intermediate value of competition, 
approximately less than half of Lansing populations disappear, relative to non-Lansing ones. Table (b) shows the ratio of the number 
of individuals generated between Lansing and non-Lansing populations. On average, Lansing populations generate approximately 
twice as many individuals as non-Lansing ones. (c) On average, Lansing populations grow 20% more than the non-Lansing. Values 
highlighted in green are discussed further below.

Mutation probability

0 0.1 0.5 1 0 0.1 0.5 1 0 0.1 0.5 1

a) Lansing/non-Lansing collapsed 
population

b) Lansing/non-Lansing number of 
individuals c) Lansing/total population size

Competition 9.10–5 - - - - 1.30 1.38 1.39 1.35 0.57 0.64 0.62 0.59

9.10–4 1.02 0.62 0.56 0.66 1.70 2.84 3.58 3.20 0.49 0.62 0.60 0.55

9.10–3 1.00 1.05 1.13 1.03 1.05 1.31 1.56 1.84 - 0.43 0.44 0.49

The online version of this article includes the following source data for table 1:

Source data 1. The magnitude of the Lansing effect does not influence the outcome of evolution.

https://doi.org/10.7554/eLife.92914
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As a consequence, Lansing populations reach the equilibrium trait faster than the non-Lansing ones 
(Figure 3g). Thus, the relatively higher success rate of Lansing bearing populations seems to be asso-
ciated with a higher genotypic diversity. This, in theory, leads to a broader range of fitness types. The 
‘optimal’ fitness is therefore achieved earlier (or more easily), thus explaining the relative success of 
the population. This is an example of a population that demonstrates a greater ability to evolve (i.e. 
the population ‘possesses’ the attribute termed ‘evolvability’).

Our model explains, in mathematical terms, why the mortality onset is evolutionarily linked to repro-
ductive mechanisms (or fertility). Nevertheless, the numerical exploration of our model’s behavior has 
been limited so far to initial conditions, where the competing populations were of equal Malthusian 
parameters. The low number of generations involved suggests that the conditions for the develop-
ment, selection, and maintenance of mechanisms of ageing (Lemoine, 2021) occurrs early on in evolu-
tionary history, in a population of mixed individuals. As such, we decided to test the evolution of the 
trait (xb - xd) in Lansing and non-Lansing bearing individuals of uniformly distributed traits on [–10;+10] 
(Figure 4 - left panel). We chose to plot one (Figure 4 - central panel) of the hundred simulations we 
made. This simulation is representative of the general results. Simulations show, in over 110 million 
individuals, an early counter-selection of extreme trait values, typically (xb - xd)>4. Interestingly, the 
whole space of (xb - xd) trait is not explored evenly and the positive part of the trait space represents 
approximately 2/3 of the individuals (although the branched evolution process led to both the positive 
(‘Too young to die’ – Figure 1a) and negative (‘Menopause’ – Figure 1c) sides of the trait space). Both 
the Lansing and non-Lansing bearing populations manage to co-exist until the end of the simulation, 
each reaching a distribution centered on their respective theoretical solutions (Figure 4 - right panel): 
0 for the Lansing (Méléard et al., 2019) and log(3)/2 for the non-Lansing. In this context, where the 

Figure 3. The Lansing effect maximizes populational survival by increasing its evolvability. 100 independent simulations were run with a competition 
intensity of 9.10–4 and a mutation rate p=0.1 on a mixed population made of 500 non-Lansing individuals and 500 individuals subjected to such effect. 
At t0, the population size exceeds the maximum load of the medium thus leading to a population decline at start. At t0, all individuals are of age 0. Here, 
we plotted a subset of the 100.106 plus individuals generated during the simulations. Each individual is represented by a segment between its time of 
birth and its time of death. In each graph, blue and red curves represent deciles 1, 5, and 9 of the distribution at any time for each population type. (a) 
The higher success rate of Lansing bearing populations does not seem to be associated with a significantly faster population growth but with a lower 
risk of collapse. (b) For cohabitating populations, the Lansing bearing population (blue) is overgrowing by only 10% the non-Lansing one (red). (c) This 
higher success rate is associated with a faster and broader exploration of the Malthusian parameter - surrogate for fitness - space in Lansing bearing 
populations (d) that is not associated with significant changes in the lifespan distribution (e) but a faster increase in genotypic variability within the [0; 10] 
time interval. (f) This occurs although progeny from physiologically old parents can represent up to 10% of the Lansing bearing population and leads to 
it reaching the theoretical optimum within the timeframe of simulation (g) with the exception of Lansing progenies. (e–g) Horizontal lines represent the 
theoretical limits for (xb - xd) in Lansing (blue) and non-Lansing (red) populations.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Evolution of the average Malthusian parameter value in Lansing and non-Lansing populations as a function of time.

Figure supplement 2. Evolution of the Lansing and non-Lansing populations size as a function of time.

https://doi.org/10.7554/eLife.92914
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initial condition does not restrict the competition to individuals of identical Malthusian parameters, 
the Lansing bearing population is significantly less successful than the non-Lansing one (representing 
only one third of the final population size). As such, the evolution of a mixed population of individ-
uals with a trait (xb - xd) initially uniformly distributed on [–10;+10], with or without a strong inter-
generational effect, will lead to a mixed solution of individuals carrying a trait that converges towards 
the theoretical solution (such as xd ≲ xb), thus allowing the maximization of fertility without cluttering 
the environment with non-fertile individuals. This result is very similar to Weismann’s first intuition 
(Weismann, 1882). Nevertheless, this interpretation seems somehow finalist (i.e. presumes that the 
effects necessitate the causes) and does not yet discriminate why the Lansing population is evolution-
arily successful in comparison to the non-Lansing population. Thus, we next explore the parameter of 
evolvability further, which leads us to yet again conceptualize ageing as an adaptive trait.

Populations that consist of Individuals who can transmit ageing ‘information’ to the next generation 
are relatively more successful, within the framework of our model. Thus, to understand the origin of 
this pattern, we examined the differential landscape of the Malthusian parameters as a function of the 
trait (xb, xd) for both Lansing and non-Lansing populations. We built this landscape numerically using 
the Newton method (see data availability statement). First, it is interesting to notice that, from the 
equations, we have derived the maximum rate of increase for Malthusian parameters, this being 1/id 
with a maximum fitness value capped by ib (data availability statement). Consistent with our previous 
characterization of the Trait Substitution Sequence in populations with Lansing effect (Méléard et al., 
2019), Lansing individuals have a symmetrical fitness landscape (Figure 5, blue lines) centered on the 
diagonal xb = xd (Figure 5, green diagonal). Along the latter, we can directly observe what is respon-
sible for a ‘selection shadow’. As xb and xd increase, a mutation of the same magnitude has smaller and 
smaller effects on the fitness, thus allowing the accumulation of mutations (Figure 5, blue arrows). The 
graphical representation of non-Lansing individuals is asymmetric— the rupture of symmetry occurs 

Figure 4. Mixed populations lead to (xb - xd) theoretical limit in a limited time and cohabitation of Lansing and non-Lansing populations. Starting with 
a homogenous population of 5000 Lansing bearing and 5000 non-Lansing individuals with traits uniformly distributed from –10 to +10 (left panel), we 
ran 100 independent simulations on time in [0; 1000]. (center panel) Plotting the trait (xb - xd) as a function of time for one simulation shows a rapid 
elimination of extreme traits and branching evolution. (right panel) The final distribution of traits in each population type is centered on the theoretical 
convergence limit for each. Ntotal ≅ 110 millionindividuals, c=9.10–4, p=0.1.

https://doi.org/10.7554/eLife.92914
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on the xb = xd diagonal. For xd>xb (Figure 5, upper diagonal), fitness isoclines of the two types of indi-
viduals fully overlap, thus showing an equal response of both Lansing and non-Lansing fitness to muta-
tions. In addition, as expected, the fitness of Lansing individuals is equal to that of non-Lansing ones 
for a given trait. On the lower part of the graph, corresponding to xd <xb, non-Lansing fitness isoclines 
separate from that of Lansing individuals, making the fitness of non-Lansing individuals higher to that 
of Lansing ones for a given trait. Nevertheless, the fitness gradient is significantly stronger for Lansing 
individuals as represented within Figure 5 by the yellow arrow and associated yellow area. For an indi-
vidual of trait (xb = 2.45; xd = 1.05), a mutation making a non-Lansing individual 0.1 in fitness (isocline 
0.7 to isocline 0.8) will make a Lansing individual increase its own by 0.42 (isocline 0.1 to above isocline 
0.5). With a fourfold difference, the Lansing population produces four times as many individuals as the 
non-Lansing ones for a given mutation probability. But this reasoning can be extended to any trait (xb, 
xd) with or without Lansing effect. Organisms ageing rapidly - that is with low xb and xd - will see their 
fitness significantly more affected by a given mutation h than individuals with slower ageing affected 
by the same mutation. As such, because ageing favors the emergence of genetic variants, ageing 
populations are therefore more evolvable.

Figure 5. The Lansing effect is associated with an increased fitness gradient. We were able to derive Lansing 
and non-Lansing Malthusian parameters from the model’s equations (see Annexe 1–2.3 and 1–5) and plot them 
as a function of the trait (xb, xd). The diagonal xb = xd is drawn in light green. The corresponding isoclines are 
overlapping above the diagonal but significantly differ below, with non-Lansing fitness (red lines) being higher than 
that of Lansing’s (light blue lines). In addition, the distance between two consecutive isoclines is significantly more 
important in the lower part of the graph for non-Lansing than Lansing bearing populations. As such, a mutation 
leading a non-Lansing individual’s fitness going from 0.7 to 0.8 (yellow arrow) corresponds to a Lansing individual’s 
fitness going from 0.1 to 0.52. Finally, Hamilton’s decreasing force of selection with age can be observed along the 
diagonal with a growing distance between two consecutive fitness isoclines as xb and xd continue increasing.

https://doi.org/10.7554/eLife.92914
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Discussion
Ageing is, despite its phenotypic diversity (Jones et al., 2014), an evolutionarily conserved phenom-
enon. How ageing evolved, however, is presently debated. Although early theories (Weismann, 1882) 
conceive ageing as adaptive, ageing is now generally viewed as a side-effect, or byproduct, of dimin-
ished selective pressure and therefore not adaptive.

The mathematical model we have presented here allows us to propose an alternative theory: 
ageing necessarily emerges for any system showing the two minimal properties of life (Trifonov, 
2011), namely (a) reproduction with variation (xb) and (b) organismal maintenance (xd). We formally 
show that a haploid and asexual organism with these two properties will rapidly evolve, within a few 
dozen generations, towards a solution such that (xb - xd) is strictly positive, meaning that the risk 
of mortality starts to increase before the end of the fertility span. Importantly, the time separating 
both parameters is independent from their absolute values and only depends on the rate of each, 
respectively ib for xb and id for xd. This explains the observed trade-offs (Kirkwood, 2005; Lemaître 
et al., 2015; Rodrigues and Flatt, 2016) between the fertility of an organism and its lifespan. Thus, 
our work addresses outstanding questions outlined in the disposable-soma theory (Kirkwood and 
Holliday, 1979) — why and how a highly fertile organism either dies or ages earlier. Indeed, the lower 
limit condition for the production of descendants by an individual in our model is xb * ib >1. As such, 
an organism with low fertility (ib <<1) will obtain a progeny only if fertile longer (xb >>1). Conversely, 
a highly fertile organism will evolve towards its minimum viable condition, requiring only a small xd. 
The apparent trade-off between fertility and longevity is thus solely a consequence of xb * ib >1 and 
lim+∞(xb - xd)t. Our model need not implement any constraint on resource allocations or other tradeoffs 
for this effect to occur.

Because xb and xd converge, this favors the onset of a period in which an individual’s fertility drops 
while its risk of dying becomes non-zero; this is the organism entering the ‘senescence phase’ corre-
sponding to the Smurf phase described in Rera et al., 2012. This necessary convergence of fertili-
ty’s end and senescence’s start would thus facilitate the selection of any molecular mechanism that 
couples the two processes (Echave, 2021). Additionally, and in opposition to what is suggested in 
Stearns, 1989, we observe that any two genes that are not functionally linked can be co-selected.

While the Lansing effect somewhat decreases the fitness of individuals within a population, the 
probability of survival of a population is significantly greater in Lansing populations when in compe-
tition with a non-Lansing population of equal Malthusian parameter at t0. We observed, numerically, 
that this slight increase in survival is mediated by an increase in the genetic variability generated 
within the population. Thus, we propose that such an active mechanism of ageing can be selected 
during evolution through its ability to increase an organism’s evolvability. As mentioned above, 
evolvability is understood as the ‘the capacity to generate heritable selectable phenotypic varia-
tion’ (Kirschner and Gerhart, 1998). It is an interesting concept as it allows for a trait that has no 
direct effect on fitness - even a negative one (Maynard Smith, 1971) - to be under strong selection, 
given its ability to generate genetic or phenotypic variation. Furthermore, such a two-phase mecha-
nism would be of great advantage in a constantly varying environment. Indeed, when environmental 
conditions become less permissive, xd might be affected and individuals would be pushed to enter 
the [xd; xb] space earlier, thus increasing the evolvability of the population. This is what we observe 
in the laboratory where individuals submitted to harsh conditions will enter the Smurf phase earlier 
than the control conditions (Rera et al., 2012). Regarding the nature of the transgenerational effect, 
our model is agnostic and the mere transmission of any negative effect would be sufficient to exert 
the function.

Because we, without fail, observe the convergence of the end of fertility and the start of senes-
cence, our generalized model - supported by a formal analysis - predicts a high degree of conserva-
tion of ageing, specifically as something that can be selected. This gives rise to organisms that lose 
homeostatic capacities amidst and during the period of fertility. We have identified a mathematical 
constraint that explains the biphasic pattern of ageing proposed in Tricoire and Rera, 2015, allowing 
for the positive selection of ageing through evolutionary time. More importantly, the negative impacts 
of ageing on individuals’ fitness seem to be fully compensated at the population level. Our work, at 
large, thus demonstrates the following: (1) fertility and senescence always converge if an organism is 
both fertile and homeostatic, (2) ageing populations are more successful through time, and (3) more 
evolvable. Therefore, we defend that ageing can, in theory, be re-conceptualized as adaptive.

https://doi.org/10.7554/eLife.92914
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This two phase model is very simple, yet able to describe all types of ageing observed in the wild, 
including a rapid post-reproductive onset of mortality, a menopause-like mortality plateau, and what 
we have identified as a two-phase Smurf-like process. The strong mathematical constraint between 
xb, xd, ib, and id limits the possible configurations. Additionally, our mathematical model of ageing, as 
a two-phase process (Tricoire and Rera, 2015), shows that the mortality rate of the second phase of 
life is considerably constant across Drosophila lines of significantly different life expectancies, ranging 
from 15 to 70 days. In these conditions, if id is a constant parameter, can we experimentally affect xd 
by acting on ib and/or xd? Experimental evolution using only Drosophila progeny conceived later in 
the life of the parent has shown that the onset of mortality, within these progeny, occurs rather late, 
sometimes even after the end of the fertility period (Burke et al., 2016; Rose et al., 2002). Although 
the authors report previous studies of their own with divergent results, other independent experi-
ments have led to results suggesting an increase of xd following an artificial increase of xb (Luckinbill 
and Clare, 1985; Sgrò et al., 2000) as well as the reverse (Stearns et al., 2000).

Without the need to implement resource allocation constraints, pleiotropic antagonistic functions 
nor late-life accumulation of mutations, our model is able to predict the evolution of ageing while 
encompassing phenomena that previously led to the two above-mentioned theories (mutation accu-
mulation and antagonistic pleiotropy). More importantly, our model suggests a central role of ageing 
in evolution, as the mathematical constraint we show is likely to apply to any function affecting fertility 
and homeostasis. Could this broader application of constraints be responsible for the stereotyped 
gene expression changes - reminiscent of the so-called hallmarks of ageing - we recently described in 
Smurfs (Zane et al., 2023)? Although this model helps us to see the conditions under which ageing 
is an evolutionarily adaptive force, it is still a toy model. The mortality and fertility functions we used 
are binary and we are now developing more complex versions of the model, notably to assess the 
interactions existing between ib, id, xb, and xd but more importantly to assess their co-evolution with 
maturation, sex, ploidy, or varying environmental conditions.

Materials and methods
See data availability statement for code, packages and the software used.
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Appendix 1
1 The mathematical individual-based bd model
We model an haploid and asexual population of individuals with evolving life-histories by a stochastic 
individual-based model, similar to the one introduced in Méléard et al., 2019 and a particular case 
of Ferrière and Tran, 2009. Each individual is characterized by its age and by a life-history trait 
‍x = (xb, xd) ∈ R2

+‍ that describes for each individual the age xb at the end of reproduction and the 
age xd when mortality becomes positive. The trait can change through time, by mutations occuring 
continuously in time.

More precisely, the Markovian dynamics of the population process is defined as follows. The 
individuals reproduce and die independently. An individual with trait ‍(xb, xd)‍ reproduces at rate ib as 
long as it is younger than xb. Further, he cannot die as long as it is younger than xd and has a natural 
death rate id after age xd.

The life-history of an individual with trait ‍x = (xb, xd)‍ is described by the couple of birth and death 
functions ‍(Bx, Dc

x)‍ defined on ‍R+‍ by

	﻿‍ ∀a ∈ R+, Bx(a) = ib1a≤xb , Dc
x(a) = id1a>xd + cN.‍� (1)

Here, the individual age ‍a‍ is the physical age, ‍N ‍ the (varying) population size and ‍c > 0‍ the 
competition pressure exerted by an individual on another one. The death rate will be extended to

	﻿‍ Dc
x(0) = +∞, for xb < 0 or xd > 0,‍�

meaning that an individual appearing by mutation will be able to survive only if the two components 
if its trait are non negative.

Note that the date of birth and lifespan of an individual are stochastic and the law of the lifespan 
on an individual with trait ‍x‍ born at time ‍τ ‍ is given by ‍fx(s) = Dc

x(s) exp(−
´ τ+s
τ Dc

x(a)da)‍.
We also take into account genetic mutations which create phenotypic variation, and which added 

to competition between individuals, will lead to natural selection.
At each reproduction event, a mutation appears instantaneously on each trait xb and xd 

independently with probability ‍p ∈
]
0, 1

[
‍. If the trait ‍xb‍ mutates (resp. if ‍xd‍ mutates), the trait of the 

newborn is ‍xb + hb‍ (resp. ‍xd + hd‍). The mutation effect ‍hb‍ (resp. ‍hd‍) is distributed following a centered 
Gaussian law with variance ‍σ2‍. This Gaussian law is denoted by ‍k(h)dh‍.

Note that a similar model has been defined in Méléard et al., 2019, including a Lansing effect on 
the reproductive lineage of "old" individuals.

2 The Malthusian parameter
2.1 The demographic parameters
We now introduce the classical demographic parameters for age-structured (without competition) 
population, where all individuals have the same trait ‍x ∈ R2

+‍ (Charlesworth, 1994). We are looking 
for a triplet ‍(λ(x), Nx,ϕx)‍ where ‍λ(x) ∈ R‍ is the Malthusian parameter, ‍Nx(a), a ∈ R+‍ the stable age 
distribution and ‍ϕx(a), a ∈ R+‍ the reproductive value. They describe the asymptotic growth of 
the population dynamics and measure the fitness of life-histories: ‍λ(x)‍ is the growth rate of the 
population at its demographic equilibrium, ‍Nx‍ the age distribution of the population and ‍ϕx(a)‍ is 
the probability that an individual with trait ‍x‍ has a newborn after age ‍a‍. It is known (Charlesworth, 
1994), that ‍(λ(x), Nx,ϕx)‍ is solution of the direct and dual eigenvalue problems:

	﻿‍



−∂aNx(a) − Dx(a)Nx(a) = λ(x)Nx(a)

Nx(0) =
ˆ +∞

0
Bx(α)Nx(α)dα, Nx(0) = 1,

‍�

(2)

	﻿‍




∂aϕx(a) − Dx(a)ϕx(a) + Bx(a)ϕx(0) = λ(x)ϕx(a)

ϕx(0) = 1 ‍�
(3)

where ‍Bx(a) = ib1{
a>xb

} and Dx(a) = id1{
a>xd

}
‍.

https://doi.org/10.7554/eLife.92914
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Proposition 2.1
For all ‍x ∈ R2

+‍, there exists a unique solution ‍(λ(x), Nx,ϕx) ∈ R×L1(R+) × L∞(R+)‍ of (2) and (3). The 
Malthusian parameter ‍λ(x)‍ is the unique solution of the equation:

	﻿‍
ib
ˆ xb

0
e−id(a−xd)+−λ(x)ada = 1.

‍�
(4)

The stable age distribution ‍Nx‍ and the reproductive value ‍ϕx‍ verify

	﻿‍
Nx(a) = e−id(a−xd)+−λ(x)a, ϕx(a) =

ib1a≤xb

Nx(a)

ˆ xb

a
Nx(α)dα.

‍�
(5)

Proof
The proof is straightforward by solving the first equations in (2) and (3), and then by using the 
equations satisfied by the boundary conditions. □

Remark 2.2
The quantities ‍λ(x), Nx,ϕx‍ are the eigenelements (Proposition 2.1) associated with the linear operator 
that generates the dynamics ‍vx(t, a)‍ of a non density dependent population with age structure and 
birth-death rates given by ‍(Bx, Dx)‍. More precisely, ‍vx(t, a)‍ satisfies the McKendrick Von-Foerster 
Equation

	﻿‍



∂tvx(t, a) + ∂avx(t, a) = −Dx(a)vx(t, a), t ≥ 0, a ≥ 0

vx(t, 0) =
ˆ

R+

Bx(α)vx(t,α).
‍�

The use of these quantities as an indicator of fitness is justified by the convergence of ‍e−λ(x)t vx(t, a)‍ 
to ‍(
´
R+

vx(0,α)ϕx(α)dα)Nx(a)‍ as ‍t‍ tends to infinity (Perthame, 2007 for example).

2.2 Computation and regularity of the Malthusian parameter
The Malthusian parameter ‍λ(x)‍ is defined as the unique real number such that

	﻿‍
ib
ˆ xb

0
e−id(a−xd)+−λ(x)ada = 1.

‍�

Let us introduce

	﻿‍ U1 = {x ∈ R2
+ : xb < xd} , U2 = {x ∈ R2

+ : xd < xb} , H = {x ∈ R2
+ : xb = xd}.‍� (6)

For all ‍x ∈ U1 ∪H‍, the Malthusian parameter ‍λ(x)‍ satisfies:

	﻿‍
ib
ˆ xb

0
e−λ(x)ada = 1 = ib

λ(x)
(1 − e−xbλ(x)).

‍�

Then ‍λ(x)‍ can be numerically computed by Newton’s method applied to the function 

‍Kxb (λ) = 1
λ (1 − e−xbλ) − 1

ib ‍, since ‍λ(x)‍ is solution of ‍Kxb (λ) = 0‍, .
In the case where ‍x ∈ U2‍, we have

	﻿‍
ib
ˆ xb

0
e−id(a−xd)+−λ(x)ada = ib

ˆ xd

0
e−λ(x)ada + ib

ˆ xb

xd

e−id(a−xd)−λ(x)ada
‍�

	﻿‍
= ib

{
1

λ(x)
(1 − e−λ(x)xd ) + eidxd

λ(x) + id

(
e−(λ(x)+id)xd − e−(λ(x)+id)xb

)}
,
‍�

which has to be equal to 1. That involves a function

	﻿‍
H(xb,xd)(λ) = 1

λ
(1 − e−λd ) + eidxd

λ + id

(
e−(λ+id)xd − e−(λ+id)xb

)
− 1

ib
.
‍�

https://doi.org/10.7554/eLife.92914
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Newton’s method still allows to resolve numerically the equation and find ‍λ(x)‍.
Let us now prove some regularity properties of the Malthusian parameter. We show that its 

gradient is a simple function of the stable age distribution, the reproductive value and the mean 
generation time ‍G‍ defined for all ‍x‍ by

	﻿‍
G(x) = ib

ˆ xb

0
aNx(a)da.

‍�

Proposition 2.3
The function ‍x ∈ (R∗

+)2 �→ λ(x)‍ is of class ‍C1‍ and we have:

	﻿‍
∀x ∈ (R∗

+)2, ∇λ(x) = 1
G(x)

(
ibNx(xb), idNx(xd)ϕx(xd)

)
.
‍�

Note that the derivatives are positive, meaning that ‍xb → λ(x)‍ and ‍xd → λ(x)‍ are non decreasing.

Proof
Coming back to the definition of λ and using the the implicit function theorem, we obtain that λ 
is differentiable and

	﻿‍

x ∈ U1,
∂λ(x)
∂xb

=
ibe−λ(x)xb

G(x)
=

ibNx(xb)
G(x)

;
∂λ(x)
∂xd

= 0 =
Nx(xd)ϕx(xd)

G(x)
;

∀x ∈ U2,
∂λ(x)
∂xb

=
ibe−id(xb−xd)e−λ(x)xb

G(x)
=

ibNx(xb)
G(x)

∂λ(x)
∂xd

=
ibideidxd

´ xb
xd

e−(id+λ(x))ada

G(x)
=

ibidNx(xd)ϕx(xd)
G(x)

.
‍�

(7)

We deduce that ‍λ‍ has continuous partial derivatives, which concludes the proof. □

2.3 Viability set
The viability set is the set ‍V ⊂ R2

+‍ of traits ‍x = (xb, xd)‍ such that ‍λ(x) > 0‍. From Equation 4, ‍λ(x) > 0‍ 
if and only if the mean number ‍R(xb, xd)‍ of descendants per individual is larger than one, i.e if and 
only if we have:

	﻿‍
R(xb, xd) := ib

ˆ xb

0
e−id(a−xd)+ da > 1.

‍�
(8)

A precise characterization of the set ‍V ‍ is given in Lemma 2.4. In Figure 1, we represent the set ‍V ‍ for 
‍ib = 1.5‍ and ‍id = 2‍.

https://doi.org/10.7554/eLife.92914
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Appendix 1—figure 1. The set ‍V = {(xb, xd) ∈ R2
+; R(xb, xd) > 1}‍ is the convex set delimited by the black curve 

with equation ‍R(xb, xd) = 1‍.

Lemma 2.4
We have:

	﻿‍ V = {x ∈ R2
+; xb > xd − log(idxd + 1 − (ib/id)) if xb > xd; ibxb > 1 if xb ≤ xd},‍�

and for all ‍x ∈ V ‍, ‍λ(x) ≤ ib‍. Moreover, the map ‍x ∈ V �→ ∇λ(x)‍ is Lipschitz continuous.

Proof
We are looking for which ‍x = (xb, xd) ∈ R2

+‍, the mean number of descendants ‍R(xb, xd)‍ is greater 
than 1. Recall that ‍R(x) = ib

´ xb
0 exp

(
−id
´ a

0 1α>xd dα
)

da‍. For ‍x ∈ U1‍ (defined in Equation 6), we have 
‍R(x) = ibxb‍ and ‍R(x) > 1‍ if and only if ‍ibxb > 1‍. For ‍x ∈ U2‍, we have ‍R(x) = ibxd + (ib/id) − (ib/id)e−id(xb−xd)

‍ 
and ‍R(x) > 1‍ if and only if ‍xb > xd − log(idxd + 1 − (ib/id))‍. We conclude for the first assertion arguing 
that the map ‍λ �→ ib

´ xb
0 exp

(
−id
´ a

0 1α>xd idα− λa
)

da‍ is decreasing. Let us now show that ‍λ(x)‍ is 
upper-bounded by ib. Assume that there exists ‍x ∈ V ‍ such that ‍λ(x) > ib‍. Then

	﻿‍
1 = ib

ˆ xb

0
e−id(a−xd)+−λ(x)ada < ib

ˆ xb

0
e−ibada = 1 − e−xb ,

‍�

which is absurd and allows us to conclude. The next claim is shown arguing that the map ‍x ∈ V �→ ∇λ(x)‍ 
is differentiable on ‍U1 ∪ U2‍ and admits bounded partial derivatives. □

Let us develop different examples:

https://doi.org/10.7554/eLife.92914
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In the case where ‍ib = 0.01‍ and ‍id = 1‍, we obtain

	﻿‍
R(xb, xd) > 1 ⇐⇒ xd +

(
1 −

(
2.01

)− 1
1.01

)
> 100,

‍�

which gives essentially that xd has to be greater than 100.
In the case where ‍ib = id‍, the formula is simpler. We obtain

	﻿‍
R(xb, xd) > 1 ⇐⇒ xd + 1

ib

(
1 − 3−

1
2
)

> 1
ib

.
‍�

We deduce

	﻿‍
R(xb, xd) > 1 ⇐⇒ xd > 1

ib
√

3
.
‍�

If we assume that ‍ib = id = 1‍ then we obtain that

	﻿‍
R(xb, xd) > 1 ⇐⇒ xd > 1√

3
= 0.577.

‍�

Let us finally note that if we assume to be in the limit of the canonical equation and then to be in the 
case when ‍xb − xd = log 3

2ib ‍, we also obtain a characterization of the viability set using xb:

	﻿‍
R(xb, xd) > 1 ⇐⇒ xb > 1

ib

( 1√
3

+ log 3
2

)
.
‍�

For ‍ib = 1‍, that gives ‍xb > 1.126‍

3 Monomorphic equilibrium
Let us come back to the general case with competition, but for a monomorphic population with trait 
‍x‍ (and then without mutation). It can be proved (Méléard and Tran, 2009 Proposition 2.4) that for 
a large population, the stochastic process converges in probability to the solution of the following 
Gurtin-MacCamy partial differential equation (see Gurtin and Maccamy, 1974).

	﻿‍




∂tnx(t, a) + ∂anx(t, a) = −
(

Dx(a) + c
ˆ

R+

nx(t,α)dα
)

nx(t, a)

nx(t, 0) =
ˆ +∞

0
Bx(α)nx(t,α)dα, (t, a) ∈ R2

+ .
‍�

(9)

This equation describes the density-dependent dynamics of a large population with trait ‍x‍ (without 
mutation). The trait ‍x ∈ R2

+‍ being given, let us study the positive equilibria of the equation
For ‍x ∈ V ‍, Equation 9 admits a unique non-trivial solution:

Proposition 3.1
For all ‍x ∈ V ‍, there exists a unique globally stable equilibrium ‍nx‍ to Equation 9, that is a solution of

	﻿‍





−∂anx(a) −
(

Dx(a) + c
ˆ

R+

nx(α)dα
)

nx(a) = 0

nx(0) =
ˆ +∞

0
Bx(α)nx(α)dα,

‍�

(10)

which satisfies 
‍
λ(x) = c

ˆ

R+

nx(α)dα
‍
.

Note that

	﻿‍
nx(0) = λ(x)

c
´ +∞

0 Nx(α)dα
.
‍�
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Proof
The existence part of the proof is trivial from Cansell et al., 2023 and Proposition 2.1 using that 
‍V = {x ∈ R2

+ : λ(x) > 0}‍. The long-time behavior of the solutions of (9) is studied in [Webb, 1985, 
Section 5.4]. □

4 Canonical equation
4.1 Invasion fitness
We now compute the invasion fitness function associated with the individual-based model. We use 
the definition of invasion fitness given in Méléard and Tran, 2009. The invasion fitness ‍1 − z(y, x)‍ of 
a mutant with trait ‍y‍ in a resident population with trait ‍x‍ is defined as the survival probability of an 
age-structured branching process with birth rates ‍Bx(a)‍ and death rates ‍Dx(a) + c

´
R+

nx(a)da‍.

Proposition 4.1
Let ‍y ∈ (R∗

+)2
‍ and ‍x ∈ V ‍, we have

	﻿‍
1 − z(y, x) =

[λ(y) − λ(x)
ib

]
+

.
‍�

Proof
The proof is a direct application of Equation (3.6) in Méléard and Tran, 2009. □

4.2 Trait Substitution sequence and Canonical equation
For this part, we refer principally to Méléard and Tran, 2009 where the Theory of Adaptive Dynamics 
is rigorously developed for general age-structured populations.

We introduce the canonical equation describing the evolution of the trait ‍x = (xb, xd)‍ at a mutation 
time-scale, under the assumptions of adaptive dynamics (large population, rare and small mutation, 
invasion and fixation principle, as well known since Metz et al., Dieckman-Law). In Méléard and Tran, 
2009, it is shown that this equation can be obtained as a two-step limit from the individual based 
model. The first step consists in defining the Trait Substitution Process describing the successive 
advantageous mutant invasions in monomorphic populations at equilibrium. It is obtained as support 
dynamics of the measure-valued limit of the rescaled population process (at the mutation time-
scale), when mutations are rare (but not small). The measure-valued limiting process is rigorously 
derived from the individual-based model in Dambroise et al., 2016 Section 3. It jumps from a state 

‍δx(dz)nx(a)da‍ to a state ‍δy(dz) − ny(a)da‍. The trait support process takes values in ‍V ‍ and its dynamics 
is described as follows.

Definition 4.2
The Trait Substitution Sequence is the càdlàg process ‍(Xt, t ≥ 0)‍ with values in ‍V ‍ whose law is 
characterized by the infinitesimal generator ‍L‍ defined for all bounded and measurable function 
‍φ : V → R‍ by:

	﻿‍
Lφ(x) =

ˆ

R2
(φ(x + (h1, h2)) − φ(x))

[λ(x + (h1, h2)) − λ(x)
ib

]
+

λ(x)
c
´ +∞

0 Nx(a)da
µ(dh1, dh2),

‍�

where ‍µ(dh) = δ0(dh2)k(h1)dh1+δ0(dh1)k(h2)dh2
2 ‍ and the distribution ‍k‍ has been defined in Section 1.

Note that since by Proposition 2.3, the partial derivatives of ‍λ‍ are positive, then the increment 

‍λ(x + (h1, h2)) − λ(x)‍ is non negative if and only if h1 and h2 are non negative.
The second step consists in assuming that mutation amplitudes are small and of order ‍ϵ‍, for ‍ϵ > 0‍. 

We then define the rescaled process ‍Xϵ‍ by ‍X
ϵ(t) = ϵX( t

ϵ2 )‍. introduce the Canonical Equation that 
describes the limit behaviour of the Trait Substitution Sequence when mutations are small.

Proposition 4.3
Let ‍T > 0‍. Assume that ‍Xϵ(0)‍ converges to ‍x0 ∈ V ‍ in probability. Then the sequence of processes 
‍(Xϵ)ϵ‍ converges in law in the Skorohod space ‍D(

[
0, T

]
,V)‍ to the solution ‍(x(t), t ≥ 0)‍ of the ordinary 

differential equation:

https://doi.org/10.7554/eLife.92914
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	﻿‍

dx
dt

= λ(x)
4c
´ +∞

0 Nx(α)dα
∇λ(x)σ2

ib
, x ∈ V ⊂ R2

+
‍�

(11)

Recall that the Malthusian parameter ‍λ(x)‍ is defined in Fabian, 2011, the stable age distribution ‍Nx‍ is 
defined in Frenk and Houseley, 2018 and ‍σ

2(x)‍ denotes the variance of the mutation kernel. Recall 
that (see Proposition 2.3)

	﻿‍
∇λ(x) = 1

G(x)
(
ibNx(xb), idNx(xd)ϕx(xd)

)
.
‍�

(12)

It describes the strength of selection at ages xb and xd. Hence, this canonical equation allows to 
interpret the age specific strength of selection at ages xb and xd as the evolution speed of the traits 
xb and xd respectively, under the assumptions of adaptive dynamics.

Proof
The proof is classical and can be easily adapted from that of [6, Theorem 4.1]. The canonical equation 
only charges the set ‍V ⊂ R2

+‍ (defined in Section 2.1) and writes as follows:

	﻿‍

dx
dt

= −∇yz(x, x) nx(0)
2

ˆ

R+

h2k(h)dh, x ∈ V .
‍�

(13)

The set ‍V ‍ is the set of traits that admit a positive stable monomorphic equilibrium ‍nx‍ in a such way 
that ‍nx(0)‍ equals the birth rate of a mutant (see Proposition 3.1); ‍σ2‍ is the variance of the mutations 
and ‍1 − z(y, x)‍ is the invasion fitness. Computing these parameters gives (Equation 11). □

In Figure 2, we present a simulation of a solution of Equation 11. We observe that the traits xb 
and xd increase with time (Figure 2a, b), with decreasing speed tending to zero. The trait ‍xb(t) − xd(t)‍ 
converges to some positive number (Figure 2c) that we can rigorously compute. That is the aim of 
the next section.

Appendix 1—figure 2. Simulation of the canonical equation with ‍x0 = (3.5, 1.3)‍ and ‍ib = id = 1‍. (a) Dynamics of 
xb. (b) Dynamics of xd. (c) Dynamics of, ‍xb − xd ‍ the black curve has equation. ‍y = log(3)/2‍. 

4.3 Long-time behaviour of the canonical equation
In this section we study the long-time behaviour of the solutions of the Canonical Equation 11. We 
prove the following theorem.

Theorem 4.4
Let ‍x0 ∈ V ‍ and let ‍(x(t), t ≥ 0)‍ be the solution of (11) started at ‍x0 ∈ V ‍. Then we have:

https://doi.org/10.7554/eLife.92914
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	﻿‍
xb(t) − xd(t) −→

t→+∞

log(1 + ib + id
id

)

ib + id
.
‍�

We first prove the following lemma. We always denote ‍U1 = {x ∈ V : xb < xd}‍, ‍U2 = {x ∈ V : xd < xb}‍ 
and ‍H = {x ∈ V : xd = xb}‍.

Lemma 4.5
Let ‍x0 ∈ V ‍ and let ‍(x(t), t ≥ 0)‍ be the solution of Equation 11 started at ‍x0 ∈ V ‍. Then we have:

•	 (i) There exists ‍T > 0‍, such that for all ‍t ≥ T ‍, ‍x(t) ∈ U2 ∪H‍.
•	 (ii) There exists ‍C > 0‍ such that for all ‍t ≥ 0‍, ‍|xb(t) − xd(t)| < C‍,
•	 (iii) We have ‍xb(t)‍ increases to ‍+∞‍, ‍xd(t)‍ increases to ‍+∞‍ and ‍λ(x(t)) → ib‍ as ‍t → +∞‍.

Proof
For all ‍x ∈ V ‍, let us define:

	﻿‍
v(x) =

λ(x)
´ +∞

0 h2k(h)dh
2ibcG(x)

´ +∞
0 Nx(α)dα

.
‍�

and we remark that there exist ‍v(x0), v(x0) > 0‍ such that ‍v(x0) ≤ v(x) ≤ v(x0)‍. (i): Let 

‍T := inf{t ≥ 0 : x(t) ∈ U2 ∪H} ∈
[
0, +∞

]
‍. We first show that ‍T < +∞‍. If ‍x0 ∈ U2 ∪H‍, it is obvious. If 

‍x0 ∈ U1‍, assume that ‍T = +∞‍. Then for all ‍t ≥ 0‍, ‍xd(t) = x0
d‍. Indeed, as soon as ‍xb < xd‍, ‍ϕ(xd) = 0‍ and 

the trait xd does not move (see Equation 7). We obtain that

	﻿‍
∀t ≥ 0, d(xb(t) − xd(t))

dt
= dxb(t)

dt
≥ v1(x)ibe−λ(x)xb ≥ v(x0)ibe−λ(x)xb > 0,

‍�

that allows us to obtain the contradiction. So we have ‍T < +∞‍. We conclude the proof arguing that 
for all ‍t ≥ 0‍ such that ‍x(t) ∈ H‍, ‍dxd(t)/dt = 0‍ and ‍dxb(t)/dt > 0‍. (ii): By (i), we assume without loss of 
generality that ‍(x(t), t ≥ 0) ⊂ U2 ∪H‍. By Equation 11, we obtain that:

	﻿‍

d(xb(t) − xd(t))
dt

= ibv(x(t))

(
e−id(xb(t)−xd(t))−λ(x)(t)xb(t) − id

ˆ xb(t)

xd(t)
e−id(a−xd(t))−λ(x(t))ada

)

= ibv(x(t))
(

e−id(xb(t)−xd(t))−λ(x)(t)xb(t)

− ideidxd(t)

id + λ(x(t))
(e−(id+λ(x(t)))xd(t) − e−(id+λ(x(t)))xb(t))

)

= ibv(x(t))
id + λ(x(t))

(
(2id + λ(x(t)))e−id(xb(t)−xd(t))−λ(x(t))xb(t) − ide−λ(x(t))xd(t)

)

= ibidv(x(t))e−λ(x(t))xd(t)

id + λ(x(t))

(
2id + λ(x(t))

id
e−(id+λ(x(t)))(xb(t)−xd(t)) − 1

)
.

‍�

(14)

By Equation 14 and using the fact that for ‍x ∈ V ‍, ‍0 < λ(x) ≤ ib‍ (Lemma 2.4), we obtain that

	﻿‍

d(xb(t) − xd(t))
dt

≤ ibidv(x(t))e−λ(x(t))xd(t)

id + λ(x(t))

(
2id + ib

id
e−id(xb(t)−xd(t)) − 1

)
.
‍�

From the previous inequality, we deduce that on the set

	﻿‍




t ≥ 0 : xb(t) − xd(t) >
log( 2id + ib

id
)

id





,

‍�

the quantity ‍xb(t) − xd(t)‍ is decreasing, which allows us to conclude.
(iii): As before and by (i), we assume without loss of generality that ‍(x(t), t ≥ 0) ⊂ U2 ∪H‍. Using (ii) 

and since ‍λ(x) ≤ ib‍ (Lemma 2.4), we obtain that

https://doi.org/10.7554/eLife.92914


 Research article﻿﻿﻿﻿﻿﻿ Evolutionary Biology

Roget et al. eLife 2024;13:RP92914. DOI: https://doi.org/10.7554/eLife.92914 � 23 of 27

	﻿‍

dxb(t)
dt

= ibv(x(t))e−id(xb(t)−xd(t))e−λ(x(t))xb(t)

≥ ibv(x0)e−Ce−ibxb(t), ‍�

that allows to conclude that ‍xb(t)‍ increases to ‍+∞‍ and by (ii) we also have a similar behavior for ‍xd(t)‍. 
We now prove that ‍λ(x(t)) → ib‍ as ‍t → +∞‍. Let us recall that for all ‍t ≥ 0‍, ‍λ(x(t))‍ is the unique solution 
of

	﻿‍
ib
ˆ xb(t)

0
e−id(a−xd(t))+−λ(x(t))ada = 1,

‍�

that we rewrite

	﻿‍
ib
ˆ xd(t)

0
e−λ(x(t))ada + ib

(e−λ(x(t))xd(t) − e−id(xb(t)−xd(t))−λ(x(t))xb(t))
id + λ(x(t))

= 1.
‍�

(15)

The map ‍t �→ λ(x(t))‍ is clearly increasing (using Equation 7 and the positivity of ‍x
′
b(t)‍ and ‍x

′
d(t)‍) and 

bounded by ib. So there exists ‍λ∗ > 0‍ such that ‍λ(x(t)) → λ∗‍. By taking the limit ‍t → +∞‍ in Equation 
15 and using the previous part of the proof, we deduce that

	﻿‍
ib
ˆ +∞

0
e−λ∗ada = 1,

‍�

and ‍λ
∗ = ib‍ that concludes the proof. □

We now prove Theorem 4.4.

Proof of Theorem 4.4
By Lemma 4.5 (i), we assume without loss of generality that ‍(x(t), t ≥ 0) ⊂ U2 ∪H‍, i.e that for all ‍t ≥ 0‍, 
‍xb(t) − xd(t) ≥ 0‍. We recall that Equality Equation 14 gives:

	﻿‍

dxb(t) − xd(t)
dt

= ibidv(x(t))e−λ(x(t))xd(t)

id + λ(x(t))

(
2id + λ(x(t))

id
e−(id+λ(x(t))(xb(t)−xd(t))) − 1

)
.
‍�

(16)

We define ‍f, h : R+ → R‍ by:

	﻿‍
f(t) = ibidv(x(t))e−λ(x(t))xd(t)

id + λ(x(t)) ‍�

and

	﻿‍
h(t) = 2id + λ(x(t))

id
e−(id+λ(x(t)))(xb(t)−xd(t)) − 2id + ib

id
e−(id+ib)(xb(t)−xd(t)).

‍�

Note that ‍h(t) → 0‍ as ‍t → +∞‍ using Lemma 4.5 (ii). Let us also define ‍u(t) = xb(t) − xd(t)‍. So Equation 
16 rewrites

	﻿‍

du(t)
dt

= f(t)
(

2id + ib
id

e−(id+ib)u(t) − 1 + h(t)
)

.
‍�

We deduce that for all ‍ϵ > 0‍, there exists ‍t0 > 0‍ such that for all ‍t ≥ t0‍,

	﻿‍
f(t)

(
2id + ib

id
e−2(ib+id)u(t) − 1 − ϵ

)
≤ du(t)

dt
≤ f(t)

(
2id + ib

id
e−(id+ib)u(t) − 1 + ϵ

)
.
‍�

(17)

Let us consider the differential equation

	﻿‍

dw(t)
dt

= f(t)
(

2id + ib
id

e−(ib+id)w(t) − 1 + ϵ

)
.
‍�

By using the change of variables ‍s = e(ib+id)w‍, we solve the previous equation and we find that there 
exists a constant ‍C(x0)‍ such that

https://doi.org/10.7554/eLife.92914
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	﻿‍
w(t) = 1

ib + id
log

(
2id + ib
id(1 − ϵ)

− C(x0)
1 − ϵ

exp
(
−(ib + id)(1 − ϵ)

ˆ t

0
f(s)ds

))
.
‍�

We conclude by proving that the integral above tends to infinity as ‍t‍ tends to infinity. First, the 
inequality ‍xb(t) ≥ xd(t)‍ implies that

	﻿‍
f(t) ≥ ibidv(x(t))

id + λ(x(t))
e−λ(x(t))xb(t).

‍�

Moreover, Equation 11 gives that

	﻿‍ v(x(t))e−λ(x(t))xb(t) = eid(xb(t)−xd(t))x′b(t).‍�

Since ‍λ(x(t)) ≤ ib‍, we obtain that

	﻿‍
f(t) ≥ ibid

ib + id
x′b(t)

‍�

and that

	﻿‍

ˆ t

0
f(s)ds ≥ ibid

ib + id
xb(t) −→

t→+∞
+∞.

‍�

By Equation 17, we conclude that for all ‍ϵ > 0‍:

	﻿‍

1
ib + id

log
(

2id + ib
id(1 + ϵ)

)
≤ lim inf

t→+∞
u(t) ≤ lim sup

t→+∞
u(t) ≤ 1

id + ib
log

(
2id + ib
id(1 − ϵ)

)

‍�

that concludes the proof. □

Appendix 1—figure 3. Optimal configurations as time tends to infinity.
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5 On the selection of Lansing effect
In this section, we ask the question of the apparition of a pro-senescence and non-genetic mechanism 
similar to the Lansing effect (Lansing, 1954; Lansing, 1947). We recall that the Lansing effect is the 
effect through which the progeny of old parents do not live as long as those of young parents.

We will show that the Lansing effect can represent a selective advantage, as an accelerator of the 
evolution.

5.1 The bd model with Lansing effect
The bd-model with Lansing effect is defined by modifying the bd-model that we introduced in Section 
1. It was introduced and studied in details in Méléard et al., 2019 in the case where ‍ib = id = 1‍. The 
authors show that under the assumptions of the adaptive dynamics theory (large population, rare 
and small mutations), the evolution of the trait ‍(xb, xd)‍ is described by the solutions a differential 
inclusion which reach the diagonal ‍{(xb, xd) ∈ R2

+ : xb = xd}‍ and then stay on it. The formula given 
here are generalized to the case where ‍ib ̸= id‍.

The model
We assume that an individual which reproduces after age xd transmits to its descendant a shorter 
life-expectancy. If an individual with trait ‍x = (xb, xd)‍ reproduces at age ‍a‍, the trait of its descendant 
is determined by a two-phases mechanism. The first phase is non-genetic and modifies the trait ‍x‍: if 
‍a < xd‍ we define ‍̃x = x‍ but if ‍a > xd‍, ‍̃x = (xb, 0)‍. The second phase corresponds to genetic mutations 
which modify the trait ‍̃x‍ similarly as in Section 1. Hence, on configurations ‍{(xb, xd) ∈ R2

+ : xb < xd}‍, 
the dynamics is similar as in the model described in Section 1. Let us note that the population is then 
composed of two subpopulations, a population with traits ‍{(xb, xd), xb > 0, xd > 0}‍ and a population 
with traits ‍{(xb, 0), xb > 0}‍.

Demographic parameters
We now give for the model with Lansing effect, the analogous of the demographic parameters 
introduced in Section 2. We refer to Méléard et al., 2019 for the justification. We denote by ‍λ

ℓ(x)‍ 
the Malthusian parameter describing the asymptotic growth of the population with Lansing effect. 
It is solution of

	﻿‍
ib
ˆ xb∧xd

0
e−λℓ(x)ada = 1.

‍�

Then it can been easily computed by Newton’s method (as seen in Section 2) and the set of viability 
‍Vℓ‍ is simple. It is composed of the traits ‍x = (xb, xd)‍ such that

	﻿‍
xb ∧ xd > 1

ib
.
‍�

The associated stable age distribution ‍Nℓ
x(a) = (Nℓ,1

x (a), Nℓ,2
x (a))‍ satisfies

	﻿‍ Nℓ,1
x (a) = ib e−id(a−xd)+−λℓ(x)a, Nℓ,2

x (a) = ib F(λℓ(x))e−(id+λℓ(x))a,‍�

where ‍F‍ is some function that we don’t detail here (Méléard et al., 2019, Proposition 3.5). The 
functions ‍Nℓ,1

x ‍ and ‍Nℓ,2
x ‍ describe the stable age distributions for populations with traits ‍(xb, xd)‍ and 

‍(xb, 0)‍ respectively. The generation time ‍Gℓ(x)‍ is given by

	﻿‍
Gℓ(x) =

ˆ xb∧xd

0
a ib e−id(a−xd)+−λℓ(x)ada = ib

ˆ xb∧xd

0
ae−λℓ(x)ada.

‍�
(18)

We observe that the Malthusian parameter ‍λ
ℓ(x)‍ and the mean generation time ‍Gℓ(x)‍ only take into 

account the individuals reproducing before age ‍xb ∧ xd‍.

Evolution of the trait with Lansing effect
Let us now describe the behaviour of the trait. On the subset ‍{xb < xd}‍, the Lansing effect doesn’t 
act. So, the dynamics is similar as the one described in the above sections. The trait dynamics is 
described by the differential equation

https://doi.org/10.7554/eLife.92914
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	﻿‍

dxb(t)
dt

= ∂λℓ(x)
∂xb

λℓ(x)
2ib c

´
R+

(Nℓ,1
x + Nℓ,2

x )(a)da
σ2(x), dxd(t)

dt
= 0.

‍�

Thus, the trait xb increases while the trait xd stays constant. On the subset ‍{xb > xd}‍, only individuals 
breeding before the age xd will have viable offspring. Thus, there is no selective advantage in 
extending the reproduction phase by increasing xb, but only in increasing survival by increasing xd. 
More precisely, on ‍{xb < xd}‍, we have:

	﻿‍

dxd(t)
dt

= ∂λℓ(x)
∂xd

λℓ(x)
2ib c

´
R+

(Nℓ,1
x + Nℓ,2

x )(a)da
σ2(x), dxb(t)

dt
= 0.

‍�
(19)

Indeed, the derivatives of the fitness are given as follows (see Méléard et al., 2019 Proposition 4.1).

	﻿‍
∀x ∈ U1,∇λℓ(x) =

(
ibe−λℓ(x)xb

Gℓ(x)
, 0

)
; ∀x ∈ U2,∇λℓ(x) =

(
0, ibe−λℓ(x)xd

Gℓ(x)

)
.
‍�

We observe that the trait xd increases while the trait xb stays constant. Hence, whatever the initial 
condition, the trait ‍x‍ reaches in finite time the diagonal ‍{xb = xd}‍ and then stays on it. On this 
diagonal the trait can evolve at different speeds (the dynamics is not unique): the global behavior of 
the trait is described by a differential inclusion (Méléard et al., 2019, Theorem 4.17).

5.2 Selection for Lansing effect
Let us first note that for Non Lansing and Lansing populations, as observed in the study of 
adaptive dynamics, the long time strategy leads to traits xb and xd going to infinity, with 

‍xb − xd = log(1 + ib+id
id )/(ib + id)‍ in the Non Lansing case and ‍xb = xd‍ in the Lansing case (see 

Méléard et al., 2019, Theorem 4.17 in that case). It is then easy to deduce that in both cases, the 
Malthusian parameter, which has been proved to be less than ib, converges to ib when ‍t‍ tends to 
infinity. Therefore the evolution will give the same selective advantage to both populations, making 
possible the cohabitation of the two populations. In addition, we observe that the partial derivatives 
of the Malthusian parameters with respect to xb or xd (in both cases) are positive, meaning that the 
convergences are increasing. Let us consider a monotype population with trait ‍(xb, xd) ∈ U2‍, then by 
definition, we obtain that

	﻿‍ λnℓ(x) > λℓ(x)‍�

at time 0. Thus, there are periods where the Lansing fitness will increase much more than the Non 
Lansing one.

In order to assess the relative evolutionary success of Non Lansing/Lansing populations, we 
consider a population composed of two sub-monomorphic populations with traits respectively 

‍x
ℓ = (xℓb, xℓd)‍ and ‍x

nℓ = (xnℓ
b , xnℓ

d )‍, the first one subject to the Lansing effect and the second one which 
is not affected by this senescence effect, both subjected to the same competitive pressure. The traits 
have been chosen such that the two sub-populations have the same darwinian fitness ‍λ

nℓ(xnℓ) = λℓ(xℓ)‍. 
In each sub-population, the dynamics is described either in Section 1 (without Lansing effect) or in 
Section 5.1 (with Lansing effect). Let us first note that since ‍λ

nℓ(xnℓ) = λℓ(xℓ)‍ and since by definition,

	﻿‍
ib
ˆ xℓd

0
e−λℓ(xℓ)ada = 1 = ib

ˆ xnℓ
d

0
e−λnℓ(xnℓ)ada + ib

ˆ xnℓ
b

xnℓ
d

e−id(a−xnℓ
d )e−λnℓ(xnℓ)ada,

‍�

we deduce immediately that

	﻿‍ xnℓ
b > xℓd > xnℓ

d .‍�

We observe the isoclines of ‍λnℓ‍ and ‍λℓ‍ when they have the same values. Although they are very 
simple (horizontal or vertical lines) in the Lansing case, and in the region U1 for the non-Lansing case, 
they have a more complicated form in the region U2 for the non-Lansing case (Figure 5 of the main 
paper).

https://doi.org/10.7554/eLife.92914
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Let us consider the points ‍xnℓ ∈ U2‍ such that ‍λ
nℓ(xnℓ)‍ has a fixed constant value. Using the Implicit 

Function Theorem, we know the existence of a real-valued smooth function ‍φnℓ‍ such that for all these 
points, ‍x

nℓ
d = φnℓ(xnℓ

b )‍. Further,

	﻿‍

φ′
nℓ(xnℓ

b ) = −
∂λnℓ

∂xnℓ
b

∂λnℓ

∂xnℓ
d

(xnℓ).

‍�

The previous computations showed that the partial derivatives of ‍λnℓ‍ are positive, and then that 

‍φ
′
nℓ(xnℓ

b ) < 0‍, yielding the function ‍φℓ‍ to be decreasing on U2. Moreover, the exact computation gives

	﻿‍

φ′
ℓ(xnℓ

b ) = − ibe−id(xnℓ
b −xnℓ

d )e−λ(xnℓ)xnℓ
b

ibideidxnℓ
d
´ xnℓ

b
xnℓ

d
e−(id+λnℓ(xnℓ))ada

≥ − 1
id(xnℓ

b − xnℓ
d )

.

‍�

The last inequality explains the almost vertical tangent observed when ‍xnℓ‍ is close to the diagonal 
(see Figure 5 of the main paper).

https://doi.org/10.7554/eLife.92914
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