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Key Points

• Bridging radiotherapy
(BRT) for
chemotherapy-
refractory CNS
lymphoma achieves
rapid cytoreduction
before CART.

• CNS-BRT is
associated with a
favorable CNS
response profile and
CART–associated
neurotoxicity profile.
Chimeric antigen receptor (CAR) T-cell therapy (CART) for central nervous system

lymphoma (CNSL) is a promising strategy, yet responses are frequently not durable.

Bridging radiotherapy (BRT) is used for extracranial lymphoma in which it can improve

CART outcomes through cytoreduction of high-risk lesions. We hypothesized that BRT

would achieve similar, significant cytoreduction before CART for CNSL (CNS-BRT). We

identified patients with CNSL with non-Hodgkin B-cell lymphoma who received CNS-BRT

before commercial CART. Cytoreduction from CNS-BRT was calculated as change in lesion

size before CART. Twelve patients received CNS-BRT, and the median follow-up among

survivors is 11.8 months (interquartile range, 8.5-21.9). Ten patients had CNSL (9 secondary,

1 primary) and 2 patients had epidural disease (evaluable for toxicity). All 10 patients with

CNSL had progressive disease at the time of CNS-BRT. Of 12 patients, 1 experienced grade ≥3
cytokine release syndrome, and 3 of 12 patients experienced grade ≥3 immune effector cell–

associated neurotoxicity syndrome. CNS-BRT achieved a 74.0% (95% confidence interval,

62.0-86.0) mean reduction in lesion size from baseline (P = .014) at a median of 12 days from

BRT completion and before CART infusion. Best CNS response included 8 complete

responses, 1 partial response, and 1 progressive disease. Three patients experienced CNS

relapse outside the BRT field. Preliminary data suggest CNS-BRT achieves rapid

cytoreduction and is associated with a favorable CNS response and safety profile. These

data support further study of BRT as a bridging modality for CNSL CART.
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Introduction

Primary and secondary central nervous system lymphoma (CNSL)
are rare, aggressive manifestations of non-Hodgkin lymphoma
(NHL). CD19 chimeric antigen receptor T-cell therapy (CART) has
revolutionized the treatment of extracranial NHL with emerging but
promising response signals for CNSL.1-6 However, concerns about
the durability of response after CART7,8 suggest that additional
strategies to maximize CNS control are warranted. Moreover,
~80% of patients receiving CART require bridging therapy
because of symptomatic or rapidly progressing disease,1,4,9 yet few
data exist to guide optimal CNS bridging strategy.10

Radiotherapy is a promising CART bridging strategy for CNSL for
multiple reasons. First, bridging radiotherapy (BRT) for extracranial
lymphoma is safe, has rapid cytoreductive power, and appears to
reduce relapse risk in irradiated high-risk sites.11-14 Second,
salvage radiotherapy for recurrent or refractory CNSL is associated
with high response rates of 67% to 88%.15,16 Third, BRT avoids
systemic toxicity associated with chemotherapy, which can hinder
subsequent receipt of CART.10 Fourth, BRT may enhance CART
efficacy by preventing antigen escape.17

Despite compelling rationale, specific concerns about CNS-directed
BRT (CNS-BRT) remain, given the potential for excess neurotoxicity.
CART–associated neurotoxicity is driven by endothelial activation,
blood-brain barrier disruption, monocyte dysregulation, cytokine
release, and tumor inflammation.18-21 Given that radiotherapy can
lead to enhanced permeability of the blood–brain barrier and
augment local inflammation,22,23 CNS-BRT has a theoretical poten-
tial to enhance CART neurotoxicity. We report our experience of
safety, response, and relapse pattern after CNS-BRT before CART.

Methods

Patient cohort

We included all consecutively treated patients with pathologically
confirmed NHL involving the CNS who received BRT at the
Memorial Sloan Kettering Cancer Center in the period spanning
30 days before leukapheresis through commercial CAR T-cell
infusion between 2019 and 2023, to ensure a minimum follow-up
of 6 months. CNS involvement included disease infiltration of the
brain or spinal cord parenchyma or leptomeningeal space. We also
included patients with significant epidural involvement for relevant
toxicity assessment because the BRT field would encompass the
adjacent spinal cord.

CNSL-directed therapy was defined as systemic therapy pre-
scribed for a known diagnosis of CNSL, as opposed to prophylaxis
before demonstrated CNS disease. Systemic therapy was defined
as concurrent if there was any overlap with BRT, that is, systemic
therapy and BRT were administered at least once on the same day.
This research was approved by the Memorial Sloan Kettering
Cancer institutional review board. All patients provided signed
informed consent for treatment with immune effector cells.

CNS-BRT

CNS-BRT was delivered using intensity modulated radiotherapy or
conventional techniques. Whole-brain radiotherapy fields were
8 OCTOBER 2024 • VOLUME 8, NUMBER 19
treated with standard opposed fields to the inferior C2 vertebra.
Partial brain radiotherapy fields encompassed a radiographically
defined clinical target volume (CTV) with a 3-mm to 10-mm geo-
metric expansion for the planning target volume. For intact tumors,
the CTV was defined as radiographically visible disease with up to
5-mm expansion to account for possible microscopic spread.
Involved site spine fields generally encompassed a radiographically
defined CTV with 1.5- to 3-cm superior and inferior margin to field
edge using conventional planning.

Outcome assessment

Cytokine release syndrome (CRS) and immune effector cell–
associated neurotoxicity syndrome (ICANS) were graded by an
institutional multidisciplinary conference according to the American
Society of Transplantation and Cellular Therapies consensus
criteria24 for 11 of 12 patients; 1 patient received CART at an
outside institution and toxicity was graded per outside physician
report. Immune effector cell encephalopathy (ICE) scores were
graded per physician report. Additional CNS-BRT–related toxicities
were graded according to Common Terminology Criteria for
Adverse Events version 5.0.

CNS response to BRT and subsequent relapse were evaluated for
patients with CNSL but not for patients who received CNS-BRT for
purely epidural lesions. CNS response of parenchymal and lep-
tomeningeal lesions were evaluated on postcontrast magnetic
resonance imaging (MRI). Response evaluations were performed
by an expert CART review committee and an independent, expe-
rienced blinded neuro-oncology radiologist (J.S.) to achieve clinical
consensus. Evaluated lesions were identified on postcontrast MRI
on the series with the thinnest slice thickness using the plane in
which the lesion had the greatest long axis diameter. Total lesion
size was defined as the sum of product diameters for all measur-
able lesions. The product diameter is the longest axis diameter
multiplied by the orthogonal diameter for a single lesion; this value
is calculated for each lesion and summed together. For response
and relapse evaluation, comparisons were done in the same
imaging plane. Spinal intramedullary disease was defined as
involvement of soft tissue structures within the thecal sac. Com-
plete response (CR) was defined as disappearance of all contrast
enhancing tumor; small residual areas of contrast enhancement
could be considered CR if they demonstrated stability on multiple
longitudinal scans in the absence of further therapy. Patients with
evidence of leptomeningeal disease at the time of BRT must have
also had documented negative cerebrospinal fluid (CSF) cytology
to be considered in CR. Partial response (PR) was defined as at
least a 50% reduction in the size of contrast enhancing tumor,
without the development of any new tumors. Progressive disease
(PD) was defined as growth of contrast-enhancing tumor by >25%
or the development of any new tumors. Stable disease included
tumors that did not achieve PR and did not show evidence of PD.
CNS relapse was defined as PD within the CNS parenchyma
or leptomeninges. Cytoreduction due to BRT was calculated by
determining the change in total lesion size at pre-BRT baseline
compared with after BRT but before CAR T-cell infusion. Patients
were excluded from cytoreduction analysis if they did not
undergo interim MRI between the end of CNS-BRT and CAR T-cell
infusion.
CYTOREDUCTION FROM CNS BRIDGING RADIOTHERAPY 5193
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Statistical analysis

Patient and treatment characteristics are reported as median and
range for continuous variables and counts for categorical variables.
The cumulative incidence of CNS relapse measured from CAR T-
cell infusion was calculated by cumulative incidence functions
assuming death as a competing risk, reported with 95% confi-
dence intervals (CIs). Follow-up time among survivors was esti-
mated using the reverse Kaplan-Meier method. Significance for
quantitative cytoreduction was calculated using a paired sample t
test, and the association between CNS tumor size by high-grade
ICANS (grade ≥3) using an unpaired 2-sided t test. Statistical
significance was set at P < .05 and performed using Graphpad
Prism (version 9.3.1, GraphPad Software) and R Studio (version
4.1.2, R Foundation for Statistical Computing).25
T
a
b
le

1
.
P
a
ti
e
n
t
c
h
a
ra
c
te
ri
s
ti
c
s

P
a
ti
e
n
t

A
g
e

a
t

B
R
T

(y
)

L
e
n
g
th

o
f

fo
ll
o
w
-

u
p

(m
o
)

S
e
x

H
is
to
lo
g
y

P
ri
o
r

A
S
C
T

C
N
S

p
ro

p
h
y
la
x
is

P
ri
o
r

li
n
e
s
o
f

C
N
S

th
e
ra
p
y

H
D
-

M
T
X

In
te
rv
a
l

M
T
X

to
R
T

(d
a
y
s
)

C
N
S

d
is
e
a
s
e

s
ta
tu
s

a
t
R
T

S
y
s
te
m
ic

d
is
e
a
s
e

s
ta
tu
s

a
t
R
T

K
P
S

a
t
R
T

C
N
S

s
it
e

in
v
o
lv
e
d

R
T

fi
e
ld

R
T

d
o
s
e

(c
G
y
)

R
T

fr
a
c
ti
o
n
s

C
o
n
c
u
rr
e
n
t

s
y
s
te
m
ic

th
e
ra
p
y

w
it
h
R
T

P
re
p
a
ra
ti
v
e

re
g
im

e
n

A
p
h
e
re
s
is

to
in
fu
s
io
n

ti
m
e
(d
)

C
A
R
T

p
ro

d
u
c
t

B
a
s
e
li
n
e

IC
E

IC
A
N
S

1
60

5.
7

M
al
e

M
an

tle
ce

ll
N
o

N
o

4
N
o

P
D

P
D

80
Le

pt
om

en
in
ge

s
O
rb
its

15
00

10
Ve

ne
to
cl
ax

C
y/
Fl
u

70
Li
so

-c
el

N
ot

av
ai
la
bl
e

0

2v
36

5.
7

Fe
m
al
e

B
ur
ki
tt

Y
es

Y
es

2
Y
es

0
P
D

N
D

80
Le

pt
om

en
in
ge

s
W

ho
le

br
ai
n

20
00

5
H
D
-M

TX
C
y/
Fl
u

25
Ti
sa
-c
el

N
ot

av
ai
la
bl
e

1

3
74

3.
3

Fe
m
al
e

D
LB

C
L

N
o

N
o

2
Y
es

21
P
D

S
D

60
Le

pt
om

en
in
ge

s
T1

1-
L3

20
00

5
Ib
ru
tin

ib
C
y/
Fl
u

63
Ti
sa
-c
el

5
3

4
70

10
.1

M
al
e

M
an

tle
ce

ll
Y
es

N
o

0
N
o

N
/A

P
D

90
Ep

id
ur
al

T8
-
L1

20
00

5
N
on

e
C
y/
Fl
u

81
Li
so

-c
el

10
0

5
66

33
.1

M
al
e

D
LB

C
L

N
o

N
o

2
Y
es

17
4

P
D

N
D

90
B
ra
in pa
re
nc

hy
m
a

P
ar
tia
lb

ra
in

30
00

10
N
on

e
C
y/
Fl
u

45
Ti
sa
-c
el

10
0

6
41

23
.0

Fe
m
al
e

P
C
N
S
L

Y
es

N
o

4
Y
es

62
P
D

N
/A

80
B
ra
in pa
re
nc

hy
m
a

W
ho

le
br
ai
n

24
00

12
N
on

e
C
y/
Fl
u

54
Ti
sa
-c
el

10
0

7
48

11
.4

Fe
m
al
e

D
LB

C
L

N
o

N
o

2
Y
es

17
9

P
D

N
D

50
B
ra
in pa
re
nc

hy
m
a

W
ho

le
br
ai
n

24
00

12
N
on

e
C
y/
Fl
u

69
Li
so

-c
el

6
4

8
51

12
.6

M
al
e

D
LB

C
L

N
o

N
o

0
N
o

N
/A

S
D

90
Ep

id
ur
al

C
5-
C
7,

sa
cr
um

20
00

5
N
on

e
B
en

da
m
us
tin

e
28

A
xi-
ce

l
10

0

9
30

11
.9

Fe
m
al
e

D
LB

C
L

Y
es

N
o

3
Y
es

46
P
D

N
D

90
B
ra
in pa
re
nc

hy
m
a

P
ar
tia
lb

ra
in

33
00

11
N
on

e
C
y/
Fl
u

61
Li
so

-c
el

10
4

10
61

15
.6

M
al
e

D
LB

C
L

Y
es

Y
es

2
Y
es

39
3

P
D

N
D

80
Le

pt
om

en
in
ge

s
C
au

da
20

00
5

Ib
ru
tin

ib
C
y/
Fl
u

19
9

Li
so

-c
el

10
0

11
71

8.
3

M
al
e

D
LB

C
L

N
o

N
o

2
Y
es

32
P
D

P
D

60
B
ra
in pa
re
nc

hy
m
a

P
ar
tia
lb

ra
in

30
00

10
N
on

e
B
en

da
m
us
tin

e
68

Li
so

-c
el

10
2

12
76

6.
9

Fe
m
al
e

D
LB

C
L

N
o

N
o

3
Y
es

9
P
D

N
D

90
B
ra
in pa
re
nc

hy
m
a

P
ar
tia
lb

ra
in

30
00

10
N
on

e
C
y/
Fl
u

12
9

Li
so

-c
el

10
0

S
um

m
ar
y
of

de
m
og

ra
ph

ic
,c

lin
ic
al
,t
re
at
m
en

t,
an

d
to
xic

ity
ch

ar
ac

te
ris
tic

s
fo
r
12

pa
tie

nt
s.

A
S
C
T,

au
to
lo
go

us
st
em

ce
ll
tr
an

sp
la
nt
;A

xi-
ce

l,
ax
ic
ab

ta
ge

ne
ci
lo
le
uc

el
;c

G
y,
ce

nt
ig
ra
y;
C
y,
cy
cl
op

ho
sp

ha
m
id
e;

D
LB

C
L,

di
ffu

se
la
rg
e
B
-c
el
ll
ym

ph
om

a;
Fl
u,

fl
ud

ar
ab

in
e;

IV
IG

,I
V
im
m

Li
so

ca
bt
ag

en
e
m
ar
al
eu

ce
l;
N
/A
,n

ot
ap

pl
ic
ab

le
;
N
D
,n

o
di
se
as
e;

P
C
N
S
L,

pr
im
ar
y
ce

nt
ra
ln

er
vo
us

sy
te
m

ly
m
ph

om
a;

R
T,

ra
di
ot
he

ra
py
;
S
D
,s

ta
bl
e
di
se
as
e;

Ti
sa
-c
el
,t
is
ag

en
le
cl
eu

ce
l.
Results

Patient demographics and clinical characteristics

We identified 12 eligible patients who received CNS-BRT before
CART (Table 1). Median follow-up among survivors was
11.8 months (interquartile range, 8.5-21.9). Diagnoses included
diffuse large B-cell lymphoma (n = 8), mantle cell lymphoma
(n = 2), Burkitt lymphoma (n = 1), and primary CNS lymphoma/
diffuse large B-cell lymphoma (n = 1). Involved CNS sites included
brain parenchyma (n = 6), leptomeninges (n = 4), and spinal
epidural space (n = 2). Five patients had concomitant systemic
disease at the time of CNS-BRT. Median age at CNS-BRT was 60
years (range, 30-76), and median Karnofsky Performance Status
was 80 (range, 50-90). Nine patients were symptomatic from their
CNS disease at the time of CNS-BRT. The median number of prior
CNSL-directed therapies was 2 (range, 0-4). Nine patients
received prior high-dose methotrexate (HD-MTX) with a median
time of 46 days between the last HD-MTX infusion and the start of
CNS-BRT (range, 0-393). Five patients had received prior autolo-
gous hematopoietic stem cell transplantation.

CNS-BRT characteristics

All 10 patients with CNSL (parenchymal and leptomeningeal
involvement) had progressive CNS disease at the time of CNS-
BRT. Of 2 patients with epidural disease, 1 patient had PD
whereas the other had radiographically stable but symptomatic
lymphoma. CNS-BRT fields included whole brain (n = 3), involved
site “partial” brain (n = 4), involved site spine (n = 4), and orbits
(n = 1). The median treatment dose was 22 Gy15-33 in 10 frac-
tions.5-12 Seven patients received systemic therapy as part of
bridging, in addition to CNS-BRT; systemic therapy bridging
included MTX (HD-MTX [n = 4], intrathecal-MTX [n = 1], rituximab
[n = 2], ibrutinib [n = 2], cytarabine [n = 1], pembrolizumab [n = 1],
and venetoclax [n = 1]). Four patients progressed on systemic
therapy bridging before initiation of CNS-BRT. In general, cytotoxic
chemotherapy and CNS-BRT were given sequentially. However, 1
patient initiated CNS-BRT concomitantly with the last dose of HD-
MTX because of progressive symptoms. Ibrutinib (n = 2) and
venetoclax (n = 1) were given concurrently with CNS-BRT.

Median time from apheresis to CAR T-cell infusion was 66 days
(range, 25-199). Median time from CNS-BRT completion to CAR
T-cell infusion was 20 days (range, 10-212). Ten patients received
fludarabine/cyclophosphamide lymphodepleting therapy, and 2
5194 CEDERQUIST et al 8 OCTOBER 2024 • VOLUME 8, NUMBER 19



received bendamustine. CART products included lisocabtagene
maraleucel (n = 7), tisagenlecleucel (n = 4), and axicabtagene
ciloleucel (n = 1).

Toxicity associated with CNS-BRT and subsequent

CART

Eight patients (75%) experienced mild toxicities possibly attribut-
able to CNS-BRT, all of which were grade ≤2. Toxicities that
occurred in >1 patient included fatigue (n = 6 grade 1, n = 1 grade
2), dermatitis (n = 2 grade 1), and cognitive disturbance (n = 1
grade 1, n = 1 grade 2). Toxicities that were observed once
included grade 1 headache and grade 1 depressed level of con-
sciousness. No toxicities of grade ≥3 were observed.

After CAR T-cell infusion, 8 of 12 patients (75%) experienced
CRS; most events were grade ≤2 (grade 1 [n = 3], grade 2
[n = 4]). One patient experienced grade 3 CRS. Five of 12 patients
(42%) experienced ICANS, 3 of whom experienced high-grade
ICANS (grade 3 [n = 1], grade 4 [n = 2]). Two of the high-grade
cases were reversible (Table 1). All patients were on seizure pro-
phylaxis. The 3 patients who developed severe ICANS had
impaired neurologic function at baseline, which was likely multi-
factorial with contributions from CNSL and other factors. Patient 3
had baseline Karnofsky Performance Status of 50 to 60; ICE score
of 5; and intermittent confusion, hallucinations, and disorientation
to place. After CAR T-cell infusion, she developed severe
encephalopathy requiring intubation, however the syndrome was
transient and neurologic status recovered to baseline. Patient 7’s
baseline ICE score of 6 and neurologic assessment was “awake,
but not alert” with intermittent confusion, aphasia, and documented
focal seizure. The patient developed grade 4 ICANS with seizures,
communicating hydrocephalus, altered mental status, and myelitis
that was irreversible. Patient 9 had grade 4 ICANS characterized
by seizure activity 16 days after CAR T-cell infusion, which was
reversible. This patient had known baseline epilepsy and the
seizure she experienced after CART was of the same semiology as
her prior seizures and occurred in the setting of an acute viral
infection. There was a trend toward larger CNS tumor size in
patients who experienced high-grade ICANS, however this differ-
ence was not statistically significant (supplemental Figure 1).
Overall, 6 patients received both tocilizumab and steroids.

Cytoreduction from CNS-BRT before CART therapy

Of 10 efficacy-evaluable patients, 8 had imaging before and after
CNS-BRT and were evaluable for quantitative cytoreduction.
Median time from the end of CNS-BRT to the radiographic
assessment was 12 days (range, 2-55). Of 8 patients, 3 were on
steroids at the time of radiographic assessment. Among 8 evalu-
able patients, CNS-BRT produced a significant reduction in lesion
size (P = .014). All 8 patients had at least a PR without any pro-
gressing lesions. The mean reduction in lesion size was 74%
(95% CI, 62-86; Figure 1A). Both leptomeningeal and brain
parenchymal lesions responded well to CNS-BRT (Figure 1B-C).

Overall response

The best overall response after CART included n = 6 CR, n = 3 PR,
and n = 3 PD. Best CNS response after CAR T-cell infusion
included n = 8 CR, n = 1 PR, and n = 1 PD (Figure 2A). The best
CNS response after CNS-BRT, which was defined as the maximal
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decrease in lesion size at any point after CNS-BRT or CAR T-cell
infusion, included n = 8 CR and n = 2 PR; that is, 1 patient had a
PR after CNS-BRT but developed out-of-field CNS recurrent dis-
ease before CART and continued to have further CNS progression
after CART. The median time to best CNS response was 170 days
(range, 31-307). The mean maximal change in lesion size
was −94.8% (95% CI, −89.4 to −100.1; Figure 2B).

CNS relapse

Among the CNSL cohort (n = 10), there were no in-field CNS
recurrences. The 12-month cumulative risk of any CNS relapse
was 25% (95% CI, 6-52), which included 3 relapse and/or pro-
gression events (Figure 3A). Of note, the 3 relapse/progression
events occurred in patients with active or prior leptomeningeal
disease. Patient 1 had radiographic leptomeningeal involvement of
the V1 nerve and positive CSF cytology at the time of CNS-BRT.
This patient received CNS-BRT to a bilateral orbital field to
target the radiographic disease, as well as additional systemic
bridging therapy (rituximab, cytarabine, and venetoclax); CSF
cytology cleared before CART. He experienced an out-of-field
recurrence in the brain 1 month after CAR T-cell infusion. Patient
3 had a bulky lumbar leptomeningeal tumor and positive CSF
cytology at the time of CNS-BRT. This patient received CNS-BRT
to the lumbar lesion with concurrent ibrutinib. After initial response,
she developed a multifocal leptomeningeal recurrence, including at
the margin of the prior RT field, before CART. She experienced
further progression after CAR T-cell. Patient 12 had a history of
positive CSF cytology, but this was negative at the time of CNS-
BRT. She received CNS-BRT to a progressive right basal ganglia
lesion and ultimately had a periventricular recurrence at the margin
of the prior radiotherapy field (Figure 3B).
Discussion

We report a retrospective series of patients who received CNS-
BRT for NHL, including 10 patients with CNSL (1 primary CNSL
[PCNSL], 9 secondary CNSL [SCNSL]) and 2 patients who
received CNS-BRT to epidural targets. This represents a particu-
larly high-risk and difficult-to-manage cohort because all 10
patients with CNSL had CNS disease progressive through stan-
dard chemotherapy, and 11 of 12 patients in the cohort had PD at
the time of CNS-BRT. Importantly, CNS-BRT achieved significant
cytoreduction of all treated lesions, at a median interval of only
12 days from the completion of BRT. This rapid and robust
response is critical as it demonstrates that BRT can achieve tumor
control and potentially symptom palliation within the often-narrow
timeframe of the CART bridging period. This response was main-
tained or improved after CART for 9 of 10 patients, at least
temporarily. Only 1 patient did not respond to CART and exhibited
rapidly progressive leptomeningeal disease, which was fatal. The
12-month estimated risk of CNS relapse and/or progression after
CART was 25%, in this limited and heterogeneous cohort.

The overall rate of CRS in this study was 67% (8/12) and high-
grade CRS was 8% (1/12). The overall rate of ICANS was 42%
(5/12) and 25% high-grade (3/12). The overall rate of toxicity
reported here is largely similar to what is reported in the literature
for patients with CNSL. A series of 10 patients with active SCNSL
treated with CART reported that 3 of 10 patient developed high-
grade ICANS and this was not associated with radiotherapy.26 In
CYTOREDUCTION FROM CNS BRIDGING RADIOTHERAPY 5195
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Figure 1. CNS-BRT response. (A) Paired lesion-size analysis

shows a significant decrease in lesion size after CNS-BRT,

before CAR T-cell infusion (P = .014). The mean decrease in

lesion size was 74.8%. (B) Baseline imaging and CNS-BRT

response for patients with leptomeningeal lesions. Patient 1:

coronal T1 postcontrast MRI through orbits shows disease

centered in bilateral superolateral extraconal fat (asterisks) and

infiltrating the bilateral infraorbital nerves (arrowheads);

55 days after radiotherapy (RT) completion there is near

complete resolution of orbital masses and decreased

prominence of the infraorbital nerves. Patient 3: sagittal T1

postcontrast MRI of the lumbar spine demonstrating

enhancing soft tissue mass filling much of the thecal sac from

T12-L2; 19 days after RT completion there is marked decrease

in intrathecal contrast enhancement (arrowheads). Patient 10:

sagittal T1 postcontrast MRI of the lumbar spine showing

enhancing soft tissue mass filling much of the thecal sac from

T12 to superior extent of L2; 43 days after RT completion there

is near complete resolution of the mass (arrowheads). Patient

3 and 10 had bulky spinal leptomeningeal lesions. (C) Baseline

imaging and CNS-BRT response for patients with

parenchymal brain lesions. All images show axial T1

postcontrast MRIs of the brain. Patient 5: enhancing lesion

centered in the right occipital lobe shows significant reduction

in size 2 days after RT completion. Patient 6: enhancing right

frontal/operculum lesion shows significant reduction in size,

3 days after RT completion. Patient 9: enhancing paramedian

lesion at the right frontoparietal convexity shows marked

reduction in size, 42 days after RT completion. Patient 11:

enhancing lesion centered in the left thalamus shows

significant contraction, 4 days after RT completion. Patient 12:

enhancing right gangliocapsular lesion shows near complete

resolution, 5 days after RT completion.
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a meta-analysis, Cook et al examined 128 patients who received
CART for CNSL and reported composite CRS rates of 70% for
PCNSL (13% high grade) and 72% for SCNSL (11% high grade).
They report a 53% rate of ICANS for PCNSL (18% high grade)
and 48% rate of ICANS for SCNSL (26% high grade).1 Epperla
et al performed a multicenter retrospective analysis of 61 patients
who received CART for SCNSL and reported a 44% risk of high
grade ICANS; this was also not associated with the receipt of
BRT.27 In combination, our early data support the notion that CNS-
BRT is not clearly associated with excess neurotoxicity,2 although
larger series and prospective validation is required. We acknowl-
edge that only 1 patient in our cohort was treated with axicabta-
gene, whereas ~40% of patients in the referenced cohorts
received axicabtagene1,27; axicabtagene is known to have greater
ICANS risk versus 4-1BB products.28-31

Two patients who experienced severe ICANS in our cohort had
impaired baseline neurologic function with decreased ICE scores
of 5 and 6 before CAR T-cell infusion, which likely predisposed to
CART–associated neurotoxicity. Overall tumor burden has previ-
ously been shown to correlate with CART–associated neurotox-
icity.32 Patients who developed severe ICANS in our cohort had a
numerically larger tumor size at baseline and after CNS-BRT,
however this difference was not statistically different. A larger
cohort will be needed to determine whether the radiomics of active
CNS disease at the time of CART is correlated with the neuro-
toxicity risk or severity.

At present, given the relatively paucity of data, it may be advisable
to use CAR T-cell products with favorable toxicity profile, such as
the 4-1BB products, when planning to integrate CNS-BRT. If
8 OCTOBER 2024 • VOLUME 8, NUMBER 19
clinically feasible, CNS-BRT should not be given concurrently with
cytotoxic chemotherapy given historical concerns for enhanced
toxicity. Combined modality bridging that incorporates CNS-BRT
and other systemic agents such as targeted therapies is an inter-
esting avenue to explore but awaits data on safety and tolerability.

There is now an emerging body of literature that suggests that BRT
for extracranial lymphoma is associated with better response to
CART through rapid cytoreduction and reduced relapse of high-
risk lesions.13,14,33 The data here provide early evidence that,
similar to that for extracranial sites, BRT can achieve critical
cytoreduction for CNS lesions. Consistent with the notion that BRT
can reduce relapse at high-risk sites, there were no in-field, local
relapses observed in this series.

All 3 relapses that occurred in this study were associated with
either active or former leptomeningeal disease. It is likely that lep-
tomeningeal involvement confers greater risk for CNS relapse after
BRT, with prior studies showing that leptomeningeal involvement is
associated with poorer outcomes for patients with CNSL treated
with radiotherapy.16 This is not surprising because radiotherapy is
typically a focal treatment, whereas leptomeningeal disease is a
diffuse process that involves the entire neuroaxis. In the future it
may be interesting to explore alternative bridging strategies to
optimize control of leptomeningeal disease. For example, very low–
dose radiation (4 Gy) has been shown to augment CART tumor
killing via death-receptor signaling augmentation; this very low–
dose radiation is also associated with minimal toxicity in a large
randomized phase 3 study.17,34 Very low–dose bridging radiation
to the craniospinal axis may improve tumor control in the lep-
tomeningeal compartment after CART.
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Limitations of this study include the small sample size and retro-
spective nature. This is in large part because of the rare nature of
CNSL. As such, the cohort has heterogeneity of lymphoma his-
tology and CAR T-cell product. The study does not contain a
comparator arm of patients who did not receive CNS-BRT. It is
challenging to find an appropriate comparator group because this
is a selected cohort that typically received CNS-BRT out of
necessity after progressing on CNS-directed systemic therapy.
Despite these limitations the effect of CNS-BRT on tumor
response was consistent across all patients examined.

In the future, it will be important to determine the lesion level
characteristics that are associated with CNS relapse so that it may
be possible to determine which patients stand to benefit from
CNS-BRT. These studies should assess whether CNS-BRT alters
the immune effector cell–toxicity profile, optimal timing of CNS-
BRT, and whether CNS-BRT improves the overall response and
durability of CNS–directed CART. Practically speaking, the suc-
cessful implementation of a combined modality approach requires
significant coordination between medical oncology, cellular ther-
apy, and radiation oncology teams. Overall, this study provides
early evidence that CNS-BRT can be an important option in the
CART bridging toolbox, especially for CNSL for which the options
for bridging therapy may otherwise be limited.
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