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A comprehensive comparison of tools for
fitting mutational signatures

Matúš Medo 1,2 , Charlotte K. Y. Ng 2,3 & Michaela Medová 1,2

Mutational signatures connect characteristic mutational patterns in the gen-
ome with biological or chemical processes that take place in cancers. Analysis
of mutational signatures can help elucidate tumor evolution, prognosis, and
therapeutic strategies. Although tools for extracting mutational signatures de
novo have been extensively benchmarked, a similar effort is lacking for tools
thatfit knownmutational signatures to a given catalogofmutations.Wefill this
gap by comprehensively evaluating twelve signature fitting tools on synthetic
mutational catalogs with empirically driven signature weights corresponding
to eight cancer types. On average, SigProfilerSingleSample and SigProfiler-
Assignment/MuSiCal perform best for small and large numbers of mutations
per sample, respectively. We further show that ad hoc constraining the list of
reference signatures is likely to produce inferior results. Evaluation of real
mutational catalogs suggests that the activity of signatures that are absent in
the reference catalog poses considerable problems to all evaluated tools.

Since their introduction a decade ago1,2, mutational signatures have
become a widely used tool in genomics3,4. They allow researchers to
move from individual mutations in the genome to biological or che-
mical processes that take place in living tissues5,6. The activity of var-
ious mutational signatures can also serve as prognostic or therapeutic
biomarkers7–9. For example, homologous recombination deficiency
leads to the accumulation of DNA damage and manifests itself in a
specific mutational signature (signature SBS3 from the COSMIC
catalog)10,11. Signature activities have been used to attribute mutations
to endogenous, exogenous, and preventable mutational processes12

and clock-like mutational signatures can help determine the absolute
timing of mutations13.

Mutational signatures can be introduced for single base sub-
stitutions (SBS), doublet base substitutions, small insertions and
deletions14, copy number alterations15, structural variations16, and RNA
singlebase substitutions17. We focus here on SBS-based mutational
signatures which are most commonly used in the literature. Current
SBS signatures are defined using 6 possible classes of substitutions
(C >A, C >G, C > T, T > A, T > C, and T >G) together with their two
immediate neighboring bases, thus giving rise to 6 × 4 × 4 = 96 differ-
ent nucleotide contexts into which all SBSmutations in a given sample

are classified. De novo extraction of signatures from somatic muta-
tions in sequenced samples has been used to gradually map the
landscape of mutational signatures in cancers. Over time, the initial
catalogue of 22 SBS-based mutational signatures in the first version of
the Catalogue Of Somatic Mutations In Cancer (COSMIC) released in
August 2013 has expanded to 86 signatures in the COSMICv3.4 version
released in October 2023. This expansion was possible owing to the
increased availability of whole exome sequencing (WES) and whole
genome sequencing (WGS) data aswell as improved tools for signature
extraction. Extensive benchmarking of extraction tools on synthetic
data has recently shown that SigProfilerExtractor outperforms other
methods in terms of sensitivity, precision, and false discovery rate,
particularly in cohorts with >20 active signatures18. A two-step process
consisting of first extracting common signatures and then rare sig-
natures has been recently recommended in ref. 19.

Nevertheless, the analysis of WGS and WES profiles of >23,000
cancers18 has only discovered four new signatures and, in general, the
likelihood of discovering new signatures in small studies is low. The
more relevant task inmost smaller studies is thus the fitting of existing
signatures to given sequenced samples. In this process, the catalogs of
somatic mutations are used to determine the signature contributions
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to each individual sample. Many different tools have been developed
for this task4 (see Methods for their description and classification).
However, while tools for extracting mutational signatures have been
recently extensively benchmarked on synthetic data by various
studies14,18,20,21, a similar quantitative comparison is lacking for tools for
fitting mutational signatures. This need is exacerbated by substantial
variations between results obtained by different methods22. Further-
more, newly introduced tools for fitting mutational signatures are
commonly compared with only a few existing tools, rarely the most
recent ones, and a standardized comparison methodology is lacking.
In this study, our aim is to fill this gap and provide a comprehensive
evaluation of a broad range of fitting tools on synthetic datamotivated
by various types of cancer.

We constrain on fitting SBS signatures as they are themost widely
used signature type. We generate two classes of synthetic mutational
catalogs. In the first one, only one mutational signature is responsible
for all mutations (single-signature cohorts). In the second one, sig-
nature activities in each sample are modeled after the activities found
in real tumor samples from various cancers (heterogeneous cohorts).
We have collected twelve tools for fitting mutational signatures, from
earlier tools such as deconstructSigs to very recent ones such as
MuSiCal. We assess their performance by comparing the known true
signature activities in the synthetic catalogs with results obtained by
various fitting tools. We find that there is no single fitting tool that
performs best regardless of how many mutations are in the samples
and which cancer type is chosen to model signature activities. Aver-
aged across eight considered cancer types, SigProfilerSingleSample
performs best when the number of mutations per sample is small
(below 1000, roughly). For a higher number of mutations per sample,

SigProfilerAssignment andMuSiCal become the best performing tools.
We also compare the tools by howprone they are to overfitting caused
by increasing the size of the reference signature catalog and evaluate
whether it is beneficial to constrain the reference catalog based on
which signatures seem to be absent or little active in the analyzed
samples. Real mutational catalogs are used to support the results
obtained on synthetic catalogs. The analysis of real mutational cata-
logs further suggests that the activity of signatures that are absent in
the reference catalogs challenges all evaluated fitting tools. We close
with a discussion of open problems in fitting mutational signatures.

Results
Evaluation in single-signature cohorts
SBS-based mutational signatures are defined using the mutated base
and its two neighboring bases. The total number of different “neigh-
borhoods” (nucleotide contexts) to which each individual SBS can be
attributed is 96 (6 different possible substitutions times four possible
50 neighbors times four possible 30 neighbors). This high number of
contexts allows for a fine-grained classification of mutations and a
detaileddifferentiationofmanydifferentmutationalprocesses.On the
other hand, it is a source of considerable sampling noise when the
number of mutations is small. This is illustrated in Fig. 1a, b which
shows the fraction of mutations in different contexts for two common
signatures: Signature SBS1 with four distinct peaks among the C >T
mutational contexts and signature SBS5 that lacks such peaks. While
the peaks of SBS1 are clearly distinguished with as few as 100 muta-
tions, the relative variations aremuch greater for SBS5 where the same
number of mutations is effectively distributed among a larger number
of contexts.

Fig. 1 | The effect of the number of mutations in single-signature cohorts.
a, b The bars show the 95th percentile range of the observed fraction of mutations
in synthetic data for SBS mutational contexts (horizontal axis) and different
mutation counts (100, 1,000, and 10,000 representedwith red, blue, and gray bars,
respectively). Panels a and b show signature SBS1 with four distinct C > T peaks and
signature SBS5 with a flat mutational spectrum, respectively. c Mean fitting error
(top row) andmean total weight assigned to false positive signatures (bottom row)

as functions of the number of mutations for three specific signatures (SBS 1, 3, and
5) and averaged over 49 non-artifact signatures from COSMICv3. Solid lines and
shaded areas mark mean values and standard errors of the means, respectively,
obtained from synthetic cohorts with 100 samples where all mutations are due to
one signature. The catalog of all 67 COSMICv3 signatures was used for fitting by
all tools.
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We first evaluate the performance of signature fitting tools (see
Table 1 for the list) in a scenario where all samples have 100% con-
tributions of one given signature (single-signature cohorts). This sce-
nario is clearly unrealistic: Depending on the type of cancer, the
number of contributing signatures is 1–11 in individual samples and
5–22 in the cohorts available on the COSMIC website https://cancer.
sanger.ac.uk/signatures/sbs/. Nevertheless, single-signature cohorts
allow us to quantify substantial differences between the signatures as
well as between signature-fitting tools. Figure 1c shows results for the
“easy” signature SBS1 (a clock-like signature correlating with the age of
the individual), “difficult” signatures SBS3 (related to DNA damage
repair), SBS5 (present in virtually all samples), and the average over all
non-artifact signatures in COSMICv3. The results are highly hetero-
geneous across signatures,fitting tools, and numbers ofmutations: Six
different tools achieve the lowestfitting error for at least one signature
and number of mutations per sample (Supplementary Fig. 1). While
some tools are among the best for SBS1 (signature.tools.lib and
MuSiCal), they are among the worst for SBS5. The fitting error is
approximately inverselyproportional to the square root of the number
of mutations for all fitting tools (Supplementary Fig. 2).

Tounderstand the relationbetween the signatureprofile and their
fitting difficulty, we compute their exponentiated Shannon index and
find that it correlates highly (Spearman’s rho 0.78–0.84, depending on
the number of mutations) with the average fitting error achieved by
the evaluated fitting tools (Supplementary Fig. 3). The correlation
further improves (Spearman’s rho0.86–0.90)when the exponentiated
Shannon index ismultipliedwith ameasure of signature similarity with
other signatures. We can conclude that while the fitting difficulty of a
signature is mainly determined by the flatness of its profile (as mea-
sured by the Shannon index), its similarity to other signatures con-
tributes as well.

The ranking of tools by the total weight assigned to false positives
is substantially different, with sigLASSO, signature.tools.lib, and sigfit
among the best performers when the number of mutations is small.
Above 10,000 mutations per sample, false positives are largely avoi-
ded by all tools except for sigfit, MutationalPatterns, SigsPack,
YAPSA, and sigminer. Notably, the running time of the evaluated tools
spans over nearly four orders of magnitude (Supplementary Fig. 4)
between SigsPack (the fastest method) and mmsig (the slowest
method). For some tools (SigProfilerSingleSample, deconstructSigs,
mmsig), the running time increases with the signature fitting difficulty
represented by the fitting error (Supplementary Fig. 5). Nevertheless,
even the longest running times of several minutes per sample are
acceptable for common cohorts comprising tens or hundreds of
samples; fitting mutational signatures is not a bottleneck in genomic
data analysis23.

Evaluation in heterogeneous cohorts
We now move to synthetic datasets with empirical heterogeneous
signature weights. Here, we use absolute signature contributions (i.e.,
the number of mutations attributed to a signature) in WGS-sequenced
samples from various cancers as provided by the COSMICwebsite (see
Methods and Supplementary Fig. 6). For further evaluation, we choose
eight types of cancer with mutually distinct signature profiles (Sup-
plementary Fig. 7): Hepatocellular Carcinoma (Liver-HCC), Stomach
Adenocarcinoma (Stomach-AdenoCA), Head and Neck Squamous Cell
Carcinoma (Head-SCC), Colorectal Carcinoma (ColoRect-AdenoCA),
Lung Adenocarcinoma (Lung-AdenoCA), Cutaneous Melanoma (Skin-
Melanoma), Non-Hodgkin Lymphoma (Lymph-BNHL), and Glio-
blastoma (CNS-GBM). The first four cancer types all have SBS5 as the
main contributing signature but substantially differ in the subsequent
signatures. The remaining four cancer types have different strongly
contributing signatures: SBS4, SBS7a, SBS5 and SBS40, and SBS40,
respectively. The relative signature weights in individual samples were
then used to construct synthetic datasets with a given number of
mutations, allowing us to assess the performance of the fitting tools in
realistic settings. Compared with the previous scenario with single-
signature samples, there are now twomain differences. First, nearly all
samples have more than one active signature (the highest number of
active signatures in one sample is eleven). Second, signature con-
tributions differ from one sample to another; the average cosine dis-
tance between signature contributions in different samples ranges
from 0.19 for Liver-HCC to 0.50 for ColoRect-AdenoCA. This scenario
is thus referred to as heterogeneous cohorts.

We evaluate the fitting tools on heterogeneous cohorts with dif-
ferent numbers of mutations (100, 2,000, and 50,000) that cover the
common range of mutational burden in WES and WGS analyses. Het-
erogeneous cohorts are more difficult to fit than the previously single-
signature cohorts. For 2,000mutations, for example, the lowest mean
fitting error is 0.055 (achieved by SigProfilerAssignment) whereas the
fitting error of mmsig for the same number of mutations is below 0.01
for all signatures. This is a direct consequence of heterogeneous sig-
nature weights: Even when the number of mutations is as high as
10,000, a signature with a relative weight of 2% contributes only 200
mutations and, as we have seen, the fitting errors are high for such a
small number of mutations. Overall, SigProfilerSingleSample has the
lowest fitting error for 100 mutations per sample. SigProfilerAssign-
ment becomes the best method, with mmsig close second, for 2,000
mutations per sample. SigProfilerAssignment andMuSiCal are the best
methods by a largemargin for 50,000mutations per sample. The best-
performing methods are similar when binary classification metrics
(precision, sensitivity, and the F1 score) are considered (see Supple-
mentary Fig. 8 for further evaluation metrics). Fitting methods based

Table 1 | Basic information on the evaluated tools

Package Language URL

deconstructSigs R https://github.com/raerose01/deconstructSigs

mmsig R https://github.com/evenrus/mmsig

MuSiCal Python https://github.com/parklab/MuSiCal

MutationalPatterns R https://bioconductor.org/packages/release/bioc/html/MutationalPatterns.html

sigfit R https://github.com/kgori/sigfit

sigLASSO R https://github.com/gersteinlab/siglasso

sigminer R https://shixiangwang.github.io/sigminer

signature.tools.lib R https://github.com/Nik-Zainal-Group/signature.tools.lib

SigProfilerAssignment Python https://github.com/AlexandrovLab/SigProfilerAssignment

SigProfilerSingleSample Python https://github.com/AlexandrovLab/SigProfilerSingleSample

SigsPack R https://bioconductor.org/packages/release/bioc/html/SigsPack.html

YAPSA R https://bioconductor.org/packages/release/bioc/html/YAPSA.html
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on nonnegative least squares (represented by MutationalPatterns in
Fig. 2) suffer from lowprecision due to overfitting. Flat signatures such
as SBS5 and SBS40 are commonly underrepresented by the fitting
tools (Supplementary Fig. 9) and the tools disagree on them most
(Supplementary Fig. 10).

Tool performance differs greatly by cancer type (Supplementary
Fig. 11). For 2,000 mutations, three different tools achieve the lowest
fitting error for individual cancer types (SigProfilerAssignment for four
of them, mmsig for three, and SigProfilerSingleSample for one). For
50,000 mutations, MuSiCal and SigProfilerAssignment are the best
methods for five and three cancer types, respectively (see Supple-
mentary Fig. 12 for the dependence on the number of mutations). The
results are similar when other performance metrics are considered
(Supplementary Fig. 13). The overall similarity between the fitting error
values (Supplementary Fig. 14) shows two distinct clusters of tools: the
first formed by signature.tools.lib and all tools directly based on non-
negative least squares and the second including deconstructSigs,
sigLASSO, and MuSiCal.

One of the best-performing tools, SigProfilerSingleSample,
reports a sample reconstruction similarity score that is often used to
remove the samples whose reconstruction score is low. Our results
show that this score is strongly influencedby thenumber ofmutations;
its absolute value is thus a poor indicator of the fitting accuracy
(Supplementary Fig. 15). The same is the case of SigProfilerAssignment
(Supplementary Fig. 16).

Choosing the reference catalog
The chosen reference catalog of signatures can significantly impact the
performance of fitting algorithms4,24. When the newer COSMICv3.2
catalog of mutational signatures is used as a reference instead of
COSMICv3, the fitting error increases for most methods (Supplemen-
tary Fig. 17) due to an increased number of signatures (from 67 to 78)
which makes the methods more prone to overfitting. However, Sig-
ProfilerSingleSample, SigProfilerAssignment, mmsig, MuSiCal, and
sigLASSO are robust to increasing the number of reference signatures
when the number of mutations per sample is high. On the other hand,
when the reference signatures are constrained to the signatures that
have been previously observed for a given cancer type and to artifact

signatures4, the fitting error decreases substantially for most methods
(Supplementary Fig. 18). Methods that are robust to adding reference
signatures benefit less from removing irrelevant signatures, which in
turndiminishes differences betweenmethods (Supplementary Fig. 19).

To better illustrate the effect of reducing the number of reference
signatures, we use three selected methods (SigsPack which together
with MutationalPatterns and sigminer is the most sensitive to the
reference catalog, SigProfilerSingleSample, and sigLASSO) and classify
their output to true positive signatures, false positive signatures that
are relevant to a given cancer type and false positive signatures that are
irrelevant to a given cancer type (Fig. 3a). Using the whole COSMICv3
as a reference (top row), a simple method (SigsPack) starts with 17% of
relevant false positives and 56% of irrelevant false positives. For com-
parison, these numbers are only 21% and 27% for SigProfilerSingle-
Sample and 8% and 23% for sigLASSO (which, furthermore, leaves 50%
of the mutations unassigned). When only relevant signatures are used
as reference (bottom row), SigsPack improves much more than the
two other methods. This further demonstrates how simple methods
are particularly sensitive to the reference catalog and overfitting.
Another interesting observation is that while, regardless of the refer-
ence catalog, SigsPack and sigLASSO tend to zero false positives as the
number of mutations increases, this is not the case for SigProfilerSin-
gleSample (as shown inSupplementary Fig. 11, SigProfilerSingleSample
performs poorly for Stomach-AdenoCA used in Fig. 3a). SigProfi-
lerSingleSample evidently has a powerful algorithm to infer the active
signatures from few mutations, but it does not converge to true sig-
nature weights when the mutations are many.

Nevertheless, relying on a pre-determined list of relevant sig-
natures is problematic for a number of reasons. First, the lists of sig-
natures active in specific cancers are likely to change over time. Four of
the eight considered cancer types have cohorts with <100 patients, so
adding more WGS-sequenced tissues to the catalog is likely to sig-
nificantly expand the list of signatures that are active in them. Second,
most tools have difficulty recognizing that the provided signature
catalog is insufficient even when the number of mutations in a sample
is very large (Supplementary Fig. 20; we return to this observation
below). The estimated signature activities can therefore change in the
future when better analytical tools become available. Third, when the

Fig. 2 | A comparison of signature fitting methods on heterogeneous cohorts.
Mean fitting error (a) and precision and sensitivity (b) for different numbers of
mutations per sample (columns) for the evaluated fitting tools. The results are
averaged over 50 cohorts with 100 samples for eight distinct cancer types (see
Methods). Each tool used all 67 COSMICv3 signatures as the reference catalog. The

best-performing tool in each panel is marked with a frame (in the bottom row, the
best tool by the F1 score combining precision and sensitivity; the dashed contours
correspond to F1 = 0.9, 0.8,… ). Results are not shown for SigsPack, YAPSA, and all
three variants of sigminer as they are close (fitting error correlation above0.999) to
the results of MutationalPatterns.
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list of relevant signatures is obtained from the COSMIC website, we
rely on results obtained with one specific tool and this tool can be
biased. We thus employ a different approach, which is based on fitting
signatures using the whole COSMICv3 catalog (step 1) and then con-
straining the reference catalog to the signatures that sufficiently occur
in the obtained results (step 2, see Methods for details).

The two-step fitting process can substantially improve the per-
formance of some methods in some cases (Supplementary Fig. 21). At
the same time, it tends to be detrimental to well-performing methods
when the number of mutations per sample is high. It is then better to
refrain from an ad hoc procedure for choosing a subset of reference
signatures and instead rely on statistical selection mechanisms built
into the methods themselves. A different multi-step process to select
reference signatures was proposed in ref. 3. Signatures are first
extracted de novo, each extracted signature is then assigned to one or
two known reference signatures (see Methods for details), and thus-
identified reference signatures are then used for fitting. This approach
can also improve the fitting performance (Supplementary Fig. 22). For
samples with 100 mutations, the best results in terms of the fitting
error and F1 score are obtained using SigProfilerSingleSample and
SigProfilerAssignment, respectively, combined with the former two-
step process to trim the reference signatures. For samples with 2,000
or 50,000mutations, it is best to use the complete COSMIC catalog as
a reference.

Signature fitting for downstream analysis
We have focused so far on estimates of signature weights and their
errors with respect to a well-defined ground truth. In many cases,

however, the estimates are only important as input for further down-
stream analyses assessing the correlations of signature weights with
some clinicopathological parameters. We present here a simplified
example of such an analysis by creating synthetic cohorts with CNS-
GBM signature weights where statistically significant differences in the
weights of signature SBS40 between even- and odd-numbered sam-
ples are introduced (see Methods for details). Estimation errors,
together with the actual magnitude of the effect and the cohort size,
are crucial to the ability to detect a significant difference in the sig-
nature weights. We contrast four fitting tools: simple Mutatio-
nalPatterns, SigProfilerSingleSample and SigProfilerAssignment which
perform well in Fig. 2, and widely used signature.tools.lib. When the
number of mutations is large (10,000 in Fig. 3b), all tools are suffi-
ciently precise to identify a statistically significant difference between
the two groups of samples in nearly all cohorts. By contrast, when the
number of mutations is smaller, the choice of the fitting tool matters.
At 1000 mutations per sample, SigProfilerSingleSample is successfull
in >90% of cohorts, while the other tools perform worse, in particular
when the cohort size is small. At 100 mutations per sample, SigProfi-
lerSingleSample still has some statistical power to detect a difference
in SBS40 activities between the two groups of samples whereas the
other tools fail regardless of the cohort size. When the signature of
interest is easier to fit than SBS40 used in Fig. 3b, the differences
between fitting tools become smaller (Supplementary Fig. 23).

Evaluation on real mutational catalogs
To assess the performance of signature fitting tools on real data, we
use mutational catalogs of real WGS samples made available by the

Fig. 3 | Practical consequences of increasing the mutational burden. a As the
number of mutations per sample increases, weights assigned to false positives
decrease (relevant false positives: excess weights assigned to signatures active in
the cohort; irrelevant false positives: weights assigned to signatures not active in
the cohort). We used simulated input data with 100 samples and Stomach-
AdenoCA signature weights. The reference signature catalog is COSMICv3 (top
row) and the 18 signatures active in the Stomach-AdenoCA samples (bottom row).

b Performance of four fitting methods in identifying systematic differences in
mutational weights between two groups of samples (see Methods for details). The
success rate is the fraction of 250 synthetic cohorts with artificially introduced
differences in SBS40weights between even- and odd-numbered samples where the
estimated SBS40 weights differ significantly (Wilcoxon rank-sum test, p-value
below 0.05). The error bars show the 95% confidence interval (Wilson score
interval).
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International Cancer Genome Consortium (ICGC). In particular, we
select four PCAWG samples that all have >50,000 mutations, their
mutational catalogs differ, and well-performing fitting tools agree best
in their signature estimates (see Methods for details). The average
signature weights estimated by the three tools that perform best for
50,000 mutations in Fig. 2, SigProfilerAssignment, MuSiCal, and
sigLASSO, areused as the ground truth for thesedata. Results obtained
on subsampled mutational catalogs then allow us to measure the
performance of signature fitting tools as a function of the number of
mutations (Fig. 4a, b).We see again that SigProfilerSingleSample is the
best tool when the number of mutations is small. SigProfilerAssign-
ment becomes the best tool when the number of mutations exceeds
1,000; sigLASSO’s performance becomes competitive for the largest
mutational burdens.

Although the fitting tools that we used to define the ground truth
produce similar results for the four chosen samples, the general level
of disagreement for all ICGC catalogs with >50,000 mutations is high
(Fig. 4c). This contradicts the results shown in Fig. 2 where the low
fitting errors achieved by the best-performing tools for 50,000
mutations imply that their respective estimated signature weights
must be close. This is confirmed by the left-most point in Fig. 4d which
corresponds to the heterogeneous cohorts shown in Fig. 2. However,
when signatures that are absent in the reference catalogCOSMICv3 are

introduced in synthetic catalogs (see Methods for details), the sig-
nature estimates produced by the fitting tools show a level of dis-
agreement that grows with the contribution of the out-of-reference
signatures (Fig. 4d). This demonstrates that the 67 COSMICv3 sig-
natures cannot be used to compensate the contributions of signatures
that are absent from the reference catalog. Although the situation
where some active signatures are absent in the reference catalog
should be avoided, it is important to assess how different tools cope
with this adverse setting. Compared to Fig. 2b, fitting performance
worsens considerably when out-of-reference signatures contribute
20% of all mutations in synthetic catalogs (Fig. 4e). Not only sensitivity
decreases due to out-of-reference signatures whose activity cannot be
identified by construction but precision also decreases as the fitting
fools struggle to “redistribute” the out-of-referencemutations to other
COSMICv3 signatures. In summary, these results show that using an
incomplete reference catalog is even more problematic than over-
fitting due to an extensive reference catalog.

We finally study correlations between clinical parameters and
signature activities estimated in real data by different fitting tools. In
particular, we consider platinum signatures in primary and recurrent
ovarian cancer samples (Supplementary Fig. 24) and signatures asso-
ciated with defective DNA mismatch repair in PCAWG samples (Sup-
plementary Fig. 25). The obtained results again document overfitting

Fig. 4 | A comparison of signature fitting methods on real mutational catalogs
and adverse synthetic catalogs. a, b Fitting error and F1 score obtained on four
chosen PCAWGmutational catalogs subsampled to varying numbers of mutations.
Performance metrics are computed using the ground truth computed on full-size
mutational catalogs. Solid lines and shaded areas mark mean values and their 95%
confidence intervals, respectively, obtained from 200 independent catalog sub-
samplings for each number of mutations. c Differences between signature esti-
mates computed by SigProfilerAssignment, sigLASSO, and MuSiCal for the 146
PCAWG mutational catalogs with >50,000 mutations. Boxes show the quartiles of
the data and whiskers indicate the extent of the data up to 1.5 × IQR (same for d).

d Differences between signature estimates computed by SigProfilerAssignment,
sigLASSO, and MuSiCal for synthetic mutational catalogs with 50,000 mutations
per sample and increasing activity of signatures that are absent in COSMICv3
(horizontal axis; see Methods for details). e Performance of signature fitting tools
for synthetic heterogeneous cohorts where two signatures absent from COSMICv3
have both weights 10%. The results are averaged over 50 cohorts with 100 samples
for eight distinct cancer types (see Methods). The tool with the highest F1 score is
highlighted in each panel. Results are not shown for YAPSA, and all three variants of
sigminer as they are close to the results of MutationalPatterns and SigsPack.
COSMICv3 was used as a reference by the evaluated tools in all panels.
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of tools such asMutationalPatterns and SigsPack. In addition,MuSiCal,
mmsig, and sigLASSO (in this order) also show elevated levels of false
positive rates.

Discussion
The broad range of tools for fitting mutational signatures makes it
difficult to understand which tool to choose for a given project. In this
work, we provide a comprehensive assessment of twelve different
tools and their variants on synthetic and real mutational catalogs.
Using mutational catalogs where only one signature is active allows us
to quantify the differences in the fitting difficulty of individual sig-
natures. We find that flat signatures whose average similarity with
other signatures is high are themost difficult to fit. To assess the fitting
tools, we create synthetic mutational catalogs whose signature activ-
ities aremodeled after eight distinct cancer types.We use cohorts with
100 mutations per sample (common for WES), 2,000 mutations per
sample, and 50,000mutations per sample (common forWGS).Wefind
that when the number of mutations is small (100 mutations per sam-
ple), SigProfilerSingleSample is the best tool to use for all cancer types.
As the number of mutations increases, SigProfilerAssignment and
MuSiCal become the best tools while mmsig is best for some cancer
types for an intermediate number of mutations (2,000 mutations per
sample). The results are similarwhenother evaluationmetrics are used
instead of fitting error for the evaluation (Supplementary Fig. 8).
Results obtained using realmutational catalogs (Fig. 4) further support
the conclusions made using synthetic data.

The risk of overfitting the data by including too many signatures
in the reference catalog is often discussed in the literature3,4,19. We
show that two methods (SigProfilerSingleSample and SigProfiler-
Assignment) are robust to such overfitting when the number of
mutations per sample is 2,000 or more and several other methods are
robust for 50,000 mutations per sample (Supplementary Fig. 17).
Crucially, the common practice of excluding signatures from the
reference catalog because they seem to be little active in the analyzed
data is often little effective or even harmful. We find that it is beneficial
only for 100 mutations per sample in combination with SigProfi-
lerSingleSample or SigProfilerAssignment. In other cases it is prefer-
able to use a well-performing fitting tool and a complete COSMIC
catalog as a reference.

While our work gives clear recommendations on which tools to
consider and which to avoid, many issues can be addressed in the
future to further improve the fitting of mutational signatures. First, a
similar assessment of fitting tools can be done for other types of sig-
natures: double base substitutions, small insertions and deletions,
copy number variations, and structural variations. Then, some tools
(e.g., sigfit and mmsig) can compute confidence intervals for their
estimates. For sigfit, we used these estimates in theway recommended
by the authors: When the lower bound of the confidence interval for
the relative signature weight is below 0.01, the signature is marked as
absent in the sample (its relativeweight is set to zero).Our results show
that this recommended practice indeed improves the results achieved
by sigfit. By bootstrapping (resampling the original mutational cata-
logs with replacement), confidence intervals could be computed also
for the tools that do not compute them by themselves. It would be
worth investigating whether thus-determined confidence intervals
could also improve the performance of other fitting tools.

To fit mutational signatures, it is commonly required that each
sample has at least 5025 or 20026 single base substitutions. However,
different signatures are differently difficult to fit (Fig. 1), so it is unlikely
that a universal threshold is meaningful. Similarly, the common prac-
ticeof requiring that sample reconstruction accuracy exceeds0.90has
little support in our results (Supplementary Figs. 15 and 16). Based on
the simulation framework established here, it would be possible to
study the minimum necessary number of mutations for different sig-
natures of interest and different cancer types. To bestmatch the needs

of practitioners, it would be possible to extend the simulation frame-
work so that it finds the best-performing fitting tool for a given cancer
type, a list of signatures of interest, and a given distribution of sample
mutation counts.

When an active signature is missing from the reference catalog
because it is unknown or falsely deemed inactive in a given cohort,
most fitting tools cannot cope with this situation and distribute all (or
nearly all) mutations among signatures from the reference set (Sup-
plementary Fig. 20). Three tools—deconstructSigs, signature.tools.lib,
and sigfit—are less prone to this issue but they are not among the best
performers in our other evaluations. Analysis of real mutational cata-
logs with high mutational burden shows that the tools that perform
well on synthetic data produce widely divergent signature estimates
for many samples. The same behavior is reproduced using synthetic
data with 50,000 mutations when a substantial fraction of all muta-
tions (20–40%) is due to signatures that are absent in the reference
catalog that is used for fitting. Besides increasing disagreement
between the estimates obtained by different tools, we show that out-
of-reference signatures substantially lower the precision and sensitiv-
ity of the fitting results. Taken together, our results suggest that
underfitting due to incomplete reference catalogs poses a bigger
challenge to the estimation of signature activitities than often-
discussed overfitting due to extensive reference catalogs, in parti-
cular when the sample mutational burden is high.

To alleviate the detrimental effects of out-of-reference signatures,
one could quantify whether estimated signature activities are likely to
produce a givenmutational catalog (ensemble approaches to combine
results from various tools27 could be first used to reduce the variability
of results shown in Fig. 4c). A sample that fails such a check possibly
features signatures that are absent in the reference catalog. One could
then identify the mutations that are compatible with signatures from
the reference catalog. The remainingmutations can be left unassigned
or, based on results from other samples in the analyzed cohort,
assigned to novel signatures. A similar concept of common and rare
mutational signatures has been recently introduced in the context of
signature extraction de novo19.

More generally, COSMIC signatures are the result of analyzing
tumor samples from many different organs, so they can be viewed as
an average across them19. The fast-growing number of sequenced
samples makes it possible to construct organ-specific reference cata-
logs that better reflect mutational processes that occur in these bio-
logically diverse systems.

Methods
Reference signatures
We used all signatures from version 3.0 of the COSMIC catalog
(COSMICv3, https://cancer.sanger.ac.uk/signatures/sbs/), in particular
the SBS signatures for human genome assembly GRCh38. COSMICv3
contains 67mutational signatures (18 are artifact signatures)defined in
96 mutational contexts. While newer COSMIC versions (the latest
version is 3.4 from October 2023) added more signatures, profiles of
the signatures present inCOSMICv3havenot been altered (all absolute
weight differences are below 10−7).

To measure the distinctiveness of signature profiles, we compute
their exponentiated Shannon index which is a common measure of
diversity28 that can be understood as the effective number of active
nucleotide contexts in a mutational signature. For a signature whose
weight is concentrated in one context, the exponentiated Shannon
index is one. For a signature with the same weight 1/96 in all contexts,
the exponentiated Shannon index is 96. For COSMICv3 signatures, the
exponentiated Shannon index ranges from 2.7 (SBS48) to 80.3 (SBS3).

Synthetic mutational catalogs
Absolute contributions of signatures to sequenced tissues from var-
ious cancer types were downloaded from the Catalogue Of Somatic
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Mutations In Cancer (COSMIC, https://cancer.sanger.ac.uk/signatures/
sbs/, catalog version 3.2) on November 14, 2021 for all 46 non-artifact
SBS signatures that have tissue contribution data available. These data
included only samples with reconstruction accuracy above 0.90 and
for each sample, all signatures that contribute at least 10 mutations.
Using the provided unique sample identifiers, we compiled the relative
signature contributions in individual WGS-sequenced samples that are
stratified by the cancer type. We chose eight different cancer types for
further analysis: Hepatocellular carcinoma (Liver-HCC, n = 422), sto-
mach adenocarcinoma (Stomach-AdenoCA, n = 170), head and neck
squamous cell carcinoma (Head-SCC, n = 57), colorectal carcinoma
(ColoRect-AdenoCA, n = 72), lung adenocarcinoma (Lung-AdenoCA,
n = 62), cutaneous melanoma (Skin-Melanoma, n = 280), non-Hodgkin
Lymphoma (Lymph-BNHL, n = 117), and glioblastoma (CNS-GBM,
n = 63). All signatures in the tissue contribution data are from the
COSMICv3 catalog.

We created a cohort of 100 samples with m mutations for each
cancer type as follows. We first chose 100 samples (with repetition)
from all samples for which empirical signature weights were available.
Denoting the relative weights of signature s for sample i (sample
composition) aswsi and the relative weight of context c for signature s
(signature profile) asωcs, the relative weight of context c for sample i is
obtained as a weighted sum over all signatures,

Wci =
X

s

ωcswsi: ð1Þ

We then generated a synthetic mutational catalog with these weights
by distributing m mutations among the 96 contexts, while the prob-
ability that amutation is assigned to context c in sample i isWci. This is
mathematically equivalent to first choosing signature s for sample i
with probability wsi and then choosing context c with probability ωcs.
As a result, the number of mutations in contexts are multinomially
distributed with mean mWci for context c and sampe i. The mean
number of mutations contributed to sample i by signature s is mwsi.
When this number is smaller than 10, the signature cannot be correctly
identified by the evaluated tools as we use the standard procedure of
setting the weights of signatures that contribute less than ten muta-
tions to zero. To not bias the evaluation, we: (1) For sample i and m
mutations per sample, remove all signatures that have mwsi < 10 and
(2) normalize the weights of the remaining signatures to one.

The approach described above allows us to reproduce empirical
signature weights in previously analyzed samples without resorting to
assumptions such as a log-normal distribution of the number of
mutations due to a given signature14,18 or adding additional zeros to the
Poisson distribution to reproduce signatures that are not active in a
sample20. The code for generating synthetic mutational catalogs and
evaluating the signature fitting tools, SigFitTest, is available at https://
github.com/8medom/SigFitTest.

For Fig. 3b, we created synthetic mutational catalogs with sig-
nature activities modeled after real CNS-GBM samples where sys-
tematic differences in the activity of signature SBS40 have been
introduced. After generating sample weights as described in the pre-
vious paragraph, the relative weights of SBS40 were multiplied by 1.3
and divided by 1.3 for even- and odd-numbered samples, respectively.
The relative weights of all signatures in each sample were then nor-
malized to one. Signature SBS40 is active in nearly all CNS-GBM sam-
ples (Supplementary Fig. 7) and its median relative weight is close to
50%. By the described process, the median weights in the two groups
of samples become 42% and 55%, respectively. In another analysis
(Supplementary Fig. 23), we introduced differences in the weights of
SBS1 for CNS-GBM samples by multiplying and dividing it by 1.2 in the
two respective groups of samples.

To generate samples with signatures that are absent in the refer-
ence catalog COSMICv3, we used the 12 signatures that have been

added inCOSMICv3.3.1 (SBS10c, SBS10d, SBS86, SBS87, SBS88, SBS89,
SBS90, SBS91, SBS92, SBS93, SBS94, SBS95). For a sample with the
total weight of out-of-reference signatures x, we first multiply the
weights of all COSMICv3 signatures by 1 − x. We then choose two
signatures from the list above at random and assign themweights 0.7x
and 0.3x (for Fig. 4d) or 0.5x each (Fig. 4e where x is fixed to 0.2, i.e.,
out-of-reference signatures contribute 20% of all mutations in each
sample).

Tools for signature fitting
The task of fitting knownmutational signatures to amutational catalog
consists of finding the combination of signatures from a reference set
that “best” matches the given catalog. Denoting the matrix with
reference signatures as R, where Rcs is the relative weight of context c
for signature s, and the given normalized mutational catalog as m,
where mci is the fraction of mutations in context c in sample i, this
amounts to solving

m=Rw ð2Þ

with respect to w, where wsi is the relative weight of signature s in
sample i. To allow for a unique solution, vectors representing weights
of different signatures must be linearly independent. The number of
reference signatures thus cannot be higher than the number of
mutational contexts (96 contexts for the common SBS signatures).
Equation (2) is thus an over-determined system of linear equations.
Several fitting tools are therefore based on minimizing the difference
between m and Rw through non-negative least squares (as the
signature weights cannot be negative) or quadratic programming. We
evaluated several tools that belong to this class: MutationalPatterns
v3.14.026, YAPSA v1.30.029, SigsPack v1.18.030, and sigminer v2.3.131

which has three separate methods based on quadratic programming,
non-linear least squares, and simulated annealing. We find that all
these tools produce similar results.

Other tools use various iterative processes by which the provided
set of reference signatures is gradually reduced by removing the sig-
natures, for example, whose inclusion does not considerably improve
the match between the observed and reconstructed mutational cata-
logs (or, opposite, signatures are gradually added as long as the
reconstruction accuracy sufficiently improves). We evaluated decon-
structSigs v1.9.032, SigProfilerSingleSample v0.0.0.2714, SigProfiler-
Assignment v0.1.733, mmsig v0.0.0.900024, and signature.tools.lib
v2.2.019, that all belong to this category. The newest tool, SigProfiler-
Assignment, combines backward and forward iterative adjustment of
the reference catalog and these steps are repeated until convergence.

Finally, sigLASSO v1.1 combines the data likelihood in a generative
model with L1 regularization and prior knowledge34. To allow for a fair
comparison with other tools, we did not use prior knowledge when
evaluating sigLASSO. In our experience, this tool sometimes fails to
halt but starting it again with the same input data resolves the issue. A
similar Bayesian framework is used by sigfit v2.2.035.MuSiCal v1.0.0 is a
recent toolwhichuses likelihood-based sparseNNLS to fit signatures36.

Whilemost tools produce signatureweights that sum toonewhen
normalized by the number of mutations, signature.tools.lib and
sigLASSO explicitly allow for unassignedmutations. We used standard
parameter settings for all tools. The authors of sigfit recommend set-
ting all signatures whose lower bounds of the estimated 95% con-
fidence intervals are below 0.01 to zero. The authors of
deconstructSigs recommend setting all signatures whose relative
weights are below 0.06 to zero. All results shown for sigfit and
deconstructSigs follow these recommendations. Similarly to the
COSMIC database, activities of signatures that contribute <10 muta-
tions are set to zero. YAPSAmakes it possible to use signature-specific
cut-offs. However, the tool has only one set of precomputed cut-offs
whose derivation is not clearly documented and these cut-offs work
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poorly for some cancer types. We thus do not use signature-specific
cut-offs for YAPSA.

Evaluation metrics
Fitting error quantifies the difference between the true relative sig-
nature weights (which are used to generate the input mutational cat-
alogs) and the estimated relative signature weights (for tools that
estimate absolute signature weights, those are first normalized by the
number ofmutations in each sample). Denoting the true and estimated
relative weights of signature s in sample i as wsi and ~wsi, respectively,
the absolute error is summed over all signatures,

X

s

jwsi � ~wsij=2, ð3Þ

and then averaged over all samples. The division by two is introduced
for normalization purposes. The lowest fitting error, 0, is achieved
when the estimated signature weights are exact for all signatures and
all samples. The highest fitting error, 1, is achieved when the esti-
mated signature weights sum to one for each sample but they are all
false positives. For example, when a sample has 40% contribution of
SBS1 and 60% of SBS4 but a tool estimates 20% contribution of SBS2
and 80% contribution of SBS13, the fitting error is 1. We further
quantify the agreement between the true and estimated signature
weights by computing their Pearson correlation. For each sample
where at least three signatures have positive either true or estimated
weights, we compute the Pearson correlation coefficient between
these two vectors whilst excluding all signatures that are zero for
both of them. The obtained values are averaged over all samples in
the cohort.

Further common evaluation metrics are based on classifying the
estimated signatures as true positives (when both ~wsi and wsi are
positive), false positives (when ~wsi >0 and wsi =0), true negatives
(when ~wsi =0 and wsi =0), and false negatives (when ~wsi =0 and
wsi >0)18,20,33. False positive weight quantifies how much weight is
assigned to the signatures that are not active in the corresponding
samples. The value for sample i,

X

s:wsi =0

~wsi, ð4Þ

is averaged over all samples. The lower the value, the better. Precision
quantifies the reliability of the identified active signatures. It is com-
putedby averaging the number of true positives to all positives over all
samples in the cohort. Sensitivity quantifies the ability to identify all
active signatures. It is computed by averaging the number of true
positives to the number of active signatures (i.e., the sum of true
positives and the false negatives) over all samples. Higher sensitivity
can be commonly achieved at the cost of lower precision37. This is
addressed by the F1 scorewhich is the harmonicmeanof precision and
recall (we compute the F1 score for each sample and then average it
over all samples). To achieve a good F1 score, high precision and
sensitivity are necessary.

Selecting reference signatures
It has been argued that the removal of irrelevant reference signatures
can improve the fitting results5. To assess this hypothesis, we test a
two-step process where: (1) We fit the samples using all
COSMICv3 signatures as a reference and (2) keep only the signatures
whose relative weight exceeds threshold w0 for at least 5 samples in
our cohorts with 100 samples. We use thresholds w0 = 0.1 (m = 100),
w0 = 0.03 (m = 2000) andw0 = 0.01 (m = 50,000) which correspond to
absolute signature contributions 10, 60, and 500, respectively. This
pruning of reference signatures is often beneficial (Supplementary
Fig. 21). However, for a high number ofmutations andwell-performing

methods (mmsig, MuSiCal, sigLASSO, SigProfilerAssignment, SigPro-
filerSingleSample), this two-step process increases the produced fit-
ting errors (m = 50,000 in Supplementary Fig. 21). When lower
thresholds are used to keep signatures, this can be avoided but there is
nevertheless no improvement for m = 50,000 and the improvements
for m = 100 vanish (results not shown).

We also assess the approach based on the extraction of signatures
de novo as suggested in ref. 3. For signature extraction, we use Sig-
natureAnalyzed v0.0.7 (https://github.com/getzlab/SignatureAnalyzer)
with L1 prior on both W and H and a Poisson objective function for
optimization. As recommended in ref. 3, each extracted signature is
then compared with individual signatures from COSMICv3 as well as
linear combinations of two signatures from COSMICv3. The signature
(or a pair of signatures) that yields the smallest cosine distance is then
added to the list of trimmed reference signatures for the given input
data. When the number of mutations is small (m = 100), less than five
signatures are selected, on average. When the number of mutations is
large (m = 50,000), 90% of the active signatures are selected, on aver-
age. This approach can improve the fitting results (Supplementary
Fig. 22), in particular when the number of mutations is small. However,
a direct comparison of the results obtained by the two described
approaches shows that the former process based solely on signature
fitting produces the lowest fitting error/highest F1 score for m = 100
when combined with SigProfilerSingleSample and SigProfilerAssign-
ment, respectively. For more mutations, it is best to use SigProfiler-
Assignment, mmsig, or MuSical and use all COSMICv3 signatures as a
reference.

The recent tool MuSiCal36 has a so-called full pipeline where de
novo signature discovery is followed by matching the extracted sig-
natures to a given catalog and refitting the data using the matched
catalog signatures. Thematching procedure is principled and involves
automatic optimization of model parameters. At the same time,
MuSiCal’s full pipeline is prohibitively computationally demanding for
large-scale evaluation in many different settings as we do here.

We finally note that any approach to select a subset of reference
signatures based on the input mutational catalogs is affected by the
cohort size. For a small cohort, de novo signature extraction is likely to
produce inferior results which will affect the subsequent refitting. All
results shown here apply to cohorts of 100 samples.

Real mutational catalogs
To complement the synthetic data, we used real mutational catalogs
produced by the International Cancer Genome Consortium (ICGC).
Their PCAWG datasets14 are available from the ICGC upon request.
From2,780WGS PCAWG samples, we kept the 146 samples that had at
least 50,000 single base substitutions. Selecting the samples with high
mutational burden is motivated by Fig. 2 where small fitting errors are
achieved for 50,000 mutations. Estimates of signature activities in
these samples by SigProfilerAssignment, sigLASSO, and MuSiCal (that
perform best in Fig. 2 for 50,000 mutations) were used to choose the
samples where the three tools disagree the least. To quantify the dis-
agreement, we used the total absolute difference in estimated sig-
nature weights between two methods, averaged over all three pairs of
methods. To prevent choosing samples that are overly similar to each
other, we required that the total absolute difference between the
mutational profiles must be at least 0.5. The input mutational profiles
as well as the reconstructed profiles corresponding to the estimated
signature weights agree well for the four chosen samples (Supple-
mentary Fig. 26). The ground truth signature estimates were obtained
by averaging the positive signatureweights over the three fitting tools;
signatures that have been found active by less than two tools are set to
zero. Thus-obtained signature weights were then normalized to one.
Active signatures in sample 1 are SBS2 (50%), SBS13 (49%), and SBS1
(1%). Active signatures in sample 2 are SBS7a (88%) and SBS7b (12%).
Active signatures in sample 3 are SBS5 (37%), SBS2 (36%), SBS13 (26%),
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and SBS1 (1%). Active signatures in sample 4 are SBS7a (58%), SBS7b
(30%), SBS7c (7%), and SBS7d (5%). To study correlations of signature
estimtes with clinical parameters, we used the clinical data of the OV-
AU project contained in the ICGCData Portal data Release 28 (2019-11-
26) and the mismatch repair status of PCAWG samples (proficient/
deficitent) provided by ref. 36 in Supplementary Table 4.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The absolute contributions of signatures to sequenced tissues from
various cancers were obtained from the Catalogue Of Somatic Muta-
tions InCancer (COSMIC), https://cancer.sanger.ac.uk/signatures/sbs/.
They are also included in SigFitTest (https://github.com/8medom/
SigFitTest). The reference catalogs of single base substitution (SBS)
signatures are available from COSMIC, https://cancer.sanger.ac.uk/
signatures/downloads/. The synthetic datasets that were used to
evaluate the fitting tools can be generated by function gen-
erate_synthetic_catalogs() of SigFitTest. Themutational catalogs of 146
WGS PCAWG samples with at least 50,000 mutations, obtained from
the ICGC, as well as the consensus ground truth based on sigLASSO,
SigProfilerAssignment, and MuSiCal for four samples where the three
tools agree best, are included in SigFitTest.

Code availability
The code of SigFitTest is available at https://github.com/8medom/
SigFitTest38. Links to the code of the evaluated fitting tools are pro-
vided in Table 1.
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