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Understanding and predicting viewers’ emotional responses to videos has emerged as a pivotal 
challenge due to its multifaceted applications in video indexing, summarization, personalized content 
recommendation, and effective advertisement design. A major roadblock in this domain has been 
the lack of expansive datasets with videos paired with viewer-reported emotional annotations. We 
address this challenge by employing a deep learning methodology trained on a dataset derived from 
the application of System1’s proprietary methodologies on over 30,000 real video advertisements, 
each annotated by an average of 75 viewers. This equates to over 2.3 million emotional annotations 
across eight distinct categories: anger, contempt, disgust, fear, happiness, sadness, surprise, and 
neutral, coupled with the temporal onset of these emotions. Leveraging 5-second video clips, our 
approach aims to capture pronounced emotional responses. Our convolutional neural network, which 
integrates both video and audio data, predicts salient 5-second emotional clips with an average 
balanced accuracy of 43.6%, and shows particularly high performance for detecting happiness (55.8%) 
and sadness (60.2%). When applied to full advertisements, our model achieves a strong average AUC 
of 75% in determining emotional undertones. To facilitate further research, our trained networks 
are freely available upon request for research purposes. This work not only overcomes previous data 
limitations but also provides an accurate deep learning solution for video emotion understanding.
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Understanding and predicting viewers’ emotional responses to videos is a pivotal challenge due to the inherent 
complexities of human emotions and the technical difficulties in capturing these nuances from video content. 
Emotions, profoundly shaping human experience, are influenced by complex cultural norms, psychological 
states, and physiological responses. Their diverse expressions heavily depend on subtle social contexts and 
individual differences, presenting significant challenges in accurately deciphering their nuanced complexities. 
Overcoming these challenges is crucial, given the vast potential applications in video indexing, advertising, and 
content recommendation, enabling transformative applications in advertising and marketing through granular 
insight into audience emotional resonance.

Most prior emotion recognition has required direct human observation and annotation, introducing 
subjectivity and bias. Our study explores a different perspective - predicting emotions purely from multimedia 
content, without any human input. We develop a deep learning system that annotates videos by hypothesizing 
the viewer emotions they may elicit, based solely on analyzing the audiovisual signals, devoid of direct human 
cues1. This data-driven approach opens promising opportunities to understand emotions evoked by media in a 
more objective, scalable way. Potential applications are far-reaching, from enhancing recommendation engines 
to demystifying psychological aspects of filmmaking. Particularly promising is advertising, where gauging 
emotional resonance could transform campaign strategies and creative testing.

The examination of emotions in academia is primarily anchored in two key models. The categorical model, 
founded on Ekman’s pioneering work, asserts that emotions are distinct entities defined by specific expressive 
and physiological markers2. Through extensive cross-cultural studies, Ekman emphasized the universal nature 
of certain emotional expressions across diverse populations. This provides a robust foundation for analysis and 
wide-reaching applications like ours. Subsequent research has further refined categorical models, introducing 
more nuanced labels. Alternatively, the continuous model, exemplified by the circumplex of affect, envisions 
emotions on a fluid plane defined by valence and arousal3. This flexible perspective celebrates the intricacies 
and relationships between emotions. While the continuous view offers valuable insights into the subtle nature 
of emotions, we align here with Ekman’s categorical approach for its structure and systematic framework. Clear 
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distinctions between discrete emotions facilitate more straightforward mapping and prediction, streamlining 
the training process for machine learning.

Our study builds on extensive prior research, leveraging a proprietary dataset from System1 Group PLC, a 
pioneering leader in advertising effectiveness prediction. This dataset derived from the application of System1’s 
proprietary methodologies on over 30,000 real video advertisements. Each video was annotated by approximately 
75 diverse viewers who provided real-time emotional annotations. This equates to over 2.3 million rich labels 
across eight categories, enabling us to track nuanced temporal emotion shifts often hidden in traditional 
feedback. To establish a strong baseline classifier, we develop a tailored convolutional neural network that ingests 
video and audio to predict evoked emotions in short clips. This model achieves a mean balanced accuracy of 
43.6%, with strong performance for detecting happiness (55.8%) and sadness (60.2%). When tested on full-
length videos, we obtain an average AUC of 75%, demonstrating robustness despite the inherent subjectivity of 
emotion.

Despite this initial progress, substantial challenges remain in collecting diverse and unbiased emotional 
data, and developing algorithms that can learn conceptual connections between raw multimedia and complex 
psychological states. As part of this study, we are contributing a new dataset consisting of 26,637 labeled 
5-second video clips capturing core viewer emotional responses. These clips have been used to produce the 
results presented in this work and are made publicly available for research purposes, along with our open-
source code and trained models. By contributing our processed dataset, code, and model weights, we aim to spur 
community efforts to advance emotion understanding in video analytics and empathetic AI systems.

Methods
Dataset
In our study, we made use of dataset from System1’s Test Your Ad, which was carefully curated by System1 Group 
PLC. This dataset comprises 30,751 publicly available video advertisements representing various commercial 
products. These ads were aired between 2017 and 2020 and targeted audiences in both the UK and US. What 
makes this dataset valuable is that the ads adhere to industry-standard duration, often set at intervals of 5, 15, 30, 
or 60 seconds. A breakdown of duration times can be found in Table 1.

The annotation process for these video ads was semi-automated and involved a panel of human reviewers 
sourced from Toluna’s extensive global panel, which is an online platform with over 79 million registered 
members worldwide for facilitating surveys and research studies. For our study, participants were selected from 
the UK or the US, matching the country-specific content of the videos, with demographic quotas applied to 
ensure broad national representation. They were invited to surveys without prior knowledge of the test’s nature, 
ensuring unbiased responses.

An intuitive interface called FaceTrace was used, which continuously displayed a range of facial expressions 
representing different emotions. Viewers could pause the video at any point and select the facial expression 
image that best matched the emotion they were feeling in that moment. This real-time interface enabled viewers 
to effortlessly connect their immediate emotional reactions to the corresponding facial expression without 
having to recall their emotions after watching the entire video. Figure 1 shows the eight facial expressions used 
in the interface, encompassing Ekman’s seven foundational emotions2: anger, contempt, disgust, fear, happiness, 
sadness, and surprise, as well as a neutral expression. The real-time annotation approach resulted in a sequence 
of clicks for each video and viewer, each linked to a specific time point and associated emotion. We refer to this 
series of temporal annotations as the emotional profile.

The labeling process involved around 75 participants per video, amassing a total of 2.3 million emotional 
profiles. Upon closer examination, we found that there were 1.6 million unique completed reviews. In 99.8% of 
cases, an individual reviewer assessed only one or two distinct video advertisements. While individuals may have 
subjective emotional reactions influenced by personal biases and experiences, consolidating annotations from 
75 participants per video allowed us to distill a more robust and objective representation of the emotional impact 
evoked by the video content, transcending the limitations of individual, subjective signals.

Duration Number of Videos

5 229

10 1640

15 8548

20 1811

30 15,123

40 263

45 105

60 2218

75 39

120 297

Other 481

Table 1. System1’s Test Your Ad data: distribution of video ads by duration (in seconds).
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Quantification of ground-truth emotional responses
In our endeavor to trace the nuanced shifts in viewers’ emotional experiences while viewing videos, we introduce 
the term emotional jump. This term captures a quantifiable shift in emotional intensity that viewers undergo 
during a brief segment of a video. Depending on the content and viewer interpretation, the intensity of this 
jump might either escalate or diminish. Our methodology comprises two phases. Initially, we identify patterns 
of these emotional jumps across all the brief segments within our dataset. Subsequently, we categorize each jump 
in accordance with these established patterns.

To elucidate further, let us define some notation. Let set  be the share of viewers experiencing emotion e at time 
t; be,it  is a binary marker for the viewer i showing if they felt emotion e at time t (1 for yes, 0 for no), and n is the 
total viewer count for a video. The strength of emotion e at a given time point t is:

 
set =

∑n
i=1 b

e,i
t

n
 (1)

Figure 2 provides a graphical representation, illustrating the fluctuations in the strength of emotional signals 
over time based on the content of a specific advertisement.

Our methodology predominantly focuses on analyzing short video segments, specifically segments that are 
5-seconds in length. This concise duration facilitates the capture of rapid emotional transitions, which might 
otherwise be diluted in longer segments. Additionally, the granularity of these segments allows us to correlate 
emotional shifts with specific moments in the video, shedding light on the most evocative sections. To dissect 
the video into these segments, we employ a sliding window approach, advancing one second at a time, thereby 
examining all possible 5-second combinations within a video. The difference in emotional intensity at the 
beginning and end of each segment represents the emotional jump,

Fig. 2. System1’s Test Your Ad: At each time point throughout a video clip, we can measure the proportion of 
viewers in the panel (approximately n = 75) who self-declared experiencing one of the eight emotions. This 
example illustrates the changes in emotional profiles within a video.

 

Fig. 1. Facial expressions used by System1 Group PLC’s FaceTrace method during the video annotation 
process. (Source: System1 Group PLC, reproduced with permission).
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 Je = sestart − seend. (2)

If Je is positive, it means viewers felt more of that emotion by the end of the clip. Upon extracting emotional 
jumps from each video, our pivotal task is to identify which of these signify a noteworthy emotional transition. 
For each emotion, we analyze its corresponding jumps within the empirical frequency distributions. If a given 
Je resides within the top kth quantile of its associated emotion’s distribution, it is assigned a corresponding label, 
highlighting a significant emotional jump.

Transitioning from continuous to discrete signals was a considered decision, driven in large part by the inherent 
challenges of continuous emotional metrics. These signals, despite their granularity, often contain noise from 
multiple sources. For one, viewers might not uniformly respond to the same video stimuli at identical times, 
leading to variances in emotional trajectories. Additionally, sporadic viewer reactions might not necessarily 
correlate with the overarching sentiment of the video. Such noise complicates subsequent analysis, obscuring 
genuine viewer sentiment. In contrast, discrete labels offer a distilled representation of emotions, mitigating 
ambiguity and creating clear boundaries between distinct emotional states. By basing our analysis on the 
full distribution of emotional jumps, we can more authentically capture viewer sentiment, avoiding fleeting 
or anomalous blips. Moreover, discrete labels align smoothly with machine learning frameworks tailored 
for classification tasks, simplifying both modeling and interpretation. By setting a threshold at the upper kth 
quantile, our methodology focuses on labeling only the most pronounced emotional shifts as positive examples. 
This makes the model more robust against noise and improves generalizability by ensuring it learns to recognize 
strongly evident emotional cues. A higher labeling threshold yields cleaner, better-defined training data 
consisting of salient examples, rather than attempting to fit indistinct or borderline cases.

Emotional jump classification
Given a dataset D = {vi, yi}Ni=1 of N 5-second video clips vi, each labeled with one of 8 discrete emotions yi
, our primary goal is to predict the conditional probability distribution p(y|v) for an input clip v. Formally, we 
want to learn a function p = f (v) that outputs an 8-dimensional probability vector p given v. The complex 
spatio-temporal patterns in this visual classification task warrant a computer vision model capable of capturing 
nuanced features.

Convolutional neural networks (CNNs) are well-suited due to their hierarchical representations and 
exceptional ability to extract visual features, as evidenced across diverse applications4–6. Specifically, we employ 
the Temporal Shift Module (TSM)7 which leverages 2D CNNs with frame shifting to achieve computational 
efficiency without compromising representational power for video tasks like action recognition. This aligns with 
our insight that video-evoked emotions depend on both immediate frames and preceding context. However, in 
its original form, TSM lacks integration of audio, which often serves as an emotional amplifier. To address this, 
we enhance TSM by converting audio to mel-spectrogram representations and adding them as input frames. 
Mel-spectrograms capture perceptual properties of human hearing for intuitive audio features. This multimodal 
architecture, termed TSAM, synergistically fuses visual and auditory modalities.

In our TSAM architecture, we utilize ResNet508 as the backbone to jointly process video frames v and 
audio mel-spectrograms a. While v undergoes temporal shifting per TSM, a bypasses this. Both modalities 
pass through the same ResNet50 weights, enabling shared spatio-temporal feature extraction. Post-processing 
dropout is applied to mitigate overfitting. We then aggregate the visual and auditory representations by averaging 
their features. Finally, a fully-connected layer generates predictions ŷ for the 8 emotion classes based on this 
multimodal embedding. We train end-to-end by minimizing the cross-entropy loss L(ŷ, y) between predictions 
ŷ and ground truth labels y. Figure 3 presents a schematic of this architecture. The implementation of the TSAM 
architecture has been released as an open-source project (https://github.com/aav-antonov/TSAM).

For training, validation, and testing, we sample a fixed number of frames k from each input video v using 
uniform sampling. Specifically, we divide v temporally into k equal segments, then randomly select one frame 
per segment. This generates a representative subset of k frames covering the full v. Our frame dataset consists of 
256×W  resolution images, with variable W based on original video aspect ratios. Keeping k consistent enables 
fair evaluation across diverse videos. The 256 pixel height allows efficient batch processing on GPUs. Overall, 
this uniform subsampling extracts informative training frames from v.

Our decision to use random frame selection within equally divided segments of each 5-second window was 
primarily driven by the goal of balancing computational efficiency with capturing diverse emotional expressions 
across the large video corpus. This approach aimed to mitigate potential biases and overfitting that could result 
from consistently choosing frames based on predefined criteria, which may not generalize well across the wide 
range of video content and emotional contexts in our dataset. Furthermore, this randomized approach allowed 
us to explore the temporal dynamics of emotional expressions in a way that is computationally feasible and 
reflective of the natural variability and complexity of human emotional responses to video advertisements. While 
there exist more sophisticated frame selection techniques, such as those based on peak emotional expression 
detection or content saliency, we plan to investigate and evaluate these alternative methods in future work to 
further refine our approach and contribute valuable insights to the field of video-based emotion recognition.

During training, we use data augmentation including random 224× 224 cropping and horizontal flipping 
to improve robustness. For validation and testing, we use centralized 224× 224 crops to standardize inputs. We 
optimize hyperparameters like dropout, batch size, learning rates, and epochs using the validation accuracy. The 
best performing model on the validation set is selected as the final model for testing. This augmentation and 
tuning procedure enhances diversity and reduces overfitting, resulting in optimal model generalization.
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Full-length video analysis using sliding windows
Thus far, we have utilized a convolutional neural network (CNN) trained on 5-second video clips to classify 
emotions. However, comprehensively analyzing video advertisements requires modeling emotional responses 
evoked by full-length videos. Directly applying our clip-trained CNN poses challenges. Emotions manifest 
non-uniformly in longer videos, with certain segments eliciting intense yet transient responses while other 
periods remain neutral. Brief emotional peaks may become obscured when analyzing full videos holistically. 
Furthermore, temporal dynamics and context between segments provide important emotional insights.

To enable nuanced modeling of emotion responses to full video ads, we propose a sliding window technique. 
This approach synergistically combines fine-grained localized analysis of segments with consolidated scores 
summarizing dynamics across the full video duration. Specifically, it involves extracting overlapping 5-second 
segments across the video, progressing in 1-second intervals between segments. For a 30-second video, this 
process yields 26 overlapping windows spanning its entire length. Subsequently, each segment is classified 
independently by our TSAM, producing an 8-dimensional probability vector indicating the likelihood of each 
emotion. If an emotion’s probability exceeds 0.5 for a given segment, that emotion is designated as present. After 
assessing all windows, we consolidate the counts Ce for each emotion and normalize by the video duration as 
Se = Ce

T−4  where T is duration and T-4 is the window count. An emotion is deemed present if its score meets 
threshold tC .

This multifaceted approach has several motivations. Video ad emotions often manifest non-uniformly, 
with transient yet intense bursts in certain segments. Analyzing overlapping windows helps capture even brief 
peaks, retaining nuance. Furthermore, we want an expansive perspective of the video’s overall emotions, not just 
isolated segments. This consolidated view allows holistic analysis to balance detecting the overarching tone and 
local peaks.

Results
Descriptive statistics of viewer clicks and emotional jumps
To begin our analysis, we first examine the distribution of video lengths present in our dataset. Table 1 shows the 
distribution of video ads by duration, in seconds. As illustrated, our dataset is composed primarily of 30-second 
commercials, followed by 15-second and 60-second ads. Figure 6 depicts the distribution of number of clicks per 
user for each of the eight emotions, without normalizing for differences in video duration. When we normalize 
for a standard 30-second video length and look at the average number of clicks per user in Figure 4, happiness, 
surprise, and sadness emerge as the most frequently expressed emotions. Overall, our dataset provides a 
rich portrait of emotional responses, with happiness, surprise and sadness being the predominant emotions 
expressed. Although viewers could indicate “no emotion,” the data reveals they did not often return to a neutral 
state after reporting an initial emotion. On average, users expressed 1.4 emotions per 30-second clip, while 
selecting “no emotion” only 0.3 times.

The empirical distribution of 5-second clips based on the percentage of users expressing various emotions is 
reported in Figure 5. This graph illustrates the intensity of viewers’ emotional responses as a percentage alongside 

Fig. 3. TSAM model: the multi-modal CNN architecture takes as input a predefined number of video frames 
(video segments) and audio converted into mel-spectrograms (audio segments). The ResNet50 backbone 
is used to extract features from both video and audio segments. Features from video segments are shifted 
between each other at different blocks of ResNet50. The audio input is represented by the mel-spectrogram) 
and is processed by the same backbone without shifting. The extracted features are fused by averaging and 
mapped to the output classes using a fully connected layer.
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the proportion of video clips that triggered each level of response. Clips in the top 0.5% of the distribution, 
highlighted in red, were used to define the emotional jumps, which were labeled for classifier training and testing.

By applying a 5-second sliding window to all video clips, we extracted approximately 711,000 labeled 
segments. Table 2 provides the number of unique 5-second clips inducing an emotional shift for each emotion, 
along with the total number of distinct full videos containing these 5-second clips. Figure ?? presents sample 
frames which correspond to those emotional jumps. The purpose of showcasing these frames is to provide 
examples of what viewers were observing when they selected the respective emotions, offering a visual reference 
for the emotional peaks recorded.

Performance of emotional jump classification
For training and testing purposed, we initially split the entire set of 30,751 video ads into three sets of randomsly 
assigned clips: training (80%), validation (10%), and testing (10%). The classification model was trained 
and validated on the first two sets, then tested on the held-out testing set. In this section, we report on the 
classification results and study their dependency on three important design factors: the number of video frames 
sampled within each clip, the choice of the neural network’s pretraining weights, and the modality of input used 
for classification, whether solely video or video in conjunction with audio. Our primary metric to assess emotion 
prediction performance from short clips was the classification accuracy-this metric aligns with conventional 
norms adopted in tasks like action recognition7,9–11.

Drawing from the wealth of prior research on video-based action recognition, it’s known that augmenting 
the frame samples and harnessing pretrained neural networks, especially with ImageNet weights12, generally 
elevates classification efficacy. This is observed in comparison to limiting the frame samples or initializing 
weights randomly7,11. A noteworthy mention is the ResNet50 network pretrained on ImageNet21K (INET21K), 
which has garnered acclaim for its performance across a spectrum of benchmark computer vision tasks13,14. A 
comprehensive view of our classification outcomes for the test set can be found in Table 3. The peak performance, 
a commendable 43.6%, was realized with a combination of 16 frames, both video and audio modalities, 
and a network trained on INET21K weights. Our analyses underscore the importance of a multimodal 
strategy, as harnessing both video and audio channels demonstrably uplifted the classification performance. 
Using multimodal inputs led to gains of around 3–4% across configurations compared to unimodal inputs. 
Interestingly, the benefits of increasing frame counts appeared to plateau—going from 4 to 8 frames provided 
minor enhancements, while further additions stagnated. Furthermore, the marginal gain from INET21K weights 
over ImageNet was minimal, only around 0.4%.

A deeper analysis of accuracy by emotion, shown in Table 4, reveals the classifier performed best at identifying 
sadness, surprise, fear, and happiness. The high performance for detecting these emotions may stem from their 
common occurrence and expression in the video clips. As these tend to be more universally felt and displayed 
compared to anger or disgust, for example, the model likely benefits from their stronger representation in the 
dataset. The abundance of sadness, surprise, fear, and happiness examples enables more robust learning of 
associated visual and audio cues. Overall, our multimodal approach leverages complementary video and audio 
signals to improve classification, although frame inputs exhibited diminishing returns. Finally, Supplementary 
Material Table S2 shows the average classification accuracy obtained on the test set when using different cutoff 
percentiles of the emotional jump distribution to define positive examples for model training.

Emotional jumps and Star rating
The star rating of a video ad serves as a widely recognized metric for ad quality in the marketing sector. Marketing 
consultancy agencies often strive to achieve higher star ratings for ads, as they reflect user perceptions and are 
calculated by averaging users’ emotional responses. System1’s Star Rating score ranges from 1 to 5+, where 5+ 
signifies the highest possible quality and 1 represents the lowest. Five-star ads typically evoke happiness in the 
audience, leading to an increased likelihood of future commercial success. The System1’s Test Your Ad dataset 

Fig. 4. System1’s Test Your Ad data: Average number of user clicks per emotion for every 30 seconds of video, 
adjusted to account for different video lengths.
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Fig. 5. System1’ Test Your Ad dataset: Distribution of 5-second clips based on the percentage of users 
expressing various emotions. The x-axis shows the response strength as the percentage of viewers feeling 
the emotion. The y-axis shows the percentage of clips evoking that response level. Clips in the top 0.5% of 
the distribution (highlighted red) were used to define the emotional jumps, which were labeled for classifier 
training and testing.
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annotates all videos with star ratings and emotional responses. To underscore the importance of emotion jumps, 
we highlight a strong correlation between the presence or absence of emotion jumps in an ad and its star rating.

Our findings are detailed in Supplementary Material Table S1, where we divided all videos from the System1’s 
Test Your Ad dataset into five classes based on their star ratings. The first column of the table displays the 
distribution of videos within each corresponding star rating class (1+ signifies a rating between 1 and 2, 2+ 
between 2 and 3, and so on). As observed, 307 ads achieved the highest 5+ star rating, while 15,186 ads were 
rated 1+. Subsequently, for each class, we calculated the proportion of videos containing at least one emotion 
jump associated with a specific emotion. The second column presents the respective proportions for happiness 
jumps. Notably, 48.8% of top-rated video ads (5+) feature at least one happiness-related emotion jump, whereas 
less than 1% of videos in the 1+ category exhibit a similar characteristic.

Predicting emotional jumps in full-length video ads
In previous sections, we focused on classifying short video clips for emotional jumps. Now, we extend our efforts 
to the challenge of predicting these jumps in full-length video ads. Recognizing emotional jumps such as those 
indicating happiness can serve as a gauge for ad quality and viewer engagement. In our methodology, we first 
detect emotional jumps per time series clip within each ad using our refined classifier. We then aggregate these 
detected jumps to enrich our prediction signal-for instance, by counting the total number of jumps per emotion.

Our performance assessment relies on the Area Under the Curve (AUC), a robust measure of the model’s 
discriminative power between ads with and without specified emotions. Across the test set’s full-length video 
ads, we observed a significant variance in the model’s performance by emotion. Sadness prediction was 
notably accurate, with an AUC of 0.88-the highest among the emotions. Happiness and fear also yielded strong 
AUC scores of 0.78 and 0.83, respectively, underscoring the model’s capability in detecting these emotional 
changes. Contrastingly, the model’s performance was less impressive for other emotions: contempt and anger 
both registered AUC scores of 0.67, with disgust slightly above at 0.69. Surprise was identified with moderate 
accuracy, as reflected by an AUC of 0.73. These results imply that certain emotions, especially those that are 
subtler like contempt or less defined like neutral-the latter of which is implied to approach the randomness of 
its detection-pose greater challenges for the model. The corresponding ROC curves for all the emotions can be 
found in Figure 7.

By averaging the AUC scores across all emotions (excluding neutral), we obtained a mean of 0.75. This 
average highlights the model’s overall effectiveness in recognizing emotional variations across a broad range of 
emotions. However, it also points to a potential area for refinement, especially in identifying emotions that are 
inherently more nuanced or less pronounced in video advertisements.

TSAM performance on benchmark video datasets
Despite our primary focus on emotional jumps in ads, we conducted a validation exercise by testing our TSAM 
model on two well-established video classification benchmarks, and specifically for action classification. These 
public dataset included audio, and served two key purposes. First, it enabled assessing the model’s adaptability to 
new tasks beyond its original purpose. Second, it highlighted the value of our multimodal approach incorporating 
audio cues. While not directly related to identifying emotions, performance on these benchmarks was important 
to verify the model’s performance and versatility before deployment on our primary task.

Specifically, in our experiments, we used two well-known action recognition benchmarks: Kinetics-400 and 
Something-Something V1. Kinetics-400 consists of 400 human action classes, while Something-Something V1 
comprises 174 fine-grained actions. The large number of classes make these challenging benchmarks to evaluate 
model capabilities. Both focus on classifying directly observable physical motions and object interactions. 
In contrast, our task of emotion classification deals with inferring the abstract affective state expected to be 
evoked in viewers. This is substantially more challenging than categorizing visible actions and behaviors. By 
first validating TSAM on established action datasets, we verified model capabilities on complex tasks with many 
classes before specializing for nuanced emotion identification, which constitutes a more abstract, complex 
problem despite fewer output categories.

On Kinetics-400, Supplementary Material Table S3 shows TSAM achieves substantial accuracy gains 
of  1.5–2% by incorporating audio and  2–2.5% with ImageNet21K weights over ImageNet 1K. These results 

Emotion No of clips No of videos

Anger 2894 653

Contempt 3317 1385

Disgust 3061 828

Fear 3166 787

Happiness 3577 1488

Neutral 3491 1395

Sadness 3576 859

Surprise 3553 1330

Total 26635 6920

Table 2. System1’s Test Your Ad data: Number of labeled 5-second video clips and corresponding number of 
videos, categorized by emotion.
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showcase the benefits of TSAM’s multimodal design and large-scale pretraining. Additionally, Supplementary 
Materials Table S4 reveals TSAM attained significant performance improvements on Something-Something V1 
by incrementally increasing temporal aggregation (raising k) from 1 to 4, unlike the limited k in traditional 
TSM. Remarkably, even without optical flow inputs, RGB-only TSAM ranks among top-performing 2D CNN 
architectures that utilize motion features. Our results demonstrate competitiveness at recognizing granular 

Fig. 6. System1’s Test Your Ad data: distribution of number of emotion clicks per user per video, not adjusted 
for video duration.
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actions, providing an important baseline prior to emotion classification. The results also confirm the benefits of 
our multimodal, temporally-aware approach before specializing for emotion classification.

Discussion
Significance of the results
This study tackles the challenge of predicting viewer emotions from video content, an important problem in 
the realm of effective video advertising. Existing research has emphasized that videos eliciting robust emotional 
reactions from viewers-whether uplifting or distressing–are approximately twice as likely to be shared and 
generate higher engagement compared to less emotionally impactful ones15,16. Consequently, the ability to 
determine if a video advertisement will evoke notable emotional responses in viewers is vital for impactful 
marketing strategies.

To address this problem, we leverage a unique dataset and analytical approach. Our investigation utilizes 
an annotated database of 30,751 video advertisements, with approximately 75 viewers annotating eight distinct 
emotions for each video. Unlike existing research that primarily focuses on physiological signals or explicit 
behavioral indicators, our work emphasizes viewer-reported emotional responses, providing a direct measure 
of the emotional impact of the video content. We introduce the concept of ’emotional jumps’ - significant 
shifts in viewer emotional responses identified within brief time intervals of video content. These emotional 
jumps represent moments where a strong emotional response was evoked across the entire panel of viewers, 
helping to address issues of subjectivity by capturing a collective emotional resonance. The jumps are crucial for 
pinpointing moments that profoundly impact viewer emotions, a vital aspect for understanding the emotional 
effects of multimedia content. Our approach leverages these emotional jumps to build a video classifier.

A key contribution of this work is the development and application of a multimodal convolutional neural 
network, with the intention of establishing a strong baseline for predicting emotional jumps from video and 
audio data. This model makes joint use of both modalities and achieves a mean balanced accuracy of 43.6% 
for 5-second clips featuring pronounced emotional jumps, and an average Area Under the Curve of 75% 
for full advertisement analyses. These results significantly outperform the random guess baseline of 12.5%, 
demonstrating the model’s promising ability to distinguish nuanced emotional states within complex video 
content.

In addressing the classification challenge presented by our dataset, the model exhibited promising accuracy 
and highlighted the important role of audios signals in emotion identification. Adjustments in frame count or 
the use of pre-trained weights from INET21K [1, 2] had minimal impact on the outcomes, suggesting a nuanced 
balance between model complexity and dataset subjectivity. Additionally, our strategic use of a sliding window 

Emotion Balanced Accuracy Test Set Size (clips)

Anger 28.4 208

Contempt 42.3 269

Disgust 26.7 243

Fear 50.7 300

Happiness 55.8 326

Sadness 60.2 344

Surprise 51.1 325

Table 4. System1’s Test Your Ad data: Balanced accuracy and test set size achieved by the video classifier 
broken down by emotion.

 

Modality Frames Pre-training Accuracy

RGB 4 Imagenet 38.8

RGB+audio 4 Imagenet 42.4

RGB 8 Imagenet 38.9

RGB+audio 8 Imagenet 43.2

RGB 16 Imagenet 38.8

RGB+audio 16 Imagenet 42.2

RGB 4 INET21K 39.7

RGB+audio 4 INET21K 43.4

RGB 8 INET21K 41.2

RGB+audio 8 INET21K 43.5

RGB 16 INET21K 40.9

RGB+audio 16 INET21K 43.6

Table 3. System1’s Test Your Ad data: Average accuracy of the video classifier broken down by input modality, 
number of video frames and pre-training method.
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technique for predicting emotion jumps within complete video ads showed promising efficacy, particularly for 
emotions pivotal to advertising effectiveness: Sadness, Happiness, and Fear.

Furthermore, we provide an important contribution by making available an unprecedented dataset for 
research purposes. The dataset consists of a processed subset of System1’s Test Your Ad collection, comprising 
26,635 labeled 5-second clips that encapsulate the core of viewer emotional responses to the video advertisements. 
To the best of our knowledge, this is the first large-scale dataset to provide self-reported, sample-based emotional 
labels associated with video and audio data. Together with our open-source code and trained models, these 
resources represent a significant step towards fostering innovation in the field of affective video analysis, enabling 
researchers to build upon our work and advance the state-of-the-art.

Connection to other video understanding tasks
Our contributions lie within the domain of automated video understanding, a significant challenge at the 
intersection of computer vision and artificial intelligence. Video understanding extends traditional image 
recognition by introducing a temporal dimension, enabling the exploitation of motion and the intricate patterns 
that unfold over time. Among the multitude of tasks within this domain, human action recognition stands out, 
involving the identification of various human actions in video frames9,17. In comparison to our research, human 
action recognition focuses on explicit pattern recognition. Actions are observable, tangible, and can be directly 
inferred from visual content. Extensive efforts from the community have led to the annotation of numerous 
videos showcasing diverse human actions, resulting in the creation of high-quality, large-scale datasets that serve 
as benchmarks in the field18–21.

Approaching the core of our study, our trajectory intersects with affective video content analysis, a niche 
area that aims to unravel how videos evoke emotions in humans and predict these emotional responses to 

Fig. 7. ROC curves for predicting the presence of emotion jumps in full-length video ads using our best CNN 
model (16 frames, RGB + audio input, pretrained on INET21K).
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dynamic visual stimuli1,22. Another tangent within video understanding is facial emotion recognition, involving 
the detection of human faces in videos and decoding facial expressions to infer underlying emotions23,24. It’s 
essential to note that our study differs in focus. Instead of relying on direct visual cues related to video viewers, 
we predict emotions evoked by video content itself-a challenge compounded by the fact that emotions, unlike 
actions, are intangible entities, not directly displayed on video canvases but rather elicited within viewers.

Choice of neural network architecture
Over the past decade, convolutional neural networks (CNNs) have found success in video understanding, 
particularly in action recognition7,10. Mapping a video sequence to an outcome involves processing both spatial 
and temporal information. While 3D CNN architectures have been used for video feature extraction10,25, 
they come with a high computational cost. High-performance 3D CNN architectures are often hindered by 
this computational expense11. Various solutions have been proposed to address this issue10,18. More recently, 
transformer-based video networks have shown superior performance on benchmark datasets compared to CNN 
networks26,27. However, transformer-based architectures still come with substantial computational costs and 
tend to outperform CNNs only when a large amount of data is available28.

In contrast, 2D CNNs offer computational efficiency. While 2D CNNs have been used to learn spatial features 
from individual frames29,30, they cannot model temporal information on their own. To overcome this limitation, 
the Temporal Shift Module (TSM)7 was introduced, significantly improving performance on action recognition 
datasets, even when compared to 3D CNN architectures. TSM employs a ResNet50 architecture to process input 
frames in parallel and shifts features between temporally neighboring blocks before the convolutional layers. 
This feature exchange across neighboring frames greatly enhances the architecture’s ability to learn temporal 
features.

In our work, we leverage recent advancements in this area and extend existing state-of-the-art architectures 
to suit our problem setting. We chose to adapt TSM for the classification of emotion jumps due to the trade-off 
between available data, computational efficiency, and classification performance. Furthermore, both visual and 
auditory stimuli contribute to a video’s affective content31. Therefore, we aimed to jointly account for video and 
audio content when developing our convolutional neural network (CNN) architecture (see the appendix for 
more details).

Connections to related studies and datasets
Affective video content analysis exists within a diverse landscape of datasets, but it often lacks depth and 
breadth when compared to other domains like action recognition, which boasts ample datasets32. One notable 
dataset in this realm is the DEAP dataset33, which provides insights into reactions to music videos through 
both physiological signals and viewer ratings. However, it is limited in scale, containing only 120 one-minute 
videos. Additionally, other datasets such as the WikiArt Emotions Dataset34 and the Discrete LIRIS-ACCEDE 
dataset35 take different approaches, focusing on art emotion annotation through crowdsourcing and affective 
video annotations using a pairwise comparison protocol, respectively.

Some research in affective video content analysis incorporates external mechanisms like facial expression 
imaging or physiological measurement devices to discern viewer reactions to videos36–38. An example of this 
approach is the EEV dataset39, which utilizes viewers’ facial reactions for automatic emotion annotation in 
videos, albeit with the challenge of converting facial reactions into distinct emotion labels. Moreover, datasets 
like the EIM16 dataset, derived from the LIRIS-ACCEDE database, and the Extended COGNIMUSE dataset 
emphasize different aspects of emotional annotation. The EIM16 dataset, for instance, is designed for both 
short video excerpt emotion prediction and continuous emotion annotation for longer movie clips, while the 
COGNIMUSE dataset delves into the distinction between intended and expected emotions.

In comparison to these datasets, our dataset exhibits distinct features. Rooted in manual annotations, it 
ensures a richer and more personalized emotion spectrum. What sets our collection apart is its remarkable scale, 
comprising over 30,000 video ads-only the LIRIS-ACCEDE dataset comes close in magnitude. Furthermore, our 
dataset benefits from the consistency of cultural backgrounds among annotators, offering a unique perspective. 
This contrasts with datasets like LIRIS-ACCEDE, which source annotations from a global participant pool. The 
diversity in the emotional spectrum our dataset covers, spanning eight distinct emotions, establishes it as a 
robust and comprehensive resource for in-depth affective video content analysis.

Limitations of this study
While our dataset represents an important step forward, we must acknowledge the inherent subjectivity in 
manual emotion annotation based on viewer recall. Labeling sentiments poses more reproducibility challenges 
compared to labeling relatively objective actions. However, we can reasonably expect more consistent labeling 
for pronounced emotional reactions, where a large majority of viewers concur within a short span, as opposed 
to subtle responses.

To help mitigate subjectivity, we introduced “emotion jumps”—brief clips that trigger particularly intense 
responses tied to specific emotions. By focusing analysis on these pronounced spikes, we aimed to capture the 
most vivid and consistent reactions across viewers. We restructured the dataset into a video classification format 
by selecting clips that provoked heightened emotional reactions for each category. This process yielded improved 
consistency and reliability in the labels compared to subtle responses. It enabled our model to more effectively 
discern emotions evoked by videos based on detected patterns in these pronounced responses.

Our approach analyzes full-length videos by extracting overlapping 5-second segments. This sliding window 
technique aims to capture even brief, transient emotional peaks that non-overlapping segments would likely 
overlook. Focusing solely on complete videos risks missing these potent yet ephemeral reactions. However, 
overlapping windows introduce potential drawbacks like redundancy and overemphasis on momentary blips 
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rather than overall sentiment. Ultimately, the sliding window methodology strikes an effective balance. It 
combines fine-grained localization of emotional bursts with consolidation to assess overall video sentiment. 
This twin perspective enables nuanced evaluation attuned to the intricacies of emotion dynamics in videos. 
Alternative methods may neglect critical nuances - either losing transient peaks in holistic views or lacking 
broader context from non-overlapping segments. Our approach fuses detailed and big picture analysis to provide 
the layered insight essential for video emotion understanding.

While our study employs a CNN-based model complemented by the Temporal Shift Module to establish a 
straightforward and computationally tractable baseline, we acknowledge the potential benefits of more advanced 
architectures, such as those incorporating attention mechanisms or visual transformers. These architectures have 
demonstrated superior performance in various video analysis tasks, and exploring their application to video 
emotion recognition presents a promising avenue for future research. Building upon the foundation established 
in this study, we plan to investigate the potential of attention-based models and visual transformers to further 
refine our understanding of video-induced emotions, while carefully evaluating the trade-offs between model 
complexity, computational requirements, and performance gains, considering the unique characteristics of our 
dataset and task.

Conclusions
Our prototype represents an original advancement in emotion recognition, leveraging deep learning to predict 
emotional reactions directly from video content. By analyzing multimedia signals to identify moments that 
elicit strong responses, our model enables advertisers to create more impactful campaigns that intimately 
resonate with target audiences. By utilizing our evoked emotion recognition model, marketing professionals 
can rapidly analyze vast video databases, identifying moments that trigger powerful emotional responses. These 
emotionally charged segments serve as valuable resources for marketers, enabling them to create compelling 
and influential advertisements that resonate seamlessly with viewers. The implications are manifold-not only 
enhancing marketing effectiveness but also fostering deeper and more meaningful engagements with the 
intended audience. Beyond advertising, applications are far-reaching in luxury brand marketing, entertainment 
analytics, and empathetic AI systems.

There are numerous avenues for future exploration and improvement. A pressing need exists to elucidate 
our model’s inner workings and decision-making rationale. As it currently operates as a black box, deciphering 
techniques to highlight precise emotion-evoking frames or elements within those frames would provide valuable 
insights. Illuminating which visual motifs or ambiance the model associates with certain emotions could allow 
advertisers to refine strategies for maximal emotional impact. Diversifying the cultural demographics in our 
dataset is another important area for improvement. While currently spanning the UK and US, expanding to 
broader global regions could enhance applicability. Emotional triggers and norms differ significantly across 
cultures. For instance, reactions in Asia or South America may deviate markedly from the current Anglo-centric 
data. By diversifying cultural representation, our model could learn more universal emotional patterns.

Data availibility statement
To foster further research in video emotion recognition, we are providing non-commercial access to a curated 
subset of System1’s Test Your Ad dataset. This subset comprises 5-second video clips of publicly available ad-
vertisements that encapsulate the core viewer emotional responses, which were instrumental in generating the 
results presented in our paper. These clips are publicly available for research purposes to facilitate model training 
and evaluation. In addition to the dataset, we are also sharing the trained neural network weights and the com-
plete Python codebase utilized for training and inference processes. We have established a public GitHub repos-
itory (https://github.com/gmontana/DecodingViewerEmotions) to host and distribute these resources, enabling 
seamless access and collaboration within the research community. Due to the substantial size of the dataset 
and trained model weights, which exceeds the limits of common dataset hosting platforms, these resources are 
hosted on servers at the University of Warwick. Interested researchers can directly request the download link 
by contacting the corresponding author at g.montana@warwick.ac.uk. It is important to note that the complete 
and original full-length video advertisements are publicly available and form part of the dataset which remains 
proprietary and under the custody of System1 Group PLC. However, this dataset may be accessible upon request 
(legal@system1group.com) for legitimate academic pursuits, subject to appropriate clearances and approvals. 
The advertisement snippets included in this publication are used solely for illustrative purposes to support ac-
ademic research and analysis. These snippets are provided for criticism, review, and educational purposes only. 
All snippets are limited in scope and are not intended to replicate, replace, or serve as a substitute for the original 
content.
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