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Chirality at the nanoscale has emerged as a key area of interest in materials science and engineering, 
with significant implications for various fields such as spintronics, photonics, optoelectronics, quantum 
computing, and biomedicine. With their unique properties such as enantioselective interactions 
with light and spin-polarized electron transport, chiral nanomaterials are opening a new window of 
opportunities for the design of advanced functional devices. This editorial provides an overview of 
the current state of research in chirality in nanomaterials. We also showcase several papers from this 
collection that exemplify the breadth of current work, offering insights into the future directions of this 
rapidly evolving field.

Chirality, the property of an object being non-superimposable on its mirror image, is a phenomenon 
observed across scales—from the smallest molecules to the largest cosmic structures1,2 In nanomaterials 
research, chirality has gained prominence due to its potential to influence the optical, electronic, magnetic 

and mechanical properties of materials in profound ways3–7 With applications spanning spintronics, photonics, 
catalysis, biosensing, and quantum technologies, the ability to harness and control chirality at the nanoscale is 
becoming increasingly critical8–13.

Recent years have seen an explosion of interest in chiral nanomaterials, driven by advances in materials 
synthesis, computational modeling, machine learning, and characterization techniques.14–22. This collection of 
papers on Chirality in Nanomaterials reflects the diversity of approaches and innovations that are pushing the 
boundaries of what is possible in this field. In this editorial, we provide a snapshot of the state of chirality 
research, while highlighting key contributions from this collection that exemplify important trends and future 
directions.

Chirality at the nanoscale
Chiral nanomaterials exhibit unique optical properties, such as circular dichroism, where left- and right-handed 
circularly polarized light are absorbed differently6,7,23,24 This has led to significant developments in areas such 
as chiral photonics. Another important aspect of chiral nanomaterials is their potential in spintronics25. The 
chirality-induced spin selectivity effect has opened exciting opportunities for the development of new types 
of spintronic devices and quantum information technologies26,27 From a synthesis perspective, one of the key 
challenges is to create well-defined chiral nanostructures with high enantioselectivity28,29.

Selected contributions from the collection
Several papers in this collection showcase the cutting-edge work being done in these areas. Together, they 
provide a window into the future of chiral nanomaterials research. One of the standout papers, by Petronijevic et 
al.7 reports on the use of nanosphere lithography to fabricate asymmetric plasmonic metasurfaces and nanohole 
arrays. These structures exhibit rich extrinsic chiral optical properties, including broadband handedness- and 
angle-dependent extinction in the near-infrared range. This work exemplifies how low-cost, scalable methods 
can be used to create chiral plasmonic nanostructures with tunable optical responses, paving the way for new 
applications in chiral photonics.

The intersection of chirality and relativistic physics is explored in a paper by Whittam et al., which investigates 
the effect of relativistic motion on the circular dichroism of chiral biomolecules1 By simulating the transmission 
circular dichroism of molecules moving at relativistic speeds, based on chiral quantum properties, this study 
offers insights into how chirality could manifest in extreme conditions. The potential applications of this work in 
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the search for extraterrestrial life are particularly compelling, as they suggest new methods for detecting chiral 
molecules across interstellar distances.

In the realm of soft materials, Gust et al. present a study on the chiroptical properties of copolymer thin 
films, showing how annealing temperature can influence supramolecular chirality6 Their findings highlight 
the importance of temperature control in tuning the chiral properties of organic films, which has important 
implications for the design of optoelectronic devices, such as organic light-emitting diodes. The use of transient 
circular dichroism spectroscopy to track these changes in real-time provides a powerful tool for probing the 
dynamic behavior of chiral materials under external stimuli.

Sadeqian et al. take a more device-oriented approach by studying the time delay in zigzag graphene nanoscrolls 
(ZGNSs) used in complementary metal-oxide-semiconductors13 Their research demonstrates how the chiral 
properties of ZGNSs can be harnessed to improve the speed and efficiency of integrated circuits. This work 
bridges the gap between fundamental materials research and practical applications in nanoelectronics, offering 
a path forward for the development of faster, more efficient electronic devices based on chiral nanomaterials.

Kandiah et al. provide a new mathematical framework for controlling gravitational spinners and waves in 
chiral waveguides2 By linking gyroscopic actions with gravity, they offer a fresh perspective on the dynamic 
response of chiral metamaterials to external loads. This work highlights the potential of chiral materials for 
applications in mechanical and aerospace engineering, where the control of wave propagation and rotational 
motion could have far-reaching implications.

Finally, the paper by Dunlap-Shohl et al. investigates how electron-donating functional groups in ligands 
can enhance chiral imprinting on CsPbBr3 quantum dots12 This study provides valuable design principles for 
creating chiral perovskite nanostructures with enhanced optical activity, which are of great interest for next-
generation spintronic and optoelectronic devices. By demonstrating the importance of ligand chemistry in 
modulating chiral properties, this work offers a roadmap for the rational design of chiral materials with tailored 
functionalities.

Conclusion
Chirality in nanomaterials is a field that is both dynamic and diverse, with implications for a wide range of 
scientific and technological disciplines. The contributions in this special issue of Scientific Reports reflect the 
richness of current research, while pointing toward exciting future directions. As guest editors, we are pleased 
to present this collection and hope that it will inspire further exploration and innovation in the field of chiral 
nanomaterials.
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