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Decomposing causality into its synergistic,
unique, and redundant components

Álvaro Martínez-Sánchez 1 , Gonzalo Arranz 1 & Adrián Lozano-Durán 1,2

Causality lies at the heart of scientific inquiry, serving as the fundamental basis
for understanding interactions among variables in physical systems. Despite
its central role, current methods for causal inference face significant chal-
lenges due to nonlinear dependencies, stochastic interactions, self-causation,
collider effects, and influences from exogenous factors, among others. While
existing methods can effectively address some of these challenges, no single
approach has successfully integrated all these aspects. Here, we address these
challenges with SURD: Synergistic-Unique-Redundant Decomposition of
causality. SURD quantifies causality as the increments of redundant, unique,
and synergistic information gained about future events from past observa-
tions. The formulation is non-intrusive and applicable to both computational
and experimental investigations, even when samples are scarce. We bench-
mark SURD in scenarios that pose significant challenges for causal inference
and demonstrate that it offers a more reliable quantification of causality
compared to previous methods.

The quest for understanding causality is the cornerstone of scientific
discovery1. It is through the exploration of cause-and-effect relation-
ships that we are able to understand a given phenomenon and shape
the course of events through deliberate actions2. This has accelerated
the proliferation of methods for causal inference, as they hold the
potential to drive progress across multiple scientific and engineering
domains, such as climate research3, neuroscience4, economics5,
epidemiology6, social sciences7, and fluid dynamics8,9, among others.

A central aspect of causality is the concept of physical influence10:
manipulation of the cause manifests as changes in the effects1,11–13. For
example, prolonged exposure to elevated air pollution levels has a
causal connection to a higher incidence of chronic respiratory
conditions14. The precise definition of causality remains elusive, yet it
must be distinguished from the concepts of association and correla-
tion. Association indicates a statistical relationship between two vari-
ables inwhich they have a tendency to co-occurmoreoften thanwould
be expected by random chance. Yet, association does not auto-
matically imply causation15. Association may arise from shared causes,
statistical coincidences, or the influence of confounding factors. An
example of association can be observed in the increased rates of
chronic respiratory diseases in regions undergoing significant

deforestation. Although it may seem that deforestation directly con-
tributes to respiratory health issues, this might primarily be due to the
confounding factor of air pollution. Correlation, on the other hand,
refers to a particular type of association that measures the monotonic
strength and direction of variables15–18. Correlation implies association
but not causation; causation implies association but not correlation15.
Discerning between causality, association, and correlation poses a
significant challenge in the development of methods for causal dis-
covery. Here, we introduce an approach for causal inference that
facilitates the study of complex systems in a manner that surpasses
simple correlational and associational analyses.

The first factor to consider is the nature of interaction among
variables. Three building blocks serve as the foundations of causal
interactions1: mediator, confounder, and collider effects. These inter-
actions can intertwine and manifest concurrently, leading to more
complex causal networks. Therefore, accurately capturing these
interactions is key to faithfully characterizing more general causal
patterns. Consider the three events denoted by A, B, and C:

• Mediator variables (A→ B→ C) emerge in the causal chain between
variable A to variable C, with variable B acting as a bridge. In this
scenario, B is often viewed as the mechanism or mediator
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responsible for transmitting the influence of A to C. Mediator
variables help explain the underlying mechanisms by which an
independent variable influences a dependent variable. A simple
example is ↑ education level → ↑ job skills → ↑ income.

• Confounding variables (A ← B → C) act as the common cause for
two variables: B → A and B → C. They have the potential to create a
statistical correlation between A and C, even if there is no direct
causal link between them. Consequently, confounding variables
can obscureor distort the genuine relationship between variables.
Following the example above, air pollution → ↑ deforestation19,
and air pollution → ↑ respiratory health conditions20.

• Collider variables (A → B ← C) represent the effect of multiple
factors acting on the same variable: A → B and C→ B. This scenario
is particularly relevant in nonlinear dynamical systems, where
most variables are affected by multiple causes due to their cou-
pling. A collider exhibits redundant causes when both A and C
contribute to the same effect or outcome of B, creating over-
lapping or duplicative influences on the outcome. Consequently,
redundant causes result in multiple pathways to the same effect.
For instance, both hard work and high intelligence can indepen-
dently contribute to the good grades of a student. Note thatA and
C may not necessarily be independent. A collider is synergistic if
the combined effect of A and C on B surpasses their individual
effects on Bwhen considered separately. For example, two drugs,
A andC, maybe required in tandem to effectively treat a condition
B, when each drug alone is ineffective.

The search formathematical definitions of causality that accurately
identify mediator, confounder, and collider effects remains an active
area of research21. One of the most intuitive formulations of causality
relies on the concept of interventions1,10. The approach offers a pathway
for evaluating the causal effect that the process A exerts on another
process B by setting A at a modified value ~A and observing the con-
sequences of the post-intervention in B. Despite its intuitiveness,
interventional studies are not without limitations3,22. Causality with
interventions is intrusive (i.e., it requiresmodificationof the system) and
costly (the experiments or simulations need to be repeated). When data
are gathered from physical experiments, establishing causality through
interventions may become highly challenging or impractical (e.g., we
cannot use interventions to assess the causality in the stock market in
2008). Additionally, the notion of causality with interventions prompts
questions about the type of intervention that should be introduced and
whether this intervention could affect the outcome of the exercise as a
consequenceof forcing the systemoutof its natural state. Interventional
studies can also pose ethical problems in fields such as neuroscience or
climate science23. For example, they might involve manipulating neural
functions in living organisms or altering natural environmental condi-
tions, potentially leading to irreversible changes or damage.

The alternative approach to interventions involves discovering
causal links through observations. Observational methods are pre-
dominantly data-driven and do not require alterations to the original
system. In the recent years, the steady advancements in computa-
tional power coupled with the exponential growth of big data have
significantly contributed to thewidespread adoption of observational
techniques. One of the pioneering approaches is rooted in the use of
forecasting models. The concept was initially proposed by Wiener24

and later quantified by Granger25. Granger causality (GC) measures
the causality from the process B to A by evaluating how the inclusion
of B in an autoregressive model reduces the forecast error for A.
Originally developed for linear bivariate relationships, GC has since
expanded to encompass nonlinear and multivariate scenarios26–29,
finding applications in diverse fields ranging from econometrics30–32

to fluid dynamics33, and biology34,35.
Model-free approaches for causal discovery have also been pro-

posed to overcome the limitations of GC. A leading method in this

domain is convergent cross-mapping (CCM)36 and its variants37–41, which
apply Takens’ embedding theorem42 to establish connections between
variables and the attractor of the system. An alternative approach,
known as continuity scaling43, directly assesses causal relationships by
examining the scaling laws governing the continuity of the system.

Information theory, the science ofmessage communication44, has
also served as a framework formodel-free causality quantification. The
success of information theory relies on the notion of information as a
fundamental property of physical systems, closely tied to the restric-
tions and possibilities of the laws of physics45,46. The grounds for
causality as information are rooted in the intimate connectionbetween
information and the arrow of time. Time-asymmetries present in the
system at a macroscopic level can be leveraged to measure the caus-
ality of events using information-theoretic metrics based on the
Shannon entropy44. The initial applications of information theory for
causality were formally established through the use of conditional
entropies, employing what is known as directed information47,48.
Among the most recognized contributions is transfer entropy (TE)49,
which measures the reduction in entropy about the future state of a
variable by knowing the past states of another. Various improvements
have been proposed to address the inherent limitations of TE. Among
them, we can cite conditional transfer entropy (CTE)50–53, which stands
as the nonlinear, nonparametric extension of conditional GC27. Sub-
sequent advancements of the method include multivariate formula-
tions of CTE45 and momentary information transfer54, which extends
TE by examining the transfer of information at each time step. Other
information-theoretic methods, derived from dynamical system
theory55–58, quantify causality as the amount of information that flows
from one process to another as dictated by the governing equations.

Another family of methods for causal inference relies on con-
ducting conditional independence tests. This approach was popular-
ized by the Peter-Clark algorithm (PC)59, with subsequent extensions
incorporating tests for momentary conditional independence
(PCMCI)23,60. PCMCI aims to optimally identify a reduced conditioning
set that includes the parents of the target variable61. This method has
been shown to be effective in accurately detecting causal relationships
while controlling for false positives23. Recently, new PCMCI variants
have been developed for identifying contemporaneous links62, latent
confounders63, and regime-dependent relationships64.

The methods for causal inference discussed above have sig-
nificantly advanced our understanding of cause-effect interac-
tions in complex systems. Despite the progress, current
approaches face limitations in the presence of nonlinear depen-
dencies, stochastic interactions (i.e., noise), self-causation, med-
iator, confounder, and collider effects, to name a few. Moreover,
they are not capable of classifying causal interactions as redun-
dant, unique, and synergistic, which is crucial to identify the
fundamental relationships within the system. Another gap in
existing methodologies is their inability to quantify causality that
remains unaccounted for due to unobserved variables. To
address these shortcomings, we propose SURD: Synergistic-
Unique-Redundant Decomposition of causality. SURD offers cau-
sal quantification in terms of redundant, unique, and synergistic
contributions and provides a measure of the causality from hid-
den variables. The approach can be used to detect causal rela-
tionships in systems with multiple variables, dependencies at
different time lags, and instantaneous links. We demonstrate the
performance of SURD across a large collection of scenarios that
have proven challenging for causal inference and compare the
results to previous approaches.

Results
Theoretical background
Consider the collection of N time-dependent variables given by the
vector Q = [Q1(t), Q2(t), …, QN(t)]. For example, Qi may represent the

Article https://doi.org/10.1038/s41467-024-53373-4

Nature Communications |         (2024) 15:9296 2

www.nature.com/naturecommunications


regional average of climatological variables (e.g., temperature, pres-
sure,...) or the evolution of human heart rate. The components ofQ are
the observables and are treated as random variables. Our objective is
to quantify the causality from the components ofQ to the future of the
target variable Qj, denoted by Q+

j =Qjðt +ΔTÞ, where ΔT >0 is an
arbitrary time increment. The vector Q can include variables at times
less or equal to t + ΔT, which allows us to identify both lagged and
instantaneous dependencies.

SURDquantifies causality as the increase in information (ΔI) about
Q+

j obtained from observing individual components or groups of
components from Q. The information in Q+

j is measured by the
Shannon entropy44, denoted by HðQ+

j Þ, which represents the average
number of bits required to unambiguously determine Q+

j . It is also
useful to interpret Shannon entropy as a measure of uncertainty.
Processes that are highly uncertain (high entropy) are also the ones
from which we gain the most information when their states are
determined. Conversely, uncertainty is zero when the process is
completely deterministic, indicating no information is gained when
the outcome is revealed. Using the principle of forward-in-time pro-
pagation of information (i.e., information only flows toward the
future)45, HðQ+

j Þ can be decomposed as the sum of all causal con-
tributions from the past and present:

H Q+
j

� �
=
X
i2C

ΔIRi!j +
XN
i= 1

ΔIUi!j +
X
i2C

ΔISi!j +ΔI leak!j , ð1Þ

whereΔIRi!j ,ΔI
U
i!j, andΔISi!j are the redundant, unique, and synergistic

causalities, respectively, from theobserved variables toQ +
j , andΔIleak→j

is the causality from unobserved variables, referred to as the causality
leak. Unique causalities are associated with individual components of
Q, whereas redundant and synergistic causalities arise from groups of
variables from Q. Consequently, the set C contains all combinations
involving more than one variable. For instance, for N = 2, Equation (1)
reduces to HðQ+

j Þ=ΔIR12!j +ΔI
U
1!j +ΔI

U
2!j +ΔI

S
12!j +ΔIleak!j . Figure 1

shows the diagram of the redundant, unique, and synergistic causal-
ities for N = 2. The formal definitions of causality can be found in
the Supplementary Materials. Here, we offer an interpretation of
each term:

• Redundant causality from Qi = ½Qi1
,Qi2

, . . .� to Q+
j (denoted by

ΔIRi!j) is the common causality shared among all the components
of Qi, whereQi is a subset of Q. Redundant causality occurs when
all the variables in Qi contain the same amount of information

aboutQ +
j . Therefore, any component ofQi offers identical insight

into the outcome of Q+
j .

• Unique causality from Qi toQ+
j (denoted by ΔIUi!j) is the causality

from Qi that cannot be obtained from any other individual vari-
able Qk ≠ Qi. This causality occurs when observing Qi yields more
information about some outcomes of Q+

j than observing any
other isolated variable.

• Synergistic causality from Qi = ½Qi1
,Qi2

, . . .� to Q +
j (denoted by

ΔISi!j) is the causality arising from the joint effect of the variables
in Qi. This causality occurs when more information about Q+

j is
gained by observing a collection of variables simultaneously than
by observing each variable individually.

• Causality leak represents the effect from unobserved variables
that influenceQ+

j but arenot contained inQ. This is the amount of
information missing that would be required to unambiguously
determine the future of Qj after considering all observable vari-
ables collectively.

SURD exhibits several key properties that facilitate the precise
identification of interactions by preventing the duplication of caus-
ality. This is illustrated in Fig. 1. First, the terms in Equation (1) are non-
negative and such that the sum of redundant, unique, and synergistic
causalities equals the information shared between Q+

j andQ, referred
to as themutual information IðQ+

j ;QÞ44,65,66. SURD also satisfies that the
mutual information between individual variables Qi and Q+

j , denoted
as IðQ+

j ;QiÞ, is represented by the sum of unique and redundant
causalities involving Qi. This condition is consistent with the notion
that causality from an individual variable to Q+

j is composed solely of
unique and redundant causalities, while synergistic causalities emerge
from the combined effects of two or more variables67. The
information-theoretic formulation of SURD is also well-suited for
capturing nonlinear dependencies, as well as deterministic and sto-
chastic interactions, and self-causation.

The forward propagation of information from Equation (1) also lays
the foundation for normalizing causality within SURD. Unique, redun-
dant, and synergistic causalities toQ+

j are normalized by IðQ+
j ;QÞ, such

that their sum equals 1. Similarly, the causality leak is normalized by
HðQ+

j Þ, which bounds its values between 0 (indicating that all causalities
to Q+

j are accounted for by Q) and 1 (indicating that none of the caus-
alities are accounted for byQ). Figure 1 includes the results of SURD for
three simple examples. Each case represents a system characterized

Fig. 1 | SURD: Synergistic-Unique-Redundant Decomposition of causality.
a Diagram of the decomposition of causal dependencies between a vector of
observed variables Q = [Q1, Q2] (past) and a target variable Q+

j (future) into their
synergistic (S), unique (U) and redundant (R) components (in yellow, red, and
blue, respectively) and contributions to the total, IðQ +

j ;Q1,Q2Þ, and individual,
IðQ +

j ;QiÞ, mutual information. The causality leak is represented in gray. A version
of this diagram for three variables is shown in the Supplementary Materials.

b Redundant, unique, and synergistic causalities for the simple examples of (c) a
duplicated input (top panel), an output equal to the first input (middle panel), and
an exclusive-OR output (bottom panel). The notation used is such that
½R12,U1,U2, S12� � ½ΔIR12!3,ΔI

U
1!3,ΔI

U
2!3,ΔI

S
12!3�. The target variable Q+

3 is affec-
ted by external stochastic forcing W, which is independent of the observed
variables in Q. The effect of W is measured by the causality leak, represented by
the gray bar.
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exclusively by redundant, unique, or synergistic causality, respectively.
These examples also allow us to introduce the notation used in the
following figures: ½R12,U1,U2, S12� � ½ΔIR12!3,ΔI

U
1!3,ΔI

U
2!3,ΔI

S
12!3�,

where the index of the target variable Q3 is omitted but it will be
unambiguous from the context.

Validation
We validate SURD across multiple scenarios that pose significant
challenges in causal inference. These include systems with mediator,
confounder and colliders effects, Lotka–Volterra prey-predator
model68,69, three-interacting species system40, the Moran effect
model70, turbulent energy cascade71–73, experimental data for a turbu-
lent boundary layer74–76, deterministic and stochastic systems with
time-lagged dependencies proposed by Sugihara et al.36, Ding et al.77,
and Bueso et al. 35, logic gates, synchronization of logistic maps78, and
the coupled Rössler–Lorenz system79–82. A summary of the results is
shown in Table 1, where themetric for success is based onwhether the
results are consistent with the functional dependencies of the system,
rather than on the concrete value of the causal strength provided by
each method.

The ability of SURD to identify causal relationships is compared
with other methods for causal inference, which are also included in
Table 1. The approaches considered are conditional Granger causality
(CGC)26, conditional transfer entropy (CTE)53, convergent cross-
mapping (CCM)36,83, and Peter and Clark momentary conditional
independence (PCMCI)23. Each method brings distinct capabilities to
address specific challenges in the field of causal inference. To facilitate
comparison, we have summarized the key properties associated with
each approach in Table 2. This classification outlines the ability of each
method to handle multivariate relationships, nonlinear dependencies,
stochastic (nondeterministic) processes, contemporaneous links (i.e.,
those occurring at a smaller time-scale than the time resolution of the
data), estimation of the causality leak (i.e., causality from unobserved
variables), time-delayed dependencies, and self-causation. The table
also highlights the ability of SURD to account for all the scenarios
described above.

The findings in Table 1 show that, although there are methods
capable of effectively tackling certain situations, SURD is consistently
successful across all the cases considered. In particular, SURD offers a
distinct advantage in the presence of redundant variables and

Table 1 | Summary of the performance of different methods for causal inference

Case CGC CTE CCM PCMCI SURD

Mediator variable ✗ ✓ ✗ ✓ ✓

Confounder variable ✓ ✓ ✓ ✓a ✓

Synergistic collider variable ✗ ✓b ✗ ✓b ✓

Redundant collider variable ✗ ✗ ✗ ✗ ✓

Turbulent energy cascade ✗ ✓a ✗ ✓a ✓

Experimental turbulent boundary layer ✓ ✓ ✗ ✗ ✓

Lotka–Volterra prey-predator model68,69 ✓ ✓ ✓ ✗ ✓

Three-interacting species system40 ✗ ✓b ✗ ✗ ✓

Moran effect model70 ✓ ✓ ✓ ✓ ✓

One-way coupling nonlinear logistic difference system36 ✗ ✓ ✓ ✗ ✓

Two-way coupling nonlinear logistic difference system36 ✗ ✓ ✓ ✗ ✓

Stochastic system with linear time-lagged dependencies77 ✓ ✓ ✗ ✓a ✓

Stochastic system with non-linear time-lagged dependencies35 ✗ ✓ ✗ ✓ ✓

Synchronization of two variables in logistic maps78 ✗ ✗ ✗ ✓c ✓

Synchronization of three variables in logistic maps78 ✗ ✗ ✗ ✗ ✓

Uncoupled Rössler–Lorenz system79,80 ✗ ✓ ✗ ✓ ✓

One-way coupled Rössler–Lorenz system79,80 ✗ ✓ ✓ ✓a ✓

Themarkers✓ and ✗ denote consistent and inconsistent identification of causal links, respectively, according to the functional dependency of variables within the system. Themethods considered
are conditional Granger causality (CGC), conditional transfer entropy (CTE), convergent cross-mapping (CCM), Peter and Clarkmomentary conditional independence (PCMCI) based on conditional
mutual information tests with a k-nearest neighbor estimator, and synergistic-unique-redundant decomposition of causality (SURD). A summary of the results for PCMCIwith different independence
tests is provided in the Supplementary Materials.
aThe causality detected is consistent with the interactions in the system, although the causal strength of the links is weak.
bCausalities are detected but the method cannot discern whether they are synergistic or unique.
cThe method cannot detect duplicated variables and redundant causalities.

Table 2 | Method for causal inference

Method Multivariate Nonlinear Stochastic Contemporaneous Leak Time-delay Self-causation

CGC26 ✓ ✗ ✓ ✗ ✗ ✓ ✓

CTE53 ✓ ✓ ✓ ✗ ✗ ✓ ✓

CCM36 ✗ ✓ ✗a ✓ ✗ ✗b ✗

PCMCI23 ✓ ✓ ✓ ✗c ✗ ✓ ✓

SURD ✓ ✓ ✓ ✓ ✓ ✓ ✓

List of methods for causal inference investigated, along with the methodological challenges each method is capable of addressing: multivariate relationships, nonlinear dependencies, stochastic
(nondeterministic) processes, contemporaneous links, estimation of the causality leak, time-delayed dependencies, and self-causation.
aCCM aims to reconstruct the attractor manifold associatedwith two given variables,making it potentially effective for stochastic systems. However, the presence of increased dynamical noise can
complicate the reconstruction process.
bAn extension of the CCM method, extended CCM39, introduces the concept of time-delayed causal interactions.
cA recent variant of the PCMCI method, PCMCI+62, accounts for contemporaneous links.

Article https://doi.org/10.1038/s41467-024-53373-4

Nature Communications |         (2024) 15:9296 4

www.nature.com/naturecommunications


synchronization phenomena. In the following, we focus our discussion
on the cases from Table 1 involving fundamental causal interactions:
mediators, confounders, and colliders, as these are key to understand
the success of SURD.We also discuss the application of SURD to unveil
the causality in two turbulent flow scenarios. Readers are referred
to the SupplementaryMaterials for a comprehensive discussion of the
results presented in Table 1, as well as a detailed overview of the causal
inference methods utilized and their implementation. Furthermore,
the Supplementary Materials also contain a section on the application
of SURD to select the most effective input variables for temporal
forecasting, as well as a section that discusses the non-separability
problem for nonlinear dynamical systems and demonstrates the
robustness of SURD under such conditions.

Mediator variable. The first case investigated corresponds to the
system Q3 → Q2 → Q1, where Q3 influences Q1 through the mediator
variable Q2. Figure 2 displays a diagram illustrating the relationships
among the variables, along with the results derived from SURD and
other causal analysis methods. Note that while the exact value of the
causal strengthmay be subject to debate, the predicted causal links by
eachmethod shouldmaintain consistency with the arrows depicted in
the diagram.

The causal contributions detected by SURD are the unique caus-
alities ΔIU3!3, ΔI

U
3!2, and ΔIU2!1, which are consistent with the depen-

dency of variables in the system. PCMCI and CTE yield similar results;
however, CGC cannot identify the link Q3 → Q2. CCM also fails to
unambiguously capture the causal links, as the only causality conver-
ging to one as the length of the time series increases isQ1→Q2, which is
inconsistent with the equations of the system.

SURD also offers an estimate of the causality leak, which exceeds
95% for Q2 and Q3. This is attributed to the influence of the stochastic
forcing terms W2 and W3, respectively, which are assumed to be
unknown. The causality leak for Q1 is the lowest (below 50%), as the
noise from W1 is the smallest among the three Wi. Note that none of
the methods offers any insight into the causality leak, and this is also
the case for all the subsequent benchmarks.

Confounder variable. The second case (Fig. 3) corresponds to a sys-
tem where Q3 acts as a confounding variable for Q1 and Q2, i.e.,
Q1←Q3→Q2. The presence of confounding effects is captured in SURD

by the synergistic causalities ΔIS13!1 and ΔIS23!2, while the self-induced
causality from Q3 is detected by ΔIU3!3. Other causalities manifest as
ΔIU1!1 and ΔIU3!2, which are also consistent with the causal structure of
the system. Regarding other methods, all of them correctly identified
the confounding effects, although the linkQ3→Q1 and the self-induced
causalities identified by PCMCI are barely significant. This highlights
another advantage of SURD: the relative importance of the causalities
is easier to interpret, since the sum of their normalized values must
always equal one. Also note that CCM cannot detect self-induced
causalities by construction. The largest causality leak occurs for Q3,
which is consistent with the fact that the (unobserved) stochastic term
acting onQ3 is ten times larger than the (unobserved) stochastic terms
acting on Q1 and Q2.

Collider with synergistic variables. Next, we consider the system
[Q2,Q3]→Q1, whereQ2 andQ3 act together to influenceQ1. In reality,Q2

and Q3 behave as a single random variable that drives Q1. The results,
presented in Fig. 4, demonstrate that SURD is able to detect the domi-
nant synergistic effect ofQ2 andQ3 onQ1 through ΔIS23!1 along with the
self-induced causalities ΔIU2!2 and ΔIU3!3. The smallest causality leak is
associatedwithQ1, as it is affected by the lowest stochastic forcingwhile
being strongly influenced by the (observed) variables Q2 and Q3.

PCMCI and CTE also identify the self-influence of Q2 and Q3 and
the effect ofQ2 andQ3 onQ1. However, neither of the twomethods can
label the interaction as synergistic and, hence, cannot show that both
variables are required in combination, rather than individually, to
affect Q1. On the other hand, CGC and CCM are unsuccessful in iden-
tifying the interactions of Q2 and Q3 with Q1.

Collider with redundant variables. The fourth case under examina-
tion explores the fundamental interaction Q2 ≡ Q3 → Q1, where Q3 is
identical to Q2. In this scenario, Q2 and Q3 equally influence the future
outcomes ofQ1. SURD identifiesΔIR23!2 =ΔI

R
23!3 as themost significant

causalities associated with Q2 and Q3, respectively, as shown in Fig. 5.
Moreover, the identical causalities (and causality leaks) for bothQ2 and
Q3 suggest that they represent the same variable. SURD also identifies
the influence of Q2 and Q3 on Q1 mostly via ΔIR23!1 and ΔIS12!1. Given
that Q2 and Q3 are identical, SURD assigns a nonzero value only to
ΔIS12!1, but not to ΔIS13!1, to prevent the duplication of causality in
compliance with Equation (1).

Fig. 2 | System with mediator variable. (Left panel) Schematic of the functional
dependence among variables and system equations, where Wi represents unob-
served, stochastic forcing on the variableQi. We use the notationQn

i =QiðtnÞ, where
n indicates the time step. (Center and right panels) Results from SURD with
redundant (R), unique (U) and synergistic (S) causalities in blue, red and yellow,
respectively. The notation employed is such that R123 denotes ΔIR123!j and so on.
The gray bar is the causality leak. The results from CGC, CTE, PCMCI, and CCM are

depicted on the right. In all methods but CCM, the value of the bar represent the
strength of the causal link. In CCM, a causal link is detected only when the value
converges to 1 as the length of the time series increases, but nototherwise. CGCand
CTE use the same normalization as SURD. The values for SURD, CTE and CCM are
upper bounded by 1. The values for PCMCI represent conditional mutual infor-
mation and are unbounded. The equations to quantify causality by each of the
methods are in the Supplementary Materials.
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For the rest of the methods, CGC and CTE are unable to identify
any causal links between different variables. CCM identifies a bidirec-
tional causal connection between Q2 and Q3, but cannot identify their
influence to Q1. Finally, PCMCI exhibits consistent results for Q1;
however, it does not offer a mechanism to identify the redundancy
between Q2 and Q3.

Application to the energy cascade in turbulence
We apply SURD to investigate the causality of the energy cascade in
turbulence, which serves as a primary example of a chaotic, multi-
scale, high-dimensional system. The energy cascade is the transfer of
kinetic energy from large to small scales in the flow (forward cascade),
or vice versa (backward cascade), and has been the cornerstone of

Fig. 3 | System with confounder variable. Same as Fig. 2.

Fig. 4 | System with synergistic collider variables. Same as Fig. 2.

Fig. 5 | System with redundant collider variables. Same as Fig. 2. The symbol ≡ indicates that variables Q2 and Q3 are identical.
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most theories and models of turbulence since the 1940s71–73,84–87.
However, understanding the dynamics of the energy transfer across
scales remains an outstanding challenge. Given the ubiquity of tur-
bulence, a deeper understanding of the energy transfer among flow
scales could enable significant progress across various fields, ranging
from plasma physics88, combustion89, climate90, and astrophysics91 to
engineering applications in aero/hydrodynamics92–95. Despite the
progress made in recent decades, the causal interactions of energy
among scales in turbulent flows have received less attention. Here, we
investigate the redundant, unique, and synergistic causalities involved
in the energy transfer.

We use data from a high-fidelity simulation of isotropic turbu-
lence in a triply periodic domain87. This case is the testbed used by the
community to understand the fundamental physical processes of the
energy cascade. The total number of degrees of freedomof the system
is of the order of 109. The kinetic energy transfer was obtained by
filtering the velocity field at four different length scales (denoted by Δi,
for i = 1, 2, 3, 4) and calculating the energy flux across those scales.
Causality is computed among the time signals of the volume-averaged
energy transfer, denoted by Σi for i = 1, 2, 3, 4, where the index signifies
energy transfer at scale Δi. The top panels of Fig. 6 depicts a visuali-
zationof thefiltered velocity from the largest to the smallestflowscale,
together with the time evolution of the energy transfer signals at that
scale. The causal relationships among energy transfers identified by
SURD are shown in the left panels of Fig. 6. The dominant contribu-
tions come from redundant and unique causalities, whereas synergis-
tic causalities play a minor role. The unique causalities (depicted in
red) vividly capture the forward energy cascade of causality from large
to smaller scales, inferred from the non-zero terms ΔIU1!2, ΔI

U
2!3, and

ΔIU3!4. Curiously, no unique causality is observed from smaller to lar-
ger scales, and any causality from the backward cascade arises solely
through redundant relationships. In the context of SURD, this implies
that no new information is conveyed from the smaller scales to the
larger scales, which is consistent with recent views of the backward
energy cascade in the literature96,97. From the modeling perspective,
this justifies the success of subgrid-scale modeling in large-eddy
simulation, as the information contained in the smaller scales is
redundant and does not constitute a key ingredient in solving the
closure model problem. The results obtained from SURD also provide
support for classic hypotheses about the energy cascade from a new
causal-effect perspective. Among them, we can cite Taylor’s dissipa-
tion surrogate assumption98 and the dissipation anomaly99. The former
posits that the dissipation rate can be determined by large-scale
dynamics, even if dissipation is formally a small-scale feature of the
flow. SURD clearly supports this assumption due to the lack of unique
and synergistic causality from small to large scales. The results from
SURD are also consistent with the dissipation anomaly (i.e., the con-
stant rate of energy dissipation despite decreasing viscosity), which is
enabled by the forward directionality of the energy cascade process.

SURD also provides the causality leak (ΔIleak→j) that measures the
amount of causality unaccounted for due to unobserved variables. The
largest causality leak occurs for Σ2, where ~47% of the causality is car-
ried by variables not included within [Σ1, Σ2, Σ3, Σ4]. This implies that
there are other factors affecting Σ2 that have not been accounted for
and that explain the remaining 53% of the causality of the variable.
Conversely, the energy transfer at the largest scale Σ1 bears the smal-
lest leak of 14%, which is due to the high value of the unique causality
ΔIU1!1. The latter implies that the future of the largest scales is mostly
determined by its own past.

Finally, the results from SURD are compared with the other
methods. CGC and CCM do not support the hypothesis of a forward
energy cascade, which disagrees with the consensus within the fluid
dynamics community85,87,100–104. The formulation of CCM used in this
study adheres to the original work by Sugihara et al. 36 However, more
recent iterations of CCM, such as Extended CCM39, which explicitly

account for time delays, have demonstrated efficacy in accurately
detecting causality in systems with strongly synchronized variables.
Hence, these and other improved versions of CCM might be more
suitable for analyzing the turbulent energy cascade, where smaller
scales are enslaved to the larger ones. CTE and PCMCI are consistent
with the forward propagation of energy, but the strength of the causal
links detected is extremely weak. Beyond the failure of some methods
to support the forward energy cascade hypothesis, different approa-
ches also yield conflicting outcomes regarding the path followed by
the energy across scales and the significance of the backward energy
cascade. Additionally, none of the other previous methods offer
quantification of missing causality due to unobserved variables, in
contrast to the causality leak provided by SURD.

Application to experimental data from a turbulent
boundary layer
The interaction of turbulent motions of different size within the thin
fluid layers immediately adjacent to solid boundaries poses a sig-
nificant challenge for both physical understanding and prediction.
These layers are responsible fornearly 50%of the aerodynamicdragon
modern airliners and play a crucial role in the first hundred meters of
the atmosphere, influencing broader meteorological phenomena94.
Here, we leverage SURD to investigate the interaction between flow
velocity motions in the outer layer (far from the wall) and inner layer
(close to the wall) of a turbulent boundary layer. Figure 7a illustrates
the configuration used to examine the causal interactions between
velocity motions. More specifically, the hypotheses under considera-
tion are either (i) a dominant influence of motions far from the wall on
those closer, indicating top-down causality (a.k.a. Townsend’s outer-
layer similarity hypothesis105), or (ii) the opposite scenario, where
influences move from areas closer to the wall outward, suggesting
bottom-up causality.

We use experimental data from a zero-pressure gradient turbu-
lent boundary layer from the high Reynolds numberwind tunnel at the
University of Melbourne74–76. The friction Reynolds number is
Reτ = uτδ/ν = 14,750, basedon the thicknessof the boundary layer δ, the
kinematic viscosity ν, and the average friction velocity at the wall uτ.
The time signals consists of the streamwise velocity at twowall-normal
locations within the inner (I) and outer (O) layers, denoted by uI(t) and
uO(t), respectively.

Figure 7b shows the redundant, unique, and synergistic caus-
alities from SURD between the inner and outer layers. We use the
subindices I and O to refer to causalities from/to uI(t) or uO(t),
respectively. The primary observation is that the inner layermotions
are predominantly influenced by the unique causality from the outer
layer, ΔIUO!I . The redundant and synergistic causalities are lower, but
they remain significant. Curiously, the unique causality ΔIUI!I is zero,
implying that, at the time scale considered, the inner layer motions
are independent of their past history. For the outer-layer motions,
most of the causality is self-induced ΔIUO!O with no apparent influ-
ence from the inner layer. The results distinctly support the pre-
valence of top-down interactions: causality flows predominantly
from the outer-layer large-scale motions to the inner-layer small-
scale motions. The outcome is consistent with the modulation of
near-wall scales by large-scale motions reported in previous
investigations106,107. The lack of bottom-up causality from the inner
to the outer layer also aligns with Townsend’s outer-layer similarity
hypothesis105 and previous observations in the literature108–113.

The causality leak, also shown in Fig. 7b, is 99% for both uI and uO.
Such a high value implies that most of the causality determining the
future of uI and uO is contained in other variables not considered in the
analysis. This high value is unsurprising since most of the millions of
degrees of freedom in the turbulent flow field have been neglected,
and only two pointwise signals, uI and uO, are retained to evaluate the
causality.
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Finally, the results from SURD are contrastedwith othermethods.
In this case, CCM and PCMCI do not support the hypothesis of top-
down interactions between velocity motions. The reason behind the
failure of these methods is unclear, but it might be related to the high
causality leak. CGC and CTE are consistent with the flow of causality
from the outer-layer large-scale motions to the inner-layer small-scale
motions. However, as already highlighted in previous cases, none of
thesemethods offer a detailed decomposition into redundant, unique,
and synergistic causality, nor they account for the effect ofunobserved
variables as quantified by the causality leak in SURD.

Discussion
The cases presented in this study show that the faithful quantifica-
tion of causality remains elusive even in simple causal networks. The
difficulties originate from a range of factors, including complexities
introduced by mediator, confounding and collider effects; syner-
gistic and duplicated variables; the influence of stochastic noise;
and the presence of unobserved variables. SURD addresses these
challenges by introducing several unique advances in the field of
causal inference that go beyond the insights provided by other
methods.

Fig. 6 | Causality in the turbulent energy cascade. a Visualization of the mag-
nitude of the velocity field for four filter sizes Δi at the same instant. The para-
meter η is the Kolmogorov length-scale and represents the smallest scale in the
flow. b An extract of the time history of Σ1, Σ2, Σ3, and Σ4. The time is non-
dimensionalized by Tϵ, which is the integral time-scale of the flow. c Redundant

(R), unique (U), and synergistic (S) causal contributions from SURD. Only the top
12 contributions, satisfying the condition ΔIð�Þ!j=IðΣ+

j ;ΣÞ≥ 10�3, are represented,
where Σ = [Σ1, Σ2, Σ3, Σ4]. The gray bar is the causality leak. The results of CGC,
CTE, CCM, and PCMCI are depicted on the right.
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The first distinctive feature of SURD is its suitability for analyzing
causal networks involvingmediator, confounder, and collider effects—
the building blocks of causal interactions between variables. The suc-
cess of SURD in capturing these fundamental interactions stems from
its ability to distinguish between redundant, unique, and synergistic
causalities, which is lacking in previous methods. We have shown that
the inability to disentangle redundant and synergistic causalities can
obscure the relationships among variables within the system, leading
to spurious causalities. In the case of PCMCI, incorporating a redun-
dant variable into the set of conditioning variables may lead to the
identification of erroneous links23. The challenge posed by redundant
causality also extends to CTE27,50–53, as it evaluates the causality
between pairs of variables conditioned on the remaining set of
observed variables. CGC encounters difficulties in the same situations
as CTE, since the former is a linear, parametric version of the latter.
Several attempts have been made in the literature to account for
synergistic and redundant causality45,114–119, for example, through the
calculation of CTE in its multivariate form45. However, these methods
may yield negative values of causality, which hinders the interpret-
ability of the results. In contrast, SURDensures the non-negativity of all
the terms. This property significantly enhances the interpretability of
SURD terms, allowing for a clear distinction between redundant,
unique, and synergistic causality among variables.

SURD also introduces the concept of the causality leak, which
quantifies the extent of causality that remains unaccounted for due to

unobserved variables. The causality leak serves as a fundamental
metric to evaluate the significance of the causal links identified. Low
values of the causality leak imply that most of the causality is
accounted for by theobserved variables. Conversely, high values of the
causality leak indicate that most of the causality can be attributed to
hidden, exogenous variables. In such situations, SURD highlights the
necessity of incorporating additional, currently overlooked variables
into the analysis. The capability to detect and quantify missing caus-
ality is absent in other methods for causal inference.

The foundational principle of SURD from Equation (1), along with
the non-negativity of causalities, also provides a natural normalization
for causality that is both intuitive and easily interpretable. Unique,
redundant, and synergistic causalities are normalized using themutual
information between all observed variables and the target, ensuring
that their sum equals 1. This normalization measures the relative
importance of each causality within the group of observed variables.
Additionally, the causality leak is naturally normalized by the infor-
mation content of the target variable, which bounds its value between
0 and 1. For example, in a systemwith three variables [Q1,Q2,Q3] where
we are interested in the causes of Q2, a normalized unique causality
fromQ1→Q2 equal to 90% implies thatQ2 andQ3 play aminor role (i.e.,
10%) in influencing the future of Q2. However, the causality from
Q1 →Q2 would still be deemed insignificant if the causality leak ofQ2 is
99%, indicating that most of the causality to Q2 resides in other vari-
ables not contained in the vector [Q1, Q2, Q3]. Other methods, such as

Fig. 7 | Causality between streamwise velocity motions in a turbulent
boundary layer. a Schematic of outer-layer and inner-layer streamwise velocity
motions in a turbulent boundary and their interactions via unique causality. The
velocity signals uI(t) and uO(t) are experimentally measured at the wall-normal
locations yI and yO, respectively, and are shown in thepanel below.The superscript *

denotes the inner scaling with friction velocity, uτ, and kinematic viscosity, ν.
b Redundant (R), unique (U), and synergistic (S) causalities among velocity signals
in the inner (I) and outer (O) layer of a turbulent boundary layer. The gray bar is the
causality leak. The results of CGC, CTE, CCM, and PCMCI are shown on the right.
Details about data are provided in “Methods”.
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CGC, do not offer bounded values nor a measure of causality leak.
Outcomes from PCMCI (when based on correlations) and CCM can be
normalized between 0 and 1; however, unlike SURD, the sum of
causalities in PCMCI andCCMdoes not add up to 1 or to any conserved
quantity. CTE shares many normalization properties with SURD and
allows for the concept of causality leak; however, the possibility for
negative values of causality in CTE complicates its interpretation45.

Another essential aspect of SURD is its foundation in transitional
probability distributions, which ensures its invariance to transforma-
tions such as shifting, rescaling, and other general invertible trans-
formation of the variables. This is applicable to other methods such as
CTE and PCMCI. SURD is also robust across scenarios with varying
amounts of samples for causal inference, providing consistent causal
links with fewer than a thousand samples. This capability is realized
through the application of transport maps specifically designed for
estimating high-dimensional conditional probability distributions120.
Even in situations where the sample size is exceptionally small (e.g., of
the order of hundreds) and the number of variables is large, SURD is
still capable of identifying causal relationships up to a certain order of
synergies [see “Methods”], while higher-order synergistic interactions
can be considered part of the causality leak. Finally, methods such as
CCM suffer from the presence of increased noise, which complicates
the reconstruction of attractor manifolds and reduces the
efficacy121–123. In contrast, our test cases have shown that SURD is reli-
able even in the presence of noise. In summary, SURD stands as an
effective tool in the field of causal inference with the potential to drive
progress across multiple scientific and engineering domains, such as
climate research, neuroscience, economics, epidemiology, social sci-
ences, and fluid dynamics, among others.

Methods
Assumptions for causal discovery
SURD is an observational non-intrusive method that operates within a
probabilistic framework,where causal relationships emerge as a result of
transitional probabilities between states. The method adheres to the
principle of forward-in-time propagation of information, which states
that causation cannot occur backward in time. This formulation is con-
sistent with the identification of contemporaneous links, as these can be
interpreted as causal influences acting on a time scale shorter than the
measurement interval (e.g., inferring causality on an 8-h scale fromdaily
measured data). Furthermore, the method incorporates the concept of
causality leak, which acts as amechanism of quality control by assessing
the impact of unobserved variables. Thismeasure alleviates the need for
the assumption of causal sufficiency (i.e., all common causes of the
variables must be accurately measured), as it offers a quantifiable mea-
sure of the extent to which information from unobserved variables
remainsunaccounted for. Additionally, themethod ismodel-free, i.e., no
prior knowledge about the system dynamics is required. This makes
SURD appealing for applications involving deterministic or stochastic
multivariate systems with linear and nonlinear dependencies. The
method also assumes that the time signals are stationary, which ensures
that their statistical properties donot vary over time. Finally, themethod
can identify cyclic causal relationships, provided that they adhere to the
principle of forward-in-time propagation of information.

Synergistic-Unique-Redundant Decomposition
To perform the decomposition proposed in Equation (1), we rely on
the concept of mutual information44,65,66 between the target variable
Q+

j and the vector of observed variables Q. This quantity can be
mathematically described as:
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where q+
j and q represent all possible values or states of Q+

j and Q,
respectively. Mutual information measures how different the joint
probability distribution pðq+

j ,qÞ is from the hypothetical distribution
pðq+

j ÞpðqÞ, where q+
j and q are assumed to be independent. For

instance, if Q+
j and Q are not independent, then pðq +

j ,qÞ will differ
significantly from pðq +

j ÞpðqÞ. Hence, we assess causality by examining
how the probability of Q+

j changes when accounting for Q.
However, the source of causality might change depending on

different states q +
j of the target variable Q+

j . For example, Q1 can only
be causal to positive values of Q+

j , whereas Q2 can only be causal to
negative values of Q+

j . Therefore, this decomposition must be per-
formed for all possible values ofQ+

j . To do that, we define the specific
mutual information124 from Q to a particular event Q+
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~{ q +
j ;Q

� �
=
X
q

p q+
j ,q

� �
p q+

j

� � log2

p q +
j ,q

� �
p q +

j

� �
pðqÞ

0
@

1
A ≥0: ð3Þ

Note that the specific mutual information is a function of the random
variable Q (which encompasses all its states) but only a function of
one particular state of the target variable (namely, q +

j ). Similarly to

Equation (2), the specific mutual information quantifies the dissim-
ilarity between pðq+

j ,qÞ and pðq +
j ÞpðqÞ but in this case for the parti-

cular state Q+
j =q +

j . The mutual information between Q+
j and Q is

recovered by IðQ+
j ;QÞ=Pq +

j
pðq+

j Þ~{ðq +
j ;QÞ. For simplicity, we will

use ~{iðq+
j Þ=~{ðq +

j ;QiÞ.

To perform the decomposition of the specificmutual information
in its redundant Δ~{Ri , unique Δ~{Ui , and synergistic Δ~{Si components, we
quantify the increments in specific information Δ~{ about q+

j obtained
by observing an individual or groups of components from Q. For a
given state q+

j of the target variable Q+
j , the specific causalities ~{ are

computed for all the possible combinations of past variables. These
components are organized in ascending order, which allows to assign
the redundant, unique, and synergistic causalities. Figure 8 shows an
example of the decomposition of ~{ðq +

j ;QÞ for a particular state of the
target variable and for the three simple examples illustrated in Fig. 1.
The quantities in Equation (1) are then obtained as the expectation of
their corresponding values:
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Comparison with other causality methods
We compared SURD with other established methods for causal infer-
ence in time series: CGC26, CTE27, CCM36, and PCMCI23. The detailed
calculation of the previous methods has been documented in the lit-
erature, and their corresponding source codes have been
employed23,77,83,125. In this paper, an embedding dimension equivalent
to the number of variables was used for the application of the CCM
method, which was executed with a library size that ensured con-
vergence of the prediction skill for all cases. Therefore, the CCM value
should be close to 1 in order to consider a link significantly causal. We
used the version of PCMCI based on conditional mutual information
(CMI) independence test with the estimator k-nearest neighbor
(k-NN)60. All cases were evaluated at a significance level of 1%. Fur-
thermore, PCMCIA was estimated with αPC=0.05 and CMI-kNN
parameters kCMI =0.1, sperm=5, andB = 200permutation surrogates.
The same time lag was used for all the methods. The reader is referred
to the Supplementary Materials for a more detailed discussion of the
packages used, the validation with test cases provided in each of the
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sources, and the effect of convergence for the CCM method. A sum-
mary of the results for PCMCI using different independence tests is
also provided in the Supplementary Materials, where the optimal
confidence interval αPC during the initial condition selection phase (PC
phase) was selected based on the Akaike Information criterion126 from
a default list of values, i.e., αPC = [0.05, 0.1, 0.2, 0.3, 0.4, 0.5].

Validation data for mediator, confounder, and collider
The mediator, confounder, and collider systems considered comprise
three variables Q1(tn), Q2(tn), and Q3(tn) at discrete times tn = n. The
system is initially set to Q1(1) =Q2(1) =Q3(1) = 0. A stochastic forcing,
representedbyWi(tn), acts onQi(tn) and follows aGaussiandistribution
with amean of zero and a standard deviation of one. The computation
of SURD is performed for a time lag of ΔT = 1 using 100 uniform bins
per variable. The integration of the system is carried out over 108 time
steps, with the first 10,000 steps excluded from the analysis to avoid
transient effects. CGC and CTE used the same samples as SURD, while
CCM and PCMCI used 5 × 105 samples due to computational con-
straints. The latter methods were also evaluated using a smaller
number of samples, whichwere one order of magnitude lower, and no
significant differences were detected. An analysis of the impact of the
number of samples and the sensitivity to partition refinement for
SURD is provided in the Supplementary Materials.

Data for energy cascade in isotropic turbulence
The case chosen to study the energy cascade is forced isotropic tur-
bulence in a triply periodic box. The data were obtained from a direct
numerical simulation127, which is publicly available in https://torroja.
dmt.upm.es/turbdata/. In this simulation, the Navier–Stokes equations
are numerically integrated by resolving the whole range of spatial and
temporal scales of the flow. The conservation ofmomentum andmass
equations for an incompressible flow are given by:

∂ui

∂t
+
∂uiuj

∂xj
= � ∂Π

∂xi
+ ν

∂2ui

∂xj∂xj
+ fi ,

∂ui

∂xi
=0, ð5Þ

where repeated indices imply summation, x = [x1, x2, x3] are the spatial
coordinates, ui for i = 1, 2, 3 are the velocities components, Π is the
pressure, ν is the kinematic viscosity, and fi is a linear forcing sustaining
the turbulent flow128. The simulation was conducted with 10243 spatial
Fourier modes, which is enough to accurately resolve all the relevant
length-scales of the flow127. To quantify the transfer of kinetic energy

among eddies at different length scales over time, the i-th component
of the instantaneous flow velocity in Equation (5), denoted as ui(x, t), is
decomposed into contributions from large and small scales according
to uiðx, tÞ= �uiðx, tÞ+u0

iðx, tÞ. The operator �ð�Þ signifies the low-pass
Gaussian filter and is given by:
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where �Δ is the filter width and V denotes integration over the whole
flow domain. Examples of filtered velocity fields at four different filter
widths are included in Fig. 6. The kinetic energy of the large-scale field
evolves as
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where τij = ðuiuj � �ui�ujÞ is the subgrid-scale stress tensor, which
represents the effect of the (filtered) small-scale eddies on the
(resolved) large-scale eddies and �Sij = ð∂�ui=∂xj +∂�uj=∂xiÞ=2 denotes
the filtered strain-rate tensor. The interscale energy transfer ~Σiðx, t; �ΔiÞ
between the filtered and unfiltered scales is given by

~Σiðx, t; �ΔiÞ= τijðx, t; �ΔiÞ�Sijðx, t; �ΔiÞ, ð8Þ

which is the quantity of interest. The velocity field was low-passed
filtered at four filter widths: �Δ1 = 163η, �Δ2 = 81η, �Δ3 = 42η, and �Δ4 = 21η.
Thefilterwidths are selected to represent fourdifferentflowscales and
are located within the inertial range of the simulation: Lε>�Δi>η, for
i = 1, 2, 3 and4,where Lε represents the size of the largest scales and η is
the size of the smallest scales. Finally, we volume-averaged ~Σi over the
entire domain, denoted by Σi, which served as a marker for the
dynamics of the energy cascade. The generated data are also resolved
in time, with flow fields stored at intervals of Δt = 0.0076Tε, where Tε is
the characteristic time of the largest flow scales. The simulation was
intentionally run for an extended period to ensure the accurate
computation of specific mutual information. The total simulated time
after transient effects was equal to 165Tε. For a given target variable, Σj,
the time delay ΔTj used to evaluate causality was determined as the
time required for maximum ΔIUi!j with j ≠ i, where Σ+

j is evaluated
at t + ΔTj.

Fig. 8 | Schematic of the causal decomposition in SURD. a For a given state q+
j of

the target variable Q +
j , the specific causalities ~{ are computed for all the possible

combinations of past variables. These components are organized in ascending
order, which allows to assign the redundant (blue), unique (red), and synergistic

(yellow) causalities. This process is performed for all possible values q +
j of Q +

j .
b Schematic of simple examples and associated specific mutual information for
(top panel) duplicated input, (middle panel) output equal to first input, and (bot-
tom panel) exclusive-OR output.
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Data for turbulent boundary layer
The data used for analyzing inner/outer interactions in a turbulent
boundary layer were obtained from a experimental campaign at the
high Reynolds numberwind tunnel at the University ofMelbourne74–76,
which is publicly available in https://fluids.eng.unimelb.edu.au/. In this
campaign, measurements were made at a streamwise distance of
x = 21.65m from the trip at the test section inlet (x =0), with a free-
stream velocity of nominally 20m/s. The boundary layer at this loca-
tion has a thickness of δ =0.361m, and the friction velocity is
uτ = 0.626m/s. Based on these values, the friction Reynolds number is
Reτ = uτδ/ν = 14,750. The data used in this study includes measure-
ments of the streamwise velocity obtained using two synchronous hot-
wire anemometry probes with an acquisition rate Δt* = 1.28 at two
different wall-normal locations: yI* = 4:33 (for the inner layer) and
yO/δ =0.31 (for the outer layer). The superscript * denotes the inner
scaling with friction velocity, uτ, and kinematic viscosity, ν. At each
location, the acquisition time consists of three cycles of approximately
TU∞/δ = 20,000. Further details about the experimental setup can be
found in ref. 74 and Marusic76. The time lag utilized to evaluate caus-
ality is ΔT* ≈ 756, which corresponds to the time lag for maximum
cross-induced unique causality.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study as well as the analysis and simulation
code have been deposited in a Zenodo database under identifier
https://doi.org/10.5281/zenodo.13750918.

Code availability
The codes129 developed for this work are available at: https://github.
com/Computational-Turbulence-Group/SURD.
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