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INTRODUCTION – THE 
IMPORTANCE OF NATURAL 
PRODUCTS AS ANTIBIOTICS

Beginning with the development of salvarsan in the 
early 20th century (Ehrlich,  1913), small molecule 
antibiotics have become one of the pillars of modern 
medicine. These drugs gave humankind the ability to 
treat and cure a wide range of bacterial infections and 
paved the way for many modern medical procedures 
(Hutchings et al., 2019). However, this progress is jeop-
ardised by the rise of antimicrobial resistances (AMR) 
against more and more classes of antibiotics, leading 
to increasing numbers of deaths that are associated 
with or directly attributed to AMR (Murray et al., 2022; 
O'Neil, 2014; Ventola, 2015). Therefore, the discovery 
and development of novel antibiotics with new chem-
ical scaffolds and molecular targets are needed, in 
particular with activity against Gram-negative bacteria 
(Walesch et al., 2022).

Although the first antibiotics were of synthetic na-
ture (Ehrlich,  1913; Otten,  1986), the discoveries and 

subsequent use of penicillin and streptomycin shifted the 
focus of antibiotic discovery towards natural products 
from microbes (Abraham et  al.,  1941; Fleming,  1929; 
Waksman & Schatz, 1945; Walesch et al., 2022). The 
ongoing relevance of microbial natural products as anti-
biotics is attested by the fact that more than two thirds of 
antibiotics that were approved between 1981 and 2019 
are natural products or derivatives thereof (Newman & 
Cragg, 2020). When taking into account antibiotics that 
are currently marketed in the United States for the sys-
temic treatment of non-mycobacterial infections, 18 out of 
22 antibiotic classes are natural product-based (Walesch 
et al., 2022). Compared to synthetic compounds, micro-
bial natural products are believed optimised through 
evolution to facilitate microbial competition for nutrients 
and habitats. Therefore, their structural diversity and 
physico-chemical properties are optimised to penetrate 
cell walls and selectively inhibit bacteria or other cells 
(Hutchings et al., 2019; Lakemeyer et al., 2018; Laraia & 
Waldmann, 2017; Wright, 2017).

Bacteria deserve a special place among microbial 
natural products producers. According to the latest 
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version of the MIBiG database, the structural and bio-
synthetic diversity of bacterial natural products exceeds 
that of the compounds produced by fungi (Terlouw 
et  al.,  2023). Furthermore, the organisation of the 
genes responsible for the production of natural prod-
ucts are mostly clustered in biosynthetic gene clusters 
(BGCs) facilitating genetic manipulations to study and 
optimise the production of such compounds (Bode & 
Müller,  2005). Bacteria can be isolated from diverse 
habitats ranging from marine to soil and from perma-
frost to desert environments. In these complex ecosys-
tems, bacteria may live independently or as symbionts 
and their natural products play a key role fulfilling a 
broad range of biological functions, e.g., cooperation 
and communication, defence mechanisms and preda-
tion (Figure 1). A vast majority – more than 99% – of 
bacteria have not been cultivated, thus providing an 
immense potential to discover novel natural products 
(Crits-Christoph et al., 2018; Locey & Lennon, 2016).

Hitherto, the majority of bacterial natural products 
listed in the NPAtlas database was discovered from 
Actinobacteria (Figure  2) (van Santen et  al.,  2022). 
Especially the genus Streptomyces was extremely 
fruitful for the discovery of clinically relevant antibiotics 
and anti-cancer agents (Katz & Baltz, 2016; Newman & 
Cragg, 2020). However, the bias towards soil-dwelling 
Actinobacteria and the resulting under-sampling of 
other phyla underestimated the potential of other nat-
ural products producers (Hutchings et  al.,  2019). For 
example, the phyla Cyanobacteria, Proteobacteria, 
Firmicutes or Bacteriodetes are less explored than 
Actinobacteria and harbour more genera with less 
reported natural products (Figure  2) (van Santen 
et al., 2022; Walesch et al., 2022; Wright, 2017). In this 

mini-review, we exemplarily highlight three different dis-
covery approaches that were recently applied to gener-
ally underrepresented Gram-negative producer strains, 
which yielded novel anti-Gram negative antibiotics that 
are currently listed in preclinical development stages by 
the WHO, which comprise agents in lead optimisation, 
preclinical candidates applying Good Laboratory and 
Good Manufacturing Practices (GLP and GMP) and 
agents in Clinical Trial Application and Investigational 
New Drug-enabling studies (CTA/IND) (Antimicrobial 
Resistance Division, 2024).

MAIN – GRAM- NEGATIVE 
BACTERIA PRODUCING 
ANTI- GRAM- NEGATIVE 
ANTIBIOTICS – APPROACHES/ 
HABITATS

Predator approach

Myxococcota (or myxobacteria) are rod-shaped 
Gram-negative bacteria that grow in terrestrial and 
aquatic habitats all around the world (Mohr,  2018). 
They demonstrate a sophisticated and social life-style 
including coordinated swarming on flat surfaces, co-
operative predation of other microorganisms and the 
formation of multicellular fruiting bodies upon starva-
tion (Munoz-Dorado et al., 2016; Reichenbach, 1999). 
Furthermore, myxobacteria have the largest bacte-
rial genomes with up to 16 Mbp (Han et  al.,  2013; 
Pal et al., 2021), harbouring a great potential to pro-
duce secondary metabolites (Garcia et  al.,  2024; 
Zaburannyi et al., 2016).

F I G U R E  1   Microorganisms live in 
diverse habitats and ecosystems, as 
individuals, in competition or in symbiosis. 
Natural products are used as a means of 
communication, cooperation, inhibition, 
defence and predation. Exemplified by 
the cooperation of termites and fungi and 
of bacteria and nematodes, in defence 
of other microorganisms. Created 
in BioRender. Birkelbach, J. (2024) 
BioRender.com/x25z927
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The potential value of myxobacteria as producers of 
antibiotics was first discussed in the middle of the past 
century, based on their ability to lyse other microbes 
(Oxford, 1947; Singh, 1947). Further research showed 
the ability of myxobacteria to lyse human pathogenic 
bacteria and to produce substances with antibac-
terial properties (Mathew & Dudani,  1955; Noren & 
Raper, 1962). Arguably, due to the comparably difficult 
(large scale) cultivation of most Myxococcota in the 
laboratory (Mohr, 2018), it took until the late 1970s be-
fore ambrucitin was isolated as the first natural prod-
uct from a myxobacterium (Ringel et al., 1977). Since 
then, myxobacteria have proven themselves as a fruit-
ful source of natural products with diverse chemical 
scaffolds displaying a wide range of biological activi-
ties (Herrmann et  al.,  2017). As of 2023, more than 
800 natural products, belonging to ~170 chemical 
scaffolds were isolated from myxobacterial cultivation 
extracts (Wang et al., 2024). Among the many natural 
product scaffolds from myxobacteria with antibacterial 
activities, three compounds or compound classes are 
currently in preclinical development for their activities 
against Gram-negative bacteria, corallopyronin A, cys-
tobactamids and corramycins (Figure 3).

Although corallopyronin A (Figure 3) and its antibac-
terial activities against a range of Gram-positive and 
-negative bacteria was already described in the 1980s 
(Irschik et al., 1985; Jansen et al., 1985), its development 
as antibiotic seemed unlikely, due to low production 
titres in the original producer Corallococcus coralloi-
des and a poor yield in chemical synthesis (Krome 
et al., 2022). This changed with the implementation of 
a heterologous expression system of corallopyronin in 
Myxococcus xanthus, which increased the production of 
corallopyronin A greatly (Pogorevc et al., 2019; Sucipto 

et al., 2017). Corallopyronin A displays potent activity 
against Gram-negative bacteria like Neisseria ghonor-
rhoeae, Chlamydia spp., Rickettsia spp. and Wolbachia 
spp. (Miethke et al., 2021). As a preclinical candidate it 
is currently developed for the treatment of filarial worm 
infections, by targeting their Wolbachia endosymbionts 
and has shown its efficacy in rodent infection mod-
els (Ehrens et al., 2022; Krome et al., 2022; Schiefer 
et al., 2020). The mode of action of corallopyronin A is 
the inhibition of the DNA-dependent RNA polymerase 
(Mukhopadhyay et al., 2008). As its binding site at the 
‘switch region’ of the enzyme is distinct from the binding 
sites of other RNA polymerase inhibitors, corallopyro-
nin A does not show cross-resistance with other antibi-
otics (Krome et al., 2022; Shima et al., 2018).

The antibacterial cystobactamids (Figure 3) were dis-
covered in the cultivation extracts of Cystobacter velatus 
Cbv34 in the course of a screening campaign of a biodi-
verse collection of myxobacteria (Baumann et al., 2014; 
Herrmann et  al.,  2016). They are unusual peptides, 
featuring several para-aminobenzoic acids and display 
activity against Gram-positive and Gram-negative bac-
teria (Baumann et  al.,  2014). The molecular target of 
cystobactamids, the bacterial type IIa topoisomerase 
was found through investigation of the self-resistance 
mechanisms of the producing Cystobacter strain 
(Baumann et al., 2014). Obviously, cystobactamids tar-
get a different binding site in bacterial gyrases as the 
quinolone antibiotics, as they show a low to no cross-
resistance with this scaffold (Baumann et  al.,  2014; 
Hüttel et al.,  2017). In the past years cystobactamids 
have progressed to the lead optimisation phase, as the 
implementation of a heterologous expression system 
and a total synthesis route have led to the develop-
ment of derivatives with highly improved properties in 

F I G U R E  2   The number of bacterial natural products produced per phylum (left) versus the number of validly described genera per 
phylum (right) reported in the NPAtlas database (van Santen et al., 2022). Inset shows phyla that produce <200 reported natural products.
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vitro and in vivo (Elgaher et al., 2020; Groß et al., 2021; 
Moeller et  al.,  2019; Moreno et  al.,  2015; Testolin 
et al., 2020). Interestingly, the albicidins, originally iso-
lated from the Gram-negative bacterium Xanthomonas 
albilineans, have a similar scaffold and antibacterial ac-
tivities to the cystobactamids (Cociancich et al., 2015). 
Due to their unique scaffold the cystobactamids and al-
bicidins are currently in lead optimisation, which yielded 
derivatives with improved antibacterial properties and a 
better understanding of their modes of action and resis-
tance mechanisms (Kleebauer et al., 2021; Michalczyk 
et  al.,  2023; Risch et  al.,  2024; Saathoff et  al.,  2023; 
Zborovsky et al., 2021).

Corramycins (Figure  3) are linear peptides with 
activity against E. coli that were first found in cultiva-
tion extracts of Corallococcus coralloides (Couturier 

et  al.,  2022). Lead optimisation by organic synthesis 
was used to develop a corramycin derivative with a 
more than 300-fold increased activity against Gram-
negative bacteria, displaying promising activities 
against K. pneumoniae and A. baumannii (Renard 
et al., 2023). Inactivation of the warhead by phosphory-
lation was identified as a mechanism of self-resistance 
in the producing myxobacteria (Adam et  al.,  2024). 
Although the mechanism of action of corramycins 
has not been elucidated yet, it can be assumed that 
it inhibits bacterial growth by a novel molecular target, 
as it shows no cross-resistance with known antibiotic 
classes (Couturier et  al.,  2022; Renard et  al.,  2023). 
Moreover, corramycins have shown their in vivo effi-
cacy in a range of rodent infection models (Couturier 
et al., 2022; Renard et al., 2023).

F I G U R E  3   Chemical structures of corallopyronin A, cystobactamid 861–2, corramycin, isopedopeptin B, odilorhabdin and darobactin 
D22.
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Resistance-based isolation approach

Antibiotic producing bacteria obviously require self-
resistance mechanisms to protect themselves against 
the toxicity of the natural product they produced to af-
fect their opponent.

To exploit self-resistance mechanisms, Thaker et al. 
successfully developed the resistance-guided cultiva-
tion approach selecting for glycolipopetide-resistant 
actinomycetes to screen for the production of new gly-
colipopeptides (Thaker et  al.,  2013, 2014). Bjerketorp 
et  al. adapted and extended this approach on the 
screening of soil isolates selecting for environmen-
tal multi drug resistance (MDR) bacteria (Bjerketorp 
et al., 2021). Therefore, the combination of several an-
tibiotics from different chemical classes was used to 
screen for natural product producers with multiple self-
resistance mechanisms and thus the capacity to pro-
duce several antibacterial compounds. Furthermore, it 
enabled the isolation of low-abundant underexplored 
natural product producers present in soil-samples 
(Bjerketorp et al., 2021), which would have proven diffi-
cult without the selection bias.

This approach led to the isolation of several MDR 
Pedobacter spp., which are Gram-negative bacteria 
belonging to the phylum Bacteroidota and the family 
Sphingobacteriaceae (Bjerketorp et  al.,  2021). Nord 
et al. discovered the lipodepsipeptide isopedopeptin 
scaffold, which shows low micro-molar activity against 
WHO top priority pathogens including colistin resis-
tant strains (Nord et al., 2020). Membrane disruption 
is proposed as one mode of action (MoA) of isopedo-
peptins, which is corroborated by the structural sim-
ilarity to bacterial lipopolysaccharide (LPS)-binding 
pedopeptins (Hirota-Takahata et  al.,  2014; Kozuma 
et al., 2014). However, the discrepancy with the MIC 
suggests additional MoAs. Currently, isopedopeptin 
B (ULT3, Figure  3) is in CTA/IND studies showing 
good anti-Gram-negative activity and acceptable cy-
totoxicity. Although it is expected to discover similar 
antibiotics compared to the ones the isolates are re-
sistant to, the extended resistance-based approach 
facilitated the isolation of underrepresented natural 
products producers, thereby the discovery of novel 
antibacterial compounds.

Endosymbiont 
approach-Xenorhabdus and Photorhabdus 
as a promising source of new 
anti-Gram-negatives

In addition to bacterial species that have long been 
studied for the discovery of novel antibiotics, such as 
Actinomyces or Myxococcota (Müller & Wink,  2014), 
entomopathogenic bacteria have become a focus of re-
search interest due to their complex lifestyle (Chaston 

et  al.,  2011), which is mainly feasible due to the pro-
duction of bioactive secondary metabolites that have 
a positive influence on persistence in the host (Cimen 
et al., 2022; Shi et al., 2022). In particular, studies have 
shown that the γ-proteobacteria Xenorhabdus and 
Photorhabdus spp., that live in mutualistic symbiosis with 
nematodes, provide antibiotic candidates with promis-
ing anti-Gram-negative activity against difficult-to-treat 
pathogens (Chaston et al., 2011; Walesch et al., 2022). 
Xenorhabdus spp. primarily infect nematodes of the 
genus Steinema, whereas Photorhabdus spp. mainly 
infect Heterorhabditis spp. (Clarke, 2008; Forst, 2002; 
Poinar,  1966; Poinar & Thomas,  1967; Waterfield 
et  al.,  2001). Although they use functionally different 
approaches, both infect the intestinal tract of their host 
and are able to overcome or suppress the immune sys-
tem of their hosts (Chaston et al., 2011; Clarke, 2008), 
or kill it by producing insecticides (Proschak et al., 2014; 
Sergeant et al., 2006). Furthermore, both are producing 
many antimicrobial compounds to prevent the growth of 
antagonistic microorganisms allowing the persistence 
in the intestinal tract of their nematodic host (Blackburn 
et al., 2016; Hu et al., 2006; Muangpat et al., 2017, 2020; 
Sajnaga & Kazimierczak,  2020; Wenski et  al.,  2020; 
Zhou et al., 2013). Recently, two promising novel an-
tibacterial classes were discovered from these two 
endopathogenic bacteria: the odilorhabdins (Racine & 
Gualtieri, 2019) and the daropeptides (Ma et al., 2024), 
consisting of darobactins and dynobactin (Figure  3). 
Both classes exhibit strong anti-Gram-negative activ-
ity against, e.g., Escherichia coli, Pseudomonas aer-
uginosa, Klebsiella pneumoniae and Acinetobacter 
baumannii strains including clinical isolates (Chaston 
et al.,  2011; Imai et  al.,  2019; Ma et al.,  2024; Pantel 
et al., 2018).

Odilorhabdins

The discovery and development of odilorhabdins was 
largely driven by the start-up Nosopharm (Racine 
& Gualtieri,  2019). In a comprehensive screening of 
various Xenorhabdus strains, the first odilorhabdins 
(Pantel et  al.,  2018) were isolated from X. nemat-
ophila using a traditional bioactivity-guided approach, 
subsequently identifying the chemical structure and 
mode of action. Odilorhabdins represent a new class 
of broad-spectrum antibiotics. These compounds tar-
get the 30S ribosomal subunit of Gram-negative and 
Gram-positive bacteria on a binding site not exploited 
by currently marketed antibiotics, thus they have a re-
duced risk of cross-resistances (Pantel et  al.,  2018). 
Additionally, they conducted extensive derivatisation 
using chemical total synthesis to enhance antibacterial 
activity, particularly against E. coli and K. pneumoniae 
strains (Sarciaux et al., 2018). This led to the develop-
ment of a frontrunner molecule, NOSO-502 (Racine 
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et  al.,  2018; Sarciaux et  al.,  2018), which is suppos-
edly nearing clinical phase I studies for the treatment 
of critical urinary tract infections (UTIs) (Lanois-Nouri 
et  al.,  2022; Präve et  al.,  2024; Racine et  al.,  2018; 
Racine & Gualtieri, 2019).

Darobactins

The first native darobactins were discovered after 
the bioactivity screening of Photorhabdus extracts 
(Imai et  al.,  2019). The bioactivity-guided approach 
resulted in the isolation of darobactin A (DA) from 
P. khanii, a novel anti-Gram-negative agent that is 
a ribosomally synthesised and post-translationally 
modified peptide (RiPP). Darobactins target the outer 
membrane protein BamA, part of the BamABCDE 
complex, preventing the incorporation and proper 
folding of outer membrane proteins into the cell mem-
brane, thereby selectively killing Gram-negative bac-
teria (Haysom et  al.,  2023; Imai et  al.,  2019; Kaur 
et al., 2021). Through binding on BamA, a novel anti-
bacterial target, darobactins have a strongly reduced 
risk of cross-resistance with currently used antibiotic 
classes.

Ongoing studies have focused on the heterologous 
production and total synthesis of native and artificial 
derivatives of darobactin A in E. coli by engineering 
the biosynthetic gene cluster (BGC) to produce opti-
mised darobactin derivatives with modifications in the 
core peptide (Böhringer et al., 2021; Groß et al., 2021; 
Lin et al., 2022; Nesic et al., 2022; Seyfert et al., 2022; 
Wuisan et al., 2021). This has resulted in derivatives 
such as D22 (Figure 3) and D69, which exhibit up to 
128-fold enhanced in vitro anti-Gram-negative activ-
ity against pathogens classified as critical prioritised 
by the WHO, such as carbapenem-resistant A. bau-
mannii (CRAB), comparable to last-resort antibiotics 
like colistin (Seyfert et al., 2022; Seyfert et al., 2023; 
World Health Organisation, 2018). Despite these ad-
vancements, both the total synthesis routes and the 
biotechnological production in alternative produc-
tion hosts currently suffer from relatively low yields 
(Seyfert et  al.,  2023), which must be addressed to 
bring these highly promising agents into clinical 
development.

Outlook

The approaches described here, the predator ap-
proach, the resistance approach and the endosymbiont 
approach, led to promising anti-Gram-negative agents 
produced by Gram-negative bacteria. Exemplary 
compounds such as cystobactamids, corramycins, 
corallopyoronin A, isopedopeptins, darobactins and 
odilorhabdins and their bioengineered or synthetic 

derivatives, respectively, are currently in development 
to prove their in vivo efficiency or have done so al-
ready (Couturier et al., 2022; Ehrens et al., 2022; Nord 
et al., 2020; Racine et al., 2018; Renard et al., 2023; 
Schiefer et  al.,  2020; Seyfert et  al.,  2023; Seyfert 
et al., 2023; Testolin et al., 2020). Those compounds, 
as well as other natural products in general, could be 
further optimised and their underlying biosynthesis 
investigated in more detail to allow for synthetic biol-
ogy and evolution-inspired bioengineering techniques 
(Bozhüyük et al., 2024; Präve et al., 2024). Moreover, 
novel bioinformatically guided tools could allow for the 
modification of the chemical structure, to, e.g., enhance 
target binding or alter the pharmaceutical properties 
(Ndagi et al., 2020; Wang et al., 2022). The discovery 
approaches described here, which aimed at identifying 
compounds with new target sites, unknown chemistry 
and exhibiting no cross-resistances with marketed an-
tibiotics, emphasise their potential for the development 
of novel molecules against Gram-negative bacteria. 
Further approaches such as high-throughput elicitor 
screening and the well-established OSMAC approach 
enable the identification of additional antibacterial mole-
cules. Those approaches can be used to investigate al-
ready cultivated but also uncultivated bacterial species, 
living in mostly underexplored habitats to discover novel 
chemistry to fight the AMR crisis (Bader et al.,  2021; 
Claesen et  al.,  2020; Crits-Christoph et  al.,  2018; 
Donia et al., 2014; Gavriilidou et al., 2022; Hegemann 
et al., 2023; Locey & Lennon, 2016; Nett et al., 2009; 
Nichols et  al.,  2010). As highlighted in Figure 2, e.g., 
Pseudomonas, Burkholderia, Cyanobacteria and 
Firmicutes species are further examples of under-
explored yet promising natural products producers, 
which harbour the potential for the discovery of future 
antibiotic agents (Hegemann et al., 2023; van Santen 
et al., 2022; Walesch et al., 2022; Wright, 2017).
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