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Supplemental figures
Figure S1. Gene-specific analyses, related to STAR Methods (A) Upset plot showing number of significant analytes shared between 
different mutation carriers, as identified by pseudo-trajectory analysis at p < 0.05 threshold. Scatterplot showing correlation of slope 
difference and EYO between joint analysis and APP carriers (B and C); between joint analysis and PSEN1 carriers (D and E); between 
joint analysis and PSEN2 carriers (F and G).
Figure S2. The significant findings of trajectory and ADAD mutation status analyses from MCs vs. NCs in plasma, related to 
STAR Methods (A and B) Volcano plots displaying the estimate change (x axis) against −log10 statistical differences (y axis) for all 
tested proteins. The red dots show the upregulated significant proteins, and the blue dots show the downregulated significant proteins 
at FDR-corrected threshold. (A) The significant trajectory proteins from MCs and NCs; (B) the significant proteins from ADAD 
mutation status analysis. (C–F) (C) CPLX2 and STX1A showed the significant trajectory in plasma; (D) identify the overlapped 
significant proteins between CSF and plasma trajectory and ADAD mutation status analysis. The UpSet intersection diagram shows 
the overlapped proteins in the analysis. (E) The effect size correlations of significant trajectory proteins between CSF and plasma. (F) 
The effect size correlations of significant proteins between CSF and plasma ADAD mutation analysis.
Figure S3. Effect size comparison between the proteins identified in brain and CSF, related to STAR Methods (A) The effect size 
of the proteins associated with ADAD in brain was compared with the effect size of those in CSF. (B) The effect size of the proteins 
with significant trajectory in ADAD CSF was compared with the effect size of those in brain.
Figure S4. Pathway enrichment analysis for significant trajectory proteins in CSF, related to Figure 4 (A) Top 20 significantly 
enriched diseases in DisGeNET enrichment analysis; (B) network map of the top 20 significantly enriched diseases; (C) top 20 
significant pathways in Reactome pathway analysis for the significant proteins in trajectory analysis; pathways ordered based on gene 
ratio; (D) the top 20 significantly enriched Reactome pathways and their associated genes presented as network.
Figure S5. Co-expression network analyses in the full dataset, related to main Figure 4 (A) WGCNA analysis with 6,163 
aptamers identified 18 modules. (B) M1 (cyan) module (2,402 analytes; 2,182 proteins), which contained 137 out of 145 analytes 
with significant trajectory difference between MCs and NCs, showed separation from the remaining 17 modules. (C) Pathways 
with M1 module spanned pathways that occur before Aβ42 changes (integrin cell surface interactions) and pathways right after the 
onset (chaperon-mediated autophagy). They included proteins including calcineurin (PPP3CA/PPP3R1), and 14–3-3 family proteins 
(YWHAG) are shown.
Figure S6. PPI network analysis for each module, related to STAR Methods (A) PPI network for M1 in GO cellular component. 
(B) PPI network for M2 in STRING network clusters. (C) PPI network for M3 in biological process.
Figure S7. Protein correlations between SomaLogic and orthogonal platforms, related to STAR Methods (A) Olink predictive 
models. AUC analyses were performed using Olink HT1 data, including the proteins identified using SomaLogic proteomic data. 
ROC and forest plot for the multi-proteins and single protein for (upper) mutation status and (lower) symptomatic vs. presymptomatic 
models. AUC and 95% CI for the SomaLogic model are also included as reference. (B) Alamar predictive models. AUC analyses were 
performed using the Alamar CNS panel data, including the proteins identified using SomaLogic proteomic data. ROC and forest plot 
for the multi-proteins and single protein for (upper) mutation status and (lower) symptomatic vs. presymptomatic models. AUC and 
95% CI for the SomaLogic model are also included as reference.
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SUMMARY

In this high-throughput proteomic study of autosomal dominant Alzheimer’s disease (ADAD), 

we sought to identify early biomarkers in cerebrospinal fluid (CSF) for disease monitoring and 

treatment strategies. We examined CSF proteins in 286 mutation carriers (MCs) and 177 non-

carriers (NCs). The developed multi-layer regression model distinguished proteins with different 

pseudo-trajectories between these groups. We validated our findings with independent ADAD as 

well as sporadic AD datasets and employed machine learning to develop and validate predictive 

models. Our study identified 137 proteins with distinct trajectories between MCs and NCs, 

including eight that changed before traditional AD biomarkers. These proteins are grouped into 

three stages: early stage (stress response, glutamate metabolism, neuron mitochondrial damage), 

middle stage (neuronal death, apoptosis), and late presymptomatic stage (microglial changes, 

cell communication). The predictive model revealed a six-protein subset that more effectively 

differentiated MCs from NCs, compared with conventional biomarkers.

Graphical abstract
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In brief

Examination of CSF proteins in mutation carriers and non-carriers for autosomal dominant 

Alzheimer’s disease uncovers early proteomic changes and generates a robust ADAD prediction 

model. The findings highlight the similarities and differences between ADAD and sporadic 

Alzheimer’s disease, which can lead to personalized medicine for mutation carriers in ADAD 

genes.

INTRODUCTION

Autosomal dominant Alzheimer’s disease (ADAD) accounts for approximately 1% of all 

AD cases.1 ADAD is characterized by the presence of autosomal dominant mutations in the 

amyloid precursor protein (APP), presenilin-1 (PSEN1), or presenilin-2 (PSEN2) genes.1,2 

This rare form of AD has been instrumental in elucidating critical pathological mechanisms 

and the temporal progression of brain changes associated with AD.3 Thus, a comprehensive 

study of the cerebrospinal fluid (CSF) proteome changes in this form of the disease can 

help advance our understanding of its pathophysiology and contribute to the identification of 

previously unreported biomarkers and potential therapeutic strategies.

The Dominantly Inherited Alzheimer Network (DIAN) observational study is a worldwide 

effort to study individuals with ADAD mutations. It involves longitudinal assessments 

including imaging, cognitive evaluations, and fluid collection (CSF and plasma).4 

Traditional CSF AD biomarkers, such as β-amyloid 42 (Aβ42), total Tau (Tau), and 

phosphorylated tau181 (pTau), have demonstrated their analytical validity in ADAD as 
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well as sporadic Alzheimer’s disease (sAD).5 CSF biomarkers change earlier in the 

disease course than amyloid or Tau in positron emission tomography (PET) imaging6 with 

the added benefits of being more cost-effective, faster, and easily applicable in clinical 

settings.7 Although proteome-based biomarkers in the plasma for ADAD and sAD are being 

identified, CSF, which is in direct contact with the brain, is relatively unaffected by proteins 

from other organs and is ideal for detection of brain-related changes.8

ADAD exhibits several similarities to sAD, including phenotype, clinical progression, and 

neuropathology.1,9,10 However, it is essential to note that the etiology and onset mechanisms 

of these two AD forms follow distinct patterns.11 Particularly in ADAD, mutation carriers 

(MCs) from the same family generally exhibit a similar age at symptom onset (AAO), 

and therefore, it is possible to calculate the “estimated year of onset (EYO)” for each 

family member by extrapolating from the known AAO in individuals who share the same 

mutation.12 For this, EYOs are determined by subtracting the age at study assessment minus 

the mean mutation AAO associated with their specific mutation.12 A recent CSF proteomic 

study in 14 carriers of ADAD mutations reported 56 proteins associated with mutation 

status.13 In another study that included 22 MC and 20 non-carrier (NC) individuals, 66 CSF 

proteins associated with ADAD were identified, some of which were also dysregulated in 

sAD.14 However, the predictive value of those proteins was not explored. In another recent 

study, researchers analyzed 59 CSF proteins, selected based on prior brain studies, in 286 

MCs and 184 NCs samples of which 33 were associated significantly with ADAD after 

correcting for EYO.15

There has been a significant increase in the volume of AD proteomic research. Proteomic 

studies have been conducted on a small scale but have been able to capture some actual 

biological substrates and go beyond the traditional neuropathological features like amyloid 

plaques, neurofibrillary tangle, and cerebral amyloid angiopathy,16–22 leading to a better 

biological understanding of the disease as well as revealing potential new therapeutic targets. 

When evaluating individual studies, including the previously published ADAD studies, 

they shared some common limitations such as limited sample size and a small number 

of investigated proteins. Previous studies were focused on identifying proteins associated 

with mutation status, not disease onset. Although some were corrected by the EYO,15 

EYO information has neither been fully leveraged to identify proteins that show different 

trajectories between MCs and NCs nor to determine the time in which protein changes occur 

in relation to the clinical onset. Overall, these limitations highlight the need for a large-scale 

and high-throughput study to identify early proteomic changes in the ADAD.

RESULTS

Study design

The primary goal of this study is to identify proteins that present early changes in ADAD 

MCs, compared with NCs, in CSF and plasma. We aimed to identify the earliest biomarkers 

of ADAD, with the potential to provide valuable insights into the presymptomatic phases of 

ADAD and to enable early intervention strategies. To do this, we used a unique approach 

that leverages the estimated AAO to assess pseudo-trajectories (using cross-sectional data 

to simulate longitudinal data) and identified proteins with significant differences between 
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MCs and NCs. We subsequently determined the time when those pseudo-trajectories become 

divergent in relation to the EYO.

We generated and leveraged large-scale proteomics from CSF (6,163 proteins) and plasma 

(6,022 proteins) (Figure 1) from samples with and without autosomal dominant AD 

mutations from the DIAN study (Table 1). MCs include symptomatic and presymptomatic 

DIAN participants with pathogenic variants in one of three ADAD genes (APP, PSEN1, 

or PSEN2).23 Presymptomatic participants are cognitively normal MCs. The matched NCs 

were sourced from the families of the MCs. Participants in this control group share similar 

genetics backgrounds and environmental influences, further enhancing the power of our 

study to detect reliable proteomic alterations.

To identify robust proteins associated with ADAD, we divided the samples into discovery 

and replication datasets through random sampling, while maintaining the proportion of 

MCs (Table S1). In the discovery stage, we identified the proteins associated with pseudo-

trajectories after false discovery rate (FDR) correction. The significant proteins were 

then tested in the replication dataset (Figure 2A). Of these proteins tested, only those 

that passed FDR in replication were considered as study-wide significant. Subsequently, 

we pinpointed when these significant protein changes start, providing invaluable insights 

into the disease progression. We then conducted analysis based on mutation status as a 

phenotype, comparing MCs and NCs to further validate these findings (Figure 2B).

We applied network and pathway enrichment analyses to create clusters of proteins that 

share functional relationships. Pathway enrichment analysis for these groups of proteins 

was applied to identify specific biological pathways dysregulated in ADAD. We utilized the 

same analytical pipeline in plasma to determine whether plasma could provide information 

consistent with that obtained from CSF. We investigated whether the proteins associated 

with ADAD were also linked to late-onset sAD. Finally, we leveraged those dysregulated 

proteins to create Aβ- and pTau-independent predictive models. We applied a machine 

learning approach to identify the most relevant proteins that could serve as promising 

biomarkers for ADAD. The overarching goal was to pinpoint potential biomarkers that could 

aid in monitoring disease progression, assessing treatment effectiveness, and designing 

well-informed therapeutic strategies.

Significantly different pseudo-trajectory protein identification in CSF samples

We analyzed 6,163 unique proteins (7,008 SomaLogic aptamers), which passed quality 

control (QC), from 286 MCs and 177 NCs. In the discovery stage (143 MCs and 88 NCs), 

we identified 247 proteins (259 aptamers) that exhibited significantly different pseudo-

trajectories between MCs vs. NCs (Figure 2A; Table S1). In the replication stage, only those 

247 proteins (259 aptamers) were tested and 137 proteins (145 protein aptamers) replicated 

at FDR < 0.05 and in the same direction of effects between discovery and replication (Figure 

2A; Table S1). Aβ, pTau, and Tau were included for comparison as they are known and 

well-validated AD biomarkers (Figure 2C).24,25

The top 30 hits included proteins reported to be associated with AD, such as neurofilament 

(NEFH, NEFL),2,14,26 calcineurin complex (PPP3CA, PPP3R1),27 and 14–3-3 proteins (14–
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3-3 beta, gamma, zeta).11,13 Other proteins significant in our analyses were not reported 

in previous studies and included those for extracellular matrix binding (SMOC2, SLIT2), 

negative regulation of the protein metabolic process (PEBP1, GPI, PTPA, CRKL, PIN1), 

cytoskeletal protein binding (PDLIM4, PDCD5, STMN2, TMOD3, or MAPRE3), cytosol 

function (CHN1, DLG2),28 and for protein binding (TCEAL5, GARS1).28,29 There was 

only one protein that displayed downregulation in ADAD MCs: NPTX2 (p = 1.34 × 

10−6). Other reported AD markers, such as TREM2 or YKL-40, did not pass multiple 

test correction (Figure 3). Additional analyses were done for the 137 identified proteins 

stratifying the individuals by the gene in which the mutation is located (i.e., individuals with 

mutation in PSEN1 only and PSEN2 only) (Figure S1). All the proteins that were found 

significant in the main analyses were also found to be significant in PSEN1 carriers. Despite 

only being 51 APP carriers, 85 of the 148 analytes were also significant in this group. In 

PSEN2 carriers, 11 total analytes were nominally significant, of which 6 were common in 

all three types of MCs. The correlation of effect sizes between these mutations’ specific 

analyses was very high when compared with our main analysis with very similar EYO 

estimation (Figure S1).

To determine the reliability of our pseudo-trajectory analysis, we conducted further analysis 

based on mutation status as a phenotype, comparing MCs and NCs (Figure 2B; Table 

S2). We identified 227 proteins (240 aptamers) associated with mutation status (Figure 

3B). Among the 227 significant proteins, 14 proteins were downregulated in MCs and the 

remaining 239 proteins were upregulated. We found that all, but 16, proteins associated with 

the pseudo-trajectory (n = 137) were also significant in this analysis (Figure 3B). The top 

upregulated proteins associated with mutation status included chitotriosidase (CHIT1) (p = 

7.97 × 10−17), NEFL (p = 2.66 × 10−18), YWHAG (p = 2.72 × 10−26), ITGA1/ITGB1 (p = 

1.18 × 10−13), and PPP3CA/PPP3R1 (p = 1.10 × 10−26). Downregulated proteins included 

NPTX2 (p = 1.61 × 10−7), EPHA4 (p = 5.22 × 10−6), or RELT (p = 2.27 × 10−6) (Table S2). 

We found strong correlation between the effect sizes from these two analyses (R2 = 0.77, 

p = <1.00 × 10−300) (Figure 3C), indicating that both methods captured the same overall 

findings, even though mutation status analysis seems to provide more statistical power, as 

105 additional proteins were found in this analysis (Figure 3B).

We then compared our results with two other recent ADAD proteomic studies,14,15 to 

replicate our findings, and determined potential previously unreported findings. Johnson et 

al.15 employed a mass spectrometry (MS) approach to measure 59 proteins in 286 MCs and 

184 NCs from DIAN.15 As this study analyzed the same cohort, this represents a technical 

replication (Figure 3D; Table S3). Among the proteins identified in this study, 12 were 

present in Johnson et al., and all of them were also associated in this study (hypergeometric 

p = 2.15 × 10−14; fold enrichment: 20.76). Van de Ende et al.14 used Olink-based proteomics 

to measure 808 proteins in 22 MCs and 20 age- and sex-matched controls. This cohort is 

independent from the samples included in this study, representing an external replication. Of 

the 19 significant proteins that were present on the Olink panel, 16 of which passed FDR, 

two showed nominally significant associations (GFAP and SFRP1; hypergeometric p = 3.24 

× 10−13; fold change: 32.13; Figure 3E; Table S3). When we integrated the data from both 

studies, out of the 137 pseudo-trajectory proteins, 26 unique proteins were present in at least 

one of these studies, and all of them exhibit nominal associations in one of these studies 
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and consistent direction of association (Table S3), supporting the robustness of our findings. 

Similar results were found when comparing the 227 associated with mutation status (Figures 

3F and 3G).

Comparison of significantly altered proteins in ADAD and sAD

We then determined if the proteins associated with ADAD mutation status exhibit an 

association with sAD. This analysis aimed to provide additional validation for the proteins 

we initially identified in ADAD and to identify potential differences and commonalities with 

sAD. To investigate this, we generated and analyzed proteomic data from the CSF samples 

from 1,763 individuals diagnosed with sAD (A+T+: 848, A−T−: 915) from multiple cohorts 

(Table S4). Among the identified 137 significant pseudo-trajectory proteins, all of them were 

also significant after Bonferroni correction in sAD with consistent direction of effect.

When looking at the 227 proteins associated with mutation status in DIAN, we found a very 

high correlation in the effect sizes between sAD and ADAD mutation status analyses (R2 

= 0.74, p = 4.94 × 10−73; Figure 3H). There were seven proteins that were associated with 

sAD, also after multiple test correction, but in the opposite direction (Figure 3H; Table S4): 

DLK2, EPHA4, GAGE2A, TNFRSF21, HS6ST3, RELT, and LRP1. DLK2 is implicated in 

neurite outgrowth,30 synaptic plasticity,31 and neuroprotection32,33 and has been associated 

with anxiety and depression.34 EPHA4 has been reported to be involved in the progression 

of AD due to synaptic dysfunction and is enriched in neurons. GAGE2A has been widely 

studied in its immune system function in cancer, but its role in neurological disease remains 

unclear. However, the other two proteins have been shown to play a role in the blood-brain 

barrier (BBB). RELT, a member of the tumor necrosis factor (TNF) receptor superfamily, 

has been shown to contribute to the acquisition and development of barrier properties in 

the BBB. Both TNFRSF21 and RELT (a.k.a TNFRSF19) are downstream targets of the Wnt/

beta-catenin signaling pathway in BBB endothelial cells. When the TNFRSF21/TNFRSF19 

signaling is dysregulated, it can result in the breakdown of the BBB’s endothelial layer. It 

is worth noting that the Wnt/beta-catenin signaling pathway is essential for central nervous 

system (CNS) angiogenesis but not for the development of peripheral vasculature.35,36 

HS6ST3 and GAGE2A are both implicated in immune response and inflammation. EPHA4 

and LRP1 are involved in synaptic structure and intracellular trafficking.37 These findings 

highlight how the differential regulation of distinct proteins and alterations in endothelial 

cells, the BBB, inflammation, and the endolysosomal pathways result in different disease 

outcomes (ADAD and sAD).

To investigate which proteins showed a difference in strength in their association with sAD 

or ADAD, we identified proteins with effect sizes outside of the 95% confidence interval 

(CI) for the regression for all the 227 proteins associated with ADAD. There were five 

proteins (CHIT1, SMOC1, SMOC2, NEFL, and CAND1) that showed significantly higher 

effect size in ADAD, compared with that in sAD (Figure 3H; Table S4). The protein with 

the highest difference in ADAD was CHIT1 (p = 7.97 × 10−17, β = 0.29). CHIT1, a putative 

marker of microglial activation,38 has already been shown to be elevated in the CSF and 

peripheral blood of AD patients.39 Another protein with higher effect size in ADAD is 

CAND1 (p = 1.39 × 10−14, β = 0.09), which has been involved in modulating the ubiquitin-
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proteasome pathway (UPP).40 This pathway is pivotal in removing proteins, including the 

clearance of misfolded proteins, and plays a crucial role in controlling various cellular 

functions. CAND1 directly interacts with Cullins in their unneddylated form, regulating the 

assembly of Cullin-RING ligase (CRL) complexes. When Cullins are neddylated, CAND1 

dissociates, allowing Cullins to form active CRLs, which are essential for targeting specific 

substrates for ubiquitination. Two other proteins with higher effect size in ADAD are 

SMOC1 and NEFL, which have already been proposed as AD biomarkers in previous 

studies.14,41,42 The only protein that exhibited a significantly lower effect size in ADAD was 

NPTX2, which is downregulated in both ADAD and sAD. NPTX2, known as a glutamate 

receptor, found in established synapses, has been implicated in non-apoptotic cell death of 

dopaminergic nerve cells (Figure 3H).43

In summary, this analysis revealed a significant degree of overlap between ADAD and sAD, 

while also validating the MC proteomic analyses in sAD, and highlighted several proteins 

and potential mechanisms that are different between sAD and ADAD.

Earliest CSF proteomic changes

Owing to the study design, which leverages mutation status and EYO, we estimated when 

proteins levels start changing in MCs, compared with NCs, in relationship to the EYO. 

We found that of the 137 identified proteins, 124 began to change before the EYO, with 

approximately 93% of these changes occurring within the range of −20 to −3 years (Figure 

2C). PPIL1 was the only protein displaying changes one year after the estimated onset 

(change +1.9 years in relationship to EYO; Table S1). Established biomarkers changed 

between 11 and 17 years before onset: pTau (−17 years), Tau (−12 years), and Aβ42 (−11 

years). Among the 137 proteins significant in the pseudo-trajectory analyses, 12 initiated 

changes earlier than established biomarkers, such as SMOC1 (−31 years), followed by 

DNAJB9 (−26 years) and SMOC2 (−20 years) (Figure 2A). Several proteins began to 

change around −18 years (SLIT2 and SPON1) and −17 years (PRDX3, GAGE2D, PDLIM4, 

PPP3CA, PPP3R1, and DLG2). Compared with the 33 significant proteins associated with 

EYO in Johnson et al.,15 we identified 116 additional proteins with significant trajectory 

changes.

Plasma-specific analyses find low overlap with CSF

We applied an identical model to perform pseudo-trajectory and mutation status analyses 

between 325 MCs and 213 NCs from ADAD plasma samples. In the pseudo-trajectory 

analysis, out of 6,022 proteins, three proteins were significant after FDR correction (FDR 

p < 0.05; Figure S2A; Table S5). Complexin-2 (CPLX2, p = 0.049) and syntaxin-1A 

(STX1A, p = 0.049) were upregulated, while vesicle amine transport 1 (VAT1, p = 0.049) 

was downregulated in MCs. In examining the time to symptom onset, CPLX2’s pseudo-

trajectory began changing approximately seven years before symptom onset, whereas 

alterations in STX1A’s started around four years before symptom onset (Figure S2B).

In the MCs vs. NCs analyses, nine proteins were associated with mutation status after FDR 

(Figure S2C; Table S5), including CPLX2 and STX1A. Additional proteins identified in this 

analysis include MAD1L1, SMOC1, PPP4R3A, CPLX1, and CAST that were upregulated, 
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while two proteins (SSBP1 and VOPP1) were downregulated. SMOC1 was the only protein 

identified in both plasma and CSF specimens (Figure S2D). Overall, we identified a limited 

number of significant proteins associated with ADAD in plasma, compared with CSF 

(Figures S2E and S2F).

CSF-brain comparison identified complex protein dynamics across tissues

Next, we analyzed the overlap in the proteins associated with ADAD in brain and CSF. To 

do this, we leveraged data from a recent study that included proteomic data (SomaLogic 

1.3K) from 24 ADAD carriers and 25 control parietal brain samples and identified 92 

associated with ADAD.11 A total of 89, of those 92 proteins, passed QC in this study, 

and 14 were nominally associated in CSF (fold enrichment: 6.3; p = 4.88 × 10−8). Out 

of the 137 proteins showing significant trajectory in CSF, 20 proteins, all with positive 

direction in CSF, were also present in the brain dataset. Among these 20 proteins, 11 

proteins showed a nominal association with ADAD (p < 0.05; Figure S3; Table S6). 

Five proteins (SMOC1, osteopontin, 14–3-3E, SUMO3, and UFC114–3-3E) were also 

elevated in ADAD individuals (compared with healthy controls). The remaining six proteins 

(CAMK2B, EPHA3, 14–3-3 protein zeta/delta, IF4G2, PHI, and 14–3-3 protein gamma) had 

the opposite direction in brain, showing a lower abundance in ADAD individuals (compared 

with controls). This could represent complex proteomic dynamics across tissues, as in the 

case of Aβ, or a false positive in the brain studies driven by the limited sample size in this 

tissue.

CSF-dysregulated proteins capture pathways implicated in neuronal death and 
inflammation

We analyzed if the proteins identified in our analyses were reported to be implicated in 

other diseases by performing gene-disease network enrichment analysis. Of these 45 disease 

terms, 16 belong to neurodegenerative disease traits, including “familial Alzheimer disease 

(FAD),” which was one of the top hits (FDR p = 3.29 × 10−4; Figure S4A; Table S7); 

“Creutzfeldt-Jakob disease” (FDR p =5 × 10−5); “frontotemporal dementia” (FDR p = 9.65 

× 10−4); and “senile plaques” (FDR p = 7.20 × 10−4). The association with these disease 

terms are led by a common core of proteins known to be implicated in neurodegeneration in 

general (SPP1, GFAP, NRGN, NEFL, ACHE, YWHAZ, or PIN1; Table S7). Some of these 

proteins are also key connectors in various cellular functions such as postsynaptic signaling 

(NRGN, NEFL, GAP43, PIN1), neuron projection (STMN2, ENO1, GPI), and cell junction 

(PPIA, YWHAZ, ACHE),28 suggesting that they may be common contributors across these 

diseases (Figure S4B). In addition, 18 of the 45 diseases belong to cancer or immune-related 

traits, including several disease terms for neuroblastomas, carcinomas, fibrosarcomas, or 

gliomas. The association with these diseases is led by known proteins implicated in immune 

response and inflammation or expressed in glial cells: ITGB1, SPP1, TNFRSF1B, or GFAP.

We also conducted pathway enrichment analyses of these 137 proteins to gain insights 

into the biological functions and the biological processes leading to disease. There were 

60 significantly enriched pathways belonging to 13 major categories (Table S7). Major 

overrepresented pathway categories were “signal transduction” (17 pathways), followed 

by “neuronal system” (15 path-ways) and “disease” (7 pathways) (Figure S4C). Signal 

Shen et al. Page 10

Cell. Author manuscript; available in PMC 2024 November 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transduction (FDR p = 7.80 × 10−4, logFC (log fold change)= 1.96) included 13 proteins: 

cholinergic synapse proteins (ACHE, CAMK2B, PLCB1, and PRKCG), glutamatergic 

synapse proteins (GLUL and HOMER1), signaling proteins (DLG2 and DLG4), cell 

communication proteins (LIN7A, LIN7B, and NRGN), proteins implicated in anatomical 

structure development (PDLIM5), and known AD biomarkers (NEFL).44 Specific pathways 

within the “neuronal system” category includes several pathways related to NMDA receptors 

(NMDARs) (Table S7), and includes NEFL, DLG4, DLG2, and CAMK2B. Another 

significant pathway was “activation of BAD and translocation to mitochondria” (FDR p 
= 2.63 × 10−9) and belongs to the super-pathway “programmed cell death” (FDR p = 2.08 × 

10−5, logFC = 3.69; Figure S4D). This super-pathway is connected with “autophagy” (FDR 

p = 1.78 × 10−2, logFC = 2.28; Figure S4D; Table S7) through the 14–3-3 proteins (14–3-3 

beta, epsilon, gamma, zeta), which are likely capturing early neuronal death and autophagy 

events in ADAD.

Co-expression network analysis identified modules that capture the chronological 
progression in ADAD

Our analyses suggest that there are many pathways dysregulated in ADAD (Table S7; 

Figure S4). To determine if specific pathways are dysregulated at different disease stages, 

we performed weighted gene co-expression network analyses (WGCNA) and then pathway 

analyses in each module. We first performed WGCNA in the 6,163 proteins/7,005 aptamers 

that passed QC, identifying 18 modules that collectively included a total of 4,909 proteins 

(Figure S5). The remaining 2,096 proteins were not assigned into any of the 18 modules 

and therefore grouped into the M0 (gray) module. The M1 (cyan) module contained 129 

(137 aptamers) out of the 137 (145 aptamers) proteins associated with different pseudo-

directories in the MCs. Pathway analysis within M1 module revealed multiple pathways 

that are dysregulated at different stages of the disease onset. They covered cellular response 

to stimuli (in very early stages), metabolism and immune pathways (in the middle stages), 

and autophagy (near or right after the onset) (Table S8). In particular, programmed cell 

death (activation of BAD and translocation to mitochondria, FDR = 1.38 × 10−5) included 

calcineurin (PPP3CA/PPP3R1, EYO = −16.04; PPP3R1, EYO = −12.67) along with 14–

3-3 family proteins (YWHAG, EYO = −14.61; YWHAB, EYO = −13.86; YWHAE, EYO 

= −12.91; YWHAZ, EYO = −11.81) that had changes in early stages (Table S8). Other 

pathways involved similarly in early stages included FOXO-mediated transcription (FDR 

= 9.95 × 10−3; median EYO = −11.17) that regulates cell survival, growth, differentiation, 

and metabolism in response to environmental changes such as growth factor deprivation, 

starvation, and oxidative stress. Several pathways, such as innate immune system and 

cytokine signaling pathways (median EYO = −9.95), dysregulation of signal transduction 

(median EYO = −9.87), negative regulation of MET activity (EYO = −7.27), and signaling 

by EGFR and netrin-1 signaling (median EYO = −6.94) were observed and included 

proteins that changed roughly between 11 and 6 years before symptom onset (subsequently 

after Aβ42 changes). Finally, multiple signaling transduction pathways (regulation of FZD 

by ubiquitination, EYO = −5.78; nuclear signaling by ERBB4, median EYO = −5.03; FLT3 

signaling in disease, EYO = −3.85) along with hemostasis pathways (median EYO = −3.85) 

were observed near the onset of disease.
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As most of the associated proteins were included in the same co-expression network module 

(M1), we further performed additional clustering focusing only on those 137 identified 

proteins (145 aptamers). We identified four modules: MEgray (n = 6), MEchocolate (M1, n 
= 64), MEhotpink (M2, n = 17), and MEdeepskyblue (M3, n = 50) (Figures 4 and S5; Table 

S9). The MEgray module comprised proteins not clustered into the other three modules, 

and it was therefore not included for further analyses. We found that the nodes presented 

different mean EYOs, with M1 being enriched in proteins with the earliest changes (mean 

EYO: −11.14 ± 4.78 years), followed by M2 (mean EYO: −11.07 ± 2.7 years) and M3 

(mean EYO: −8.32 ± 3.80 years) (Table S9). The difference between the mean EYO for 

M1 and M2 was not statistically significant; however, significant differences were observed 

when comparing the mean EYOs of M1 and M3 (p = 0.001) as well as those of M2 and M3 

(p = 0.005).

The M1 module, which showed the earliest proteomic changes, was mainly enriched in 

astrocyte and oligodendrocyte proteins and depleted in neuronal proteins (Figure 4A; Table 

S8). Protein-protein interaction revealed enrichment in calcineurin complex (p = 2.41 × 

10−2, FC = 2.00), autophagosome membrane (p = 7.00 × 10−3, FC = 1.37), postsynaptic 

density (p = 1.34 × 10−2, FC = 0.59), and glutamatergic synapse (p = 1.34 × 10−2, FC 

= 0.80) pathways (Figure S6A; Table S10). Of the 64 proteins present in M1, 22 proteins 

displayed significant enrichment in 34 different pathways. These 24 pathways belong to 8 

super-pathways (the super-pathways are denoted as C1–C8; Table S10). The top pathway 

categories include NMDAR synapse signaling (C1: p = 1.23 × 10−2), calcineurin/NFAT 

pathway (C2: p = 1.53 × 10−2), protein localization (C3: p = 5.18 × 10−3), macroautophagy 

and mitophagy (C4: p = 1.82 × 10−2), cell cycle (C6: p = 1.71 × 10−2), and several 

immune-related pathways (p = 1.91 × 10−2) (Figures 4C–4D; Table S10). In these pathways, 

7 out of 24 proteins were present in tier 1 or tier 2 of the druggable genome database, such 

as proteins involved in the NFAT pathway (C1: ACHE, PRKCG, GLUL), calcineurin (C2: 

PPP3CA/PPP3R1), and signaling (SFRP1) (Table S9). The mitochondrial apoptosis pathway 

(C5) was driven by the 14–3-3 gamma (p = 6.04 × 10−8, EYO −14.65 years), 14–3-3 

eta (p = 7.00 × 10−5, EYO −10.65 years), and PPP3R1 (p = 4.19 × 10−18, EYO −16.03 

years), which were some of the proteins with the lowest EYO. The identified microtubule-

associated proteins (MAP1LC3A, MAP1LC3B) enriched in macroautophagy and mitophagy 

(C4; Figure 4C) and the neuronal proteins (Figure 4C; Table S10) suggest that early neuron 

pathology changes may involve microtubule dysfunctions. Several proteins in this module 

have been reported to be implicated in AD pathogenesis, such as ACHE, HOMER1,45 and 

calcineurin (PPP3R1/PPP3CA).27 Other proteins such as NRGN are known and validated 

AD biomarkers and part of this module.46 In summary, this module seems to capture very 

early neuronal dysfunction, due to the presence of ADAD mutations.

Proteins in M2 were found to be enriched mainly in neuronal cells and depleted of 

endothelial cells (Figure 4A), which included proteins that change trajectories after those in 

M1, suggesting the capture of later processes. Of the 17 proteins in M2, 10 were enriched in 

biological pathways (Tables S9 and S10). Pathway analyses revealed many processes related 

to apoptosis (C2: p = 9.27 × 10−11; Figure 4E; Table S10), death receptor signaling (C4: 

p = 7.83 × 10−3), and pathways related to signaling (C4) and very early immune response 

(C5: p = 7.96 × 10−11). Protein-protein interaction analysis revealed that 14–3-3 proteins 
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(beta, epsilon, eta, gamma, zeta) interact with CAMK2B and neurofilament proteins (NEFH, 

NEFL) within the postsynaptic intermediate filament cytoskeleton (Figure S6B). Unlike the 

other two modules, M2 is significantly marked by its involvement in inflammation signaling 

transduction pathways and early immune responses. The eight identified proteins (the five 

14–3-3 proteins, CAMK2B, NEFL, and PEA15) participated in complex biological pathway 

interaction (Figure 4E). The networks include mitogen-activated protein kinase (MAPK) 

family signaling cascades and signaling transduction pathways involving G protein-coupled 

receptors (GPCR), Hippo, Notch, neurotrophic tropomyosin receptor kinases (NTRKs), and 

Rho GTPases (C4: p = 6.38 × 10−7), as well as cell injury/death pathways, such as apoptosis 

(C2: p = 9.27 × 10−11), and Rap1 signaling (C12: p = 4.78 × 10−4). The M3 module, which 

is closer to symptom onset, was enriched in microglial cell types and linked to the pathways 

involving the innate immune system (C2: p = 1.31 × 10−2) and cell-cell communication (C3: 

p = 3.22 × 10−3). Proteins enriched in microglia, such as CAB39/CAB39L, CRK/CRKL, 

EIF4B, and SPP1, were found to interact within signaling pathways of mammalian target of 

rapamycin (mTOR), MET,47 NTRKs,48 and platelet-derived growth factor (PDGF),49 which 

are known to be involved in neurodegenerative disorders (Figures 4G and 4H). Additionally, 

ubiquitin proteins like UBE2N, UBE2V1, and UBE2V2, enriched in C2 (innate immune 

system), were found to interact with the integrin alpha1-beta1 complex (ITGA1, ITGB1), 

involving intermediates like PPIA and CRK. This complex further interacts with the MPP7-

DLG1-LIN7 complex (LIN7A, LIN7B) through DLG4 (Figure S6C). Pathways related to 

cell-cell communication (C3: p = 3.2 × 10−3), developmental biology (C5: p = 8.69 × 

10−3), and extra-cellular matrix organization (C7: p = 3.25 × 10−2) appeared to reflect an 

effort to regain functionality by rebuilding and establishing new connections to maintain 

communication. PARVA, part of the cell-cell communication pathway, which is involved 

in reorganizing the actin cytoskeleton and cell polarity, was identified for the first time in 

the context of ADAD.50,51 In summary, by performing network and subsequent pathway 

analyses, we were able to provide a better overview of the pathways that are disrupted in 

ADAD at different stages of the disease.

Predictive models of ADAD

Next, we determined if the proteins identified in this study could predict mutation status 

(MCs vs. NCs; independently of the clinical status). Using machine learning approaches, we 

identified the minimum number of proteins that maximizes predictive power. We applied 

50 iterations of random sampling to split the CSF DIAN cohort into unique training 

(60%) and testing (40%) datasets each time (Table S11). We then comprehensively selected 

highly informative proteins (see STAR Methods) to develop a proteomic signature of six 

proteins (GFAP, NPTX2, PEA15, SMOC1, SMOC2, and TNFRSF1B) that was able to 

predict mutation status (Table S11). The signature included previously identified CSF AD-

associated proteins, such as SMOC111,15 or NPTX2, among others.52 This model showed 

a strong predictive power for classifying ADAD mutation status, with an area under the 

curve (AUC) of 0.911 (Figure 5A; Table S11). The AUC of this proteomic signature 

was significantly better than those for pTau181 (AUC: 0.755), Aβ42 (AUC: 0.709), and 

pTau/Aβ42 (AUC: 0.783) (Table S11). The negative predictive value (NPV) and positive 

predictive value (PPV) were 0.876 and 0.777, respectively, showing better performance than 

the classical AD biomarkers when differentiating between MCs and NCs.
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Further, we categorized MCs into subgroups based on their clinical status at CSF draw date. 

Within the MCs, there were 186 individuals without clinical symptoms (presymptomatic) 

and 105 symptomatic individuals. We tested if this model could also distinguish the 

presymptomatic from the symptomatic individuals. We used the same proteomic signature 

(six proteins). The six-protein predictive model showed an AUC = 0.930 (Figure 5B) to 

differentiate MCs affected vs. the non-affected. The NPV (0.847) and the sensitivity (0.915; 

Table S11) were similar to those for pTau181/Aβ42 (NPV 0.825 and sensitivity 0.902), 

suggesting that the six-protein (Figure 5C) signature might be capturing very early disease 

changes.

To validate this predictive model, we used two different approaches. In the first one, we 

performed an orthogonal validation by generating Olink HT1 data for the samples from 

which SomaLogic data were available. Of the six proteins included in the initial predictive 

model (SMOC1, SMOC2, GFAP, NPTX2, TNFRSF1B, and PEA15), all but PEA15 were 

present. The predictive model with the five Olink proteins showed an AUC of 0.837 

for mutation status (SomaLogic AUC = 0.91; Table S11; Figure S7) and an AUC of 

0.879 when comparing presymptomatic vs. symptomatic (SomaLogic = 0.930). Then, we 

performed a second validation using a non-overlapping subset of DIAN CSF samples that 

we assessed using the Nulisa CNS panel (Table S11). Three proteins were included in this 

panel (SMOC1, GFAP, and NPTX2), which overlap with those included in the predictive 

model. Even with only three proteins, the predictive model for mutation status showed a 

high predictive power for both mutation status (AUC = 0.781) and clinical status (AUC = 

0.876) (Table S11; Figure S7). These two platforms (Olink and Alamar) are antibody-based 

approaches and constitute an orthogonal validation of the original findings and predictive 

model.

DISCUSSION

In this study, we conducted an extensive analysis of CSF and plasma proteomics in ADAD 

(Figure 1). Our goal was to uncover early proteomic changes, understand the underlying 

biology, and to develop effective predictive models for early diagnosis. We measured 

6,163 proteins in 463 CSF samples and 6,022 proteins in 538 plasma samples from the 

DIAN study. We identified 137 proteins with a significant difference in pseudo-trajectory 

analysis and 227 significant proteins associated with ADAD mutations status. These pseudo-

trajectory changes could be traced back to 30 years before symptom onset (Figure 2; Table 

S1). For example, SMOC1 undergoes alterations as early as 15 years prior to established 

AD biomarkers like pTau, Tau, and Aβ42. Some of the top findings include known AD 

biomarkers such as NEFL and NRGN. However, most of the proteins identified in our 

analyses were not reported before, such as PPP3R1, which has been associated with disease 

progression and pTau levels in sAD27 or in GAGE2D that also showed protein changes 19 

years before clinical onset.

We leveraged two previous studies14,15 to replicate our findings from the ADAD trajectory 

analysis. These studies, by either using a different proteomic platform or different samples, 

increase confidence in our findings and indicate that SomaLogic results can be replicated 

with other technologies and independent datasets. We also found that most of the proteins 
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associated with different trajectories in MCs vs. NCs were also associated with sAD 

(Table S4). These results further support our findings and indicate a large overlap between 

ADAD and sAD. However, we identified seven proteins (EPHA4, DLK2, GAGE2A, 

TNFRSF21, HS6ST3, RELT, and LRP1) that exhibited opposite directions between ADAD 

and sAD. One potential explanation of this opposite effect could be due to the dynamic 

changes of these proteins in relation to disease status. In the presymptomatic phase 

of ADAD, some metabolic and TNF receptors (DLK2, GAGE2A, TNFRSF21)31,53 are 

observed downregulated, possibly as a compensatory response to early pathological changes. 

However, as ADAD progresses to the symptomatic phase, these markers might increase, 

indicative of deteriorating neuronal function and synaptic integrity. This hypothesis aligns 

with observations about heightened activation of EPHA4 signaling, which directly impacts 

motor neurons and leads to their degeneration.54 Additionally, we found five proteins 

(CHIT1, SMOC1, NEFL, SMOC2, and CAND1) with a higher effect size in ADAD. These 

findings suggest that there are distinct and diverse biological processes that are dysregulated 

in ADAD.

Of the 137 proteins associated with ADAD in this study, 111 were previously unreported 

and represent proteins from which changes start at−22 to −15 years before onset, such as 

DNAJB9 (EYO = −26.09 years), GAGE2D (EYO = −16.60 years), and PPP3R1 (EYO 

= −16.03 years). Network and pathway enrichment analyses for the associated proteins 

unveiled a significant enrichment within three distinct modules, each linked to different 

stages of the disease (Figure 6). In the earliest stage, the M1 module that captures early 

neuron pathology displayed changes in mitochondrial damage (GABARAP, GABARAPL1, 

MAP1LC3A, MAP1LC3B, PPP3R1) and NMDAR synapse signaling (ACHE, PLCB1, 

NRGN, GLUL, DLG2, PRKCG, HOMER1). The M1 module was depleted on neuronal 

proteins that might be caused by the cellular stress affecting their mitochondria and 

microtubules, leading to programmed cell death in neurons. As time progresses and the 

disease trajectory transitions to the M2 signaling transduction stage, these stimuli begin. 

Many studies have shown evidence of excitotoxicity of glutamatergic neurotransmission 

through postsynaptic NMDAR on the neurons.55–57 Other studies suggested that various 

cellular stressors, such as oxidative stress and endoplasmic reticulum stress, could 

dysregulate MAPK pathways.58,59 These findings show that oxidative stress or disruptions 

in glutamate metabolism, which initiate in the early and middle stages of ADAD, may 

promote the disease progression. Subsequently, under the regulation of cytokine, innate 

immune, and mTOR signaling pathways, microglia and macrophages become involved in an 

autophagy process that extends to other neurons and their microenvironments, as captured 

in the M3 module. This module also captures proteins and biological pathways that are 

involved in repairing and restoring damaged neurons, axons, dendrites, and synapses. This 

was mainly recapitulated in the M3 stage where dysregulation of ubiquitin-conjugating 

enzymes (UBE2N, PEDS1-UBE2V1) was observed. Non-degradative ubiquitin signaling 

is essential for homeostatic mechanisms crucial to neuronal function and survival,60 and 

it plays a role in inflammatory processes,60 thus supporting our hypothesis regarding self-

rescue mechanisms at play during this stage.

The proteins identified in this study were used to create a robust ADAD predictive model. 

We applied a least absolute shrinkage and selection operator (LASSO) model to select a 
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robust subset of significant pseudo-trajectory proteins. The predictive model based on six 

proteins accurately distinguished MCs from NCs, with an AUC of 0.91 in the testing set, 

which is better than Aβ42, pTau, and pTau/Aβ42 ratio. As some of the MCs were not 

symptomatic at the time of the lumbar puncture, we also analyzed if our model could 

distinguish between symptomatic and presymptomatic individuals carrying mutations. This 

model showed a similar performance (AUC: 0.95; PPV: 0.86; NPV: 0.84) when compared 

with pTau/Aβ42 (AUC: 0.93; PPV: 0.86; NPV: 0.82; Figure 5B; Table S11). In the last 

decades, many studies have provided evidence for the predictive values of CSF Tau, pTau, or 

pTau/Aβ42 for cognitive decline.61–63 Our model showed similar NPV, PPV, and sensitivity 

to distinguish MCs with clinical symptoms from those without clinical symptoms, compared 

with existing biomarkers, but it has several advantages: (1) it is highly sensitive to detect 

early protein changes, effectively distinguishing between early and late stages of ADAD; 

(2) the six proteins identified in our model can serve as secondary or confirmatory tests 

following initial screening with the known biomarkers that have high overall accuracy; and 

(3) as new therapies are targeting Aβ or Tau, there is a need to develop additional predictive 

models that do not rely on these proteins. We further validated these predictive models 

using orthogonal and antibody-based platforms (Olink and Alamar). The predictive power 

(AUC) for the Alamar and Olink is slightly lower than the original AUC, but this could 

be explained because neither of the two platforms included the six proteins. In addition, in 

several instances, the 95% CI intervals between the original model and Olink or Alamar 

overlap, indicating that these models are comparable.

Limitations of the study

Despite being the largest proteomic study in ADAD and having sAD as comparison group, 

this study has several limitations. First, our primary research cohort was the DIAN study, 

which despite being uniquely the largest ADAD cohort and extensive in terms of proteomic 

screening, it lacked a comparable cohort for systematic validation of our findings. Second, 

even though we were able to leverage the EYO by approximating cross-sectional data to 

longitudinal changes (pseudo-trajectories), follow-up studies using true longitudinal measure 

of proteomic changes may be needed to validate these results. However, conducting such 

studies may pose various practical challenges as our analyses cover a lifespan of 60 years 

(EYO from −40 to +20). Third, very few significant proteins were found in plasma in the 

same subjects and using the same methodology. The limited number of plasma findings 

in our study could be due to the lack of sensitivity of the platform used in measuring brain-

related proteins in plasma. Thus, additional studies with orthogonal proteomic approaches 

are needed for plasma biomarkers. Fourth, the Somascan platform has additional limitations 

besides those already discussed. Owing to its targeted nature, only the proteins included in 

its panel are tested. Thus, it does not represent a true unbiased screening. In this study, we 

were able to find supportive evidence for all of our significant proteins in other platforms, 

but it is known that some SomaLogic aptamers do not correlate well with Olink, ELISA, 

or MS.64,65 However, this lack of replication is not unique to the SomaLogic platform but 

has been reported across the field. This can be attributed to one of three scenarios: (1) 

one of the platforms is accurately measuring the reported proteins, but the other is not; (2) 

both platforms failed to accurately quantify the protein; or (3) both are reporting accurate 

measures but are targeting different proteoforms. In the absence of validated information 
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on exact proteoforms being measured across platforms, head-to-head comparisons between 

these cannot be made. Fifth, additional analyses by gene or even specific mutation with 

a larger sample size will be needed to understand the role of each of these mutations. 

Sixth, even though we used two different antibody-based platforms to validate the predictive 

model, neither of them included all six proteins selected for the initial model, which limits 

the assessment of the real predictive power of this model. To translate this model from 

the bench to the bedside, specific multiplex panels that include all six proteins will need 

to be developed to further validate the model and to determine the specific weights and 

cutoffs for the new platform. As the field of biomarkers in neurodegenerative diseases is 

moving from single biomarkers to multi-proteomic panels to capture different aspects of 

these diseases, there is a need to implement and use technologies that can multiplex multiple 

assays, and those that only measure one or two different gene-coding proteins are unlikely to 

be informative in the future.

In summary, our study leverages the DIAN participants and represents a comprehensive 

proteomic analysis of ADAD to date. Our methodology employs extensive protein panels, 

covering a broad range of biological processes. The detection of numerous dysregulated 

proteins through a robust approach, exhibiting altered patterns early in the disease and 

maintaining statistical significance even after rigorous multiple test corrections, highlights 

profound changes in the CSF proteome in ADAD. This reinforces the value of CSF 

proteomics in investigating the disease’s pathophysiology. Additionally, our study draws 

parallels between the CSF proteomes of ADAD and sAD, indicating the notable similarities 

but also identifying differences that can lead to personalized medicine for those carrying any 

mutation in ADAD genes. Ultimately, our results lay the groundwork for creating predictive 

models and identifying potential therapeutic targets, enhancing our understanding of ADAD 

and fostering the development of more effective future treatments.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by 

the lead contact, Carlos Cruchaga (cruchagac@wustl.edu).

Materials availability

This study did not generate new materials. However, CSF and plasma proteomics data in 

DIAN was generated for this study (see data and code availability below).

Data and code availability

The individual-level data from DIAN cannot be publicly shared. Due the rarity of this 

disease it makes the data identifiable. This has been corroborated with the IRB and 

confirmed with the NIH, thus the data cannot be shared in public repositories. However, data 

are available to approved investigators via data request through https://dian.wustl.edu/our-

research/for-investigators/diantu-investigator-resources/dian-tu-biospecimen-request-form/. 

The proteomics and individual-level genetic data obtained from the ADNI cohort can 

be requested through ADNI’s website (adni.loni.usc.edu) after access has been approved. 
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The proteomics and individual-level genetic data obtained from the Knight-ADRC can be 

requested through the NIAGADS website (ng00130). The proteomics and individual-level 

genetic data obtained from Fundació ACE Alzheimer Center Barcelona can be requested 

through Fundacio ACE’s website (www.fundacioace.com). The summary results generated 

from this manuscript is available in Tables S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, and S11. 

In addition, they are available to the scientific community through a public web browser 

https://proteomics.wustl.edu/csf/.

All our analyses used open-source software listed under key resources table. This paper does 

not report codes used.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

CONSORTIA

The members of Dominantly Inherited Alzheimer Network are James M. Noble, Gregory 

S. Day, Neill R. Graff-Radford, Jonathan Voglein, Ricardo Allegri, Patricio Chrem Mendez, 

Ezequiel Surace, Sarah B. Berman, Snezana Ikonomovic, Neelesh Nadkarni, Francisco 

Lopera, Laura Ramirez, David Aguillon, Yudy Leon, Claudia Ramos, Diana Alzate, Ana 

Baena, Natalia Londono, Sonia Moreno Mathias Jucker, Christoph Laske, Elke Kuder-

Buletta, Susanne Graber-Sultan, Oliver Preische, Anna Hofmann, Takeshi Ikeuchi, Kensaku 

Kasuga, Yoshiki Niimi, Kenji Ishii, Michio Senda, Raquel Sanchez-Valle, Pedro Rosa-

Neto, Nick Fox, Dave Cash, Jae-Hong Lee, Jee Hoon Roh, Meghan Riddle, William 

Menard, Courtney Bodge, Mustafa Surti, Leonel Tadao Takada, Martin Farlow, Jasmeer 

P. Chhatwal, V.J. Sanchez-Gonzalez, Maribel Orozco-Barajas, Alison Goate, Alan Renton, 

Bianca Esposito, Celeste M. Karch, Jacob Marsh, Carlos Cruchaga, Victoria Fernandez, 

Brian A. Gordon, Anne M. Fagan, Gina Jerome, Elizabeth Herries, Jorge Llibre-Guerra, 

Allan I. Levey, Erik C.B. Johnson, Nicholas T. Seyfried, Peter R. Schofield, William Brooks, 

Jacob Bechara, Randall J. Bateman, Eric McDade, Jason Hassenstab, Richard J. Perrin, 

Erin Franklin, Tammie L.S. Benzinger, Allison Chen, Charles Chen, Shaney Flores, Nelly 

Friedrichsen, Nancy Hantler, Russ Hornbeck, Steve Jarman, Sarah Keefe, Deborah Koudelis, 

Parinaz Massoumzadeh, Austin McCullough, Nicole McKay, Joyce Nicklaus, Christine 

Pulizos, Qing Wang, Sheetal Mishall, Edita Sabaredzovic, Emily Deng, Madison Candela, 

Hunter Smith, Diana Hobbs, Jalen Scott, Johannes Levin, Chengjie Xiong, Peter Wang, 

Xiong Xu, Yan Li, Emily Gremminger, Yinjiao Ma, Ryan Bui, Ruijin Lu, Ralph Martins, 

Ana Luisa Sosa Ortiz, Alisha Daniels, Laura Courtney, Hiroshi Mori, Charlene Supnet-Bell, 

Jinbin Xu, and John Ringman.

STAR★METHODS

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

ADAD and sporadic AD cohorts—DIAN is a long-term observational study 

that employs standardized clinical and cognitive assessments (Clinical Dementia 

Rating®(CDR)®), neuropsychological testing, imaging modalities (magnetic resonance 

imaging (MRI), PIB-PET, and 18F-FDG),73 and collects biological fluids (blood and CSF). 
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The main goal of DIAN cohort is to detect alterations in individuals who possess known 

gene mutations that cause AD. Sporadic AD individuals, as part of validation cohorts, 

were obtained from four different sites: Charles F. and Joanne Knight Alzheimer Disease 

Research Center (Knight-ADRC), Alzheimer’s Disease Neuroimaging Initiative (ADNI), 

Fundació ACE Alzheimer Center Barcelona, and Barcelona-1), totaling 1,763 sample. The 

phenotypes information of DIAN participants, sporadic AD participants and the approval of 

institutional review board were described in supplementary methods.

ADAD cohort—We applied the Somascan® 7K panel to analyze the CSF proteome from 

286 MCs, 177 NCs, and the plasma proteome from 325 MCs and 213 NCs from DIAN 

participants. In total, there were 448 participants that have both CSF and plasma proteomics 

data.

CSF samples were distributed as follows: 286 MCs [212 (74%) PSEN1, 23 (8%) PSEN2, 

and 51 (18%) APP]. Of these, 102 (36%) were symptomatic MCs, and 184 (64%) were 

presymptomatic MCs. The 177 NCs in the study were recruited from family members 

associated with MCs. The mean age of MCs was 40.0 years; 55% were females, with a mean 

EYO of −6.6 ±10.4 years (yrs), and 29% of MCs carried at least one APOE ε4 allele. The 

mean age of NCs was 39.6 years, 59% were females, the mean EYO was −7.8 ± 12.5 yrs, 

and 33% of NCs presented at least one APOE ε4 allele. Age, sex, EYO and APOE ε4 allele 

did not show any significant difference between MCs and NCs in CSF (Table 1).

Plasma was available for 325 MCs [240 (74%) PSEN1, 25 (8%) PSEN2, and 60 (18%) 

APP]. Of those, 127 (39%) were asymptomatic MCs, and 198 (61%) were presymptomatic 

MCs. The mean age of MCs was 40.4 years; with a mean EYO of −6.3 ±11.06 yrs, 30% 

carried at least one APOE ε4 allele, and 55% were females. There were 213 NCs with a 

mean age of 40.7 years; 59% were females, with the mean of −7.9 ± 11.7 yrs, and 33% of 

NCs carried at least one APOE ε4 allele. There was no significant difference observed in 

the distribution of sex, age at draw, EYO, and frequency of APOE ε4 carriers as well in the 

individual with plasma samples and at the specific blood draw used in this study.

Sporadic late-onset Alzheimer’s disease proteomics data cohorts—In this study, 

we utilized the cerebrospinal fluid (CSF) proteomics data from four different cohorts, with 

a total of 1,763 samples, including Knight Alzheimer’s Disease Research Center (Knight 

ADRC), the Alzheimer’s Disease Neuroimaging Initiative (ADNI), Ace Alzheimer Center 

Barcelona (FACE), Barcelona-1 (Table S4).

Knight ADRC: The Knight ADRC at Washington University School of Medicine has been 

recruiting and longitudinally assessing community-dwelling adults older than 45 years old 

since 1979. The Memory and Aging Project (MAP) at the Knight ADRC collects biofluids, 

and conducts annual clinical assessments, neuropsychological testing, neuroimaging studies, 

and autopsies of brain samples. Eligible participants may be asymptomatic or have mild 

dementia at the time of enrollment. All participants are required to participate in core 

study procedures, including annual longitudinal clinical assessments, neuropsychological 

testing, neuroimaging, and biofluid biomarker studies. Annual cognitive assessments of 

the participants were conducted by experienced clinicians. Multi-tissue data from brain, 
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CSF, and plasma has been utilized for generating multi-omics data encompassing genetics, 

epigenomics, transcriptomics, proteomics, metabolomics, and lipidomics with the aim of 

identifying new risk and protective variants for dementia as well as novel potential drug 

targets.

ADNI: CSF proteomics data used in the preparation of this manuscript was obtained 

from the ADNI database (https://adni.loni.usc.edu/). Launched in 2003, ADNI represents 

a public-private partnership led by Principal Investigator Michael W. Weiner, MD. The 

primary objective of ADNI study has been to investigate whether the combination of serial 

magnetic resonance imaging (MRI), positron emission tomography (PET), other biological 

markers, and clinical and neuropsychological assessments can effectively measure the 

progression of mild cognitive impairment (MCI) and early AD.

FACE: We also acquired CSF samples from FACE, a private non-profit organization 

dedicated to AD research. Established in 1995 and based in Barcelona, FACE has diagnosed 

over 30,000 patients, collected 20,000 blood samples, 1,831 cerebrospinal fluid samples, and 

analyzed nearly 13,000 genetic samples.74,75 Additionally, it has been involved in nearly 150 

clinical trials during its existence. Additional information about the FACE cohort is available 

at their website (www.fundacioace.com/en).

Barcelona-1: For this study, CSF samples were also sourced from Barcelona-1, a study 

led by the University Hospital Mutua de Terrassa in Terrassa, Spain. Barcelona-1 is 

a longitudinal study comprising approximately 300 individuals. Only those individuals, 

diagnosed with MCI or more severe conditions, underwent PET scans and CSF collection 

and follow-up analyses were conducted to monitor disease progression. The study 

encompassed individuals with diagnoses of subjective memory complaints (SMC), MCI, 

AD dementia (ADD), and non-AD dementias (non-ADD).

METHOD DETAILS

Clinical assessment and EYO in ADAD—Dementia was evaluated using the CDR®, 

with clinical assessors blinded to participants’ mutation status. The EYO for a participant 

was computed during each assessment, factoring in their age at the visit and the anticipated 

period of dementia symptom onset specific to their mutation.12 This anticipated onset 

age for a given mutation was established by averaging reported symptom onset ages 

among individuals sharing the same mutation. When the mutation-specific expected age 

of symptom onset was unavailable, the EYO was derived from the age of cognitive decline 

onset in the participant’s parents or family members, as determined through a thorough 

semi-structured interview using comprehensive historical data. It is crucial to note that the 

EYO calculation procedure remained consistent for both MCs and NCs. In the present 

study, we leveraged the DIAN-EYO, which enhances EYO accuracy by integrating an 

individual’s actual decline age into the EYO determination process rather than solely relying 

on the mean mutation or parental/familial age at onset.12 For simplification, EYO stands 

for DIAN-EYO.12 Mutation status was determined using a PCR-based amplification of the 

relevant exon, followed by Sanger sequencing.2
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CSF proteomic data collection, processing, and quality control—The CSF 

proteomic data was profiled using the Somascan® 7K Platform, an aptamer-based 

technology superior to ELISA and MS in handling dynamic range and missing values. CSF 

samples, collected post-fasting via lumbar puncture, were uniformly processed and stored 

at −80 °C. This study included 495 DIAN and 1,763 sAD samples, assessed using 7,584 

aptamers on the Somascan® Platform. The samples were sent together to SomaLogic to 

minimize batch effects and randomly distributed across plates. Protein levels were measured 

and normalized to account for plate variability and technical variation, as described 

previously.64,76 To ensure data quality, individual-level quality control (QC) was carried 

out to detect and exclude outlier aptamers and samples, as described previously.64,76 Overall 

at the end of QC, in DIAN and sAD cohorts, there were 845 and 866 aptamers targeting 

more than one protein, respectively; and in total, we included 6,163 unique proteins in the 

analysis. Also, 463 DIAN samples and 1763 sAD samples were available. Additionally, 

levels of CSF Aβ42, Tau, and pTau were measured using Lumipulse® G Assays.

Plasma proteomics data collection, processing, and QC—Blood samples were 

collected at the time of the visit, immediately centrifuged, and the plasma stored at 

−80°C. Clinical status (case-control) was determined by the CDR® at the time of draw. 

We measured 7,584 aptamers in 580 plasma samples from DIAN participants using 

SomaLogic’s Somascan® Platform. Initial data normalization and QC was performed as 

described above. Ultimately, 542 samples and 6,022 aptamers targeting 6,022 unique 

proteins were kept for downstream analysis. In the subsequent description, we will only 

talk about unique proteins for both CSF and plasma, instead of protein aptamers.

ATN classification—We grouped the sAD cohorts based on the ATN classification (where 

A+T+ and A−T− serve as proxies for sAD and controls).77 However, the lack of consensus 

in universal biomarker cutoffs is a major caveat as biomarker levels, and subsequently their 

cutoffs for dichotomization, can be influenced by the technique of measurement. Thus, we 

utilized Gaussian mixture models to dichotomize quantitative Aβ42 and pTau measures into 

positive and negative groups and applied separately for each sAD cohort.78,79 Individuals 

with low CSF Aβ42 and high pTau levels were classified as amyloid/tau positive (A+T+). 

Individuals with high Aβ42 and low pTau levels were defined as controls (A−T−). Detail 

description of the dichotomization and cut-off determination for each cohort can be found 

elsewhere.79

In the case of the Knight ADRC cohort, measurements for both Aβ42 and pTau were 

conducted using the LumiPulse® G platform. For Aβ42, samples with values below 630 

were classified as Aβ42-positive (A+). As for pTau, a cutoff of z-score = 0.61 was 

determined, which corresponded to a raw value of 62.9. Samples with values above 

62.9 were considered pTau-positive (T+). In the ADNI cohort, Aβ42 measurements 

were conducted using Innotest by Fujirebio, while pTau measurements were performed 

using Elecsys by F. Hoffmann-La Roche Ltd in Switzerland. A z-score cutoff of 0.616, 

corresponding to a raw value of 196 pg/mL, and 0.197, corresponding to 27.8 pg/ml, were 

determined as cutoff for Aβ42 and pTau respectively. Similarly in FACE and Barcelona-1 

cohort, both Aβ42 and pTau measurements were conducted using Innotest (Fujirebio). For 
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Aβ42, a z-score cutoff of 0.468 was established, which corresponded to a raw Aβ42 value 

of 856 pg/mL. Samples with values below 856 were categorized as Aβ42-positive (A+). For 

pTau, a z-score cutoff of −0.018 was identified, corresponding to a raw value of 67. Samples 

with values greater than 67 were classified as pTau-positive (T+). In Barcelona-1, a z-score 

cutoff of 1.04, corresponding to a raw Aβ42 value of 1325 pg/mL, was determined whereas 

a z-score cutoff of −0.163 was identified for pTau, corresponding to a raw value of 58.

QUANTIFICATION AND STATISTICAL ANALYSIS

Cohorts demographics—We processed demographic characteristics using GraphPad 

Prism 9. To compare cohorts characteristics between MCs’ and NCs’ groups we used 

unpaired Student’s t tests and Chi-squared tests for continuous and binary variables, 

respectively. Continuous variables were reported as mean ± standard deviation. p values 

of <0.05 after the false discovery rate correction method was considered significant.

Differential pseudo-trajectory analysis—To study how alterations in protein levels 

changes over time, we employed a multi-layer regression model to infer the pseudo-temporal 

trajectory from the cross-sectional proteomic data, called pseudo-trajectory analysis. This 

model constructed a more comprehensive framework, capable of capturing proteins with 

significant pseudo-trajectory differences between MCs and NCs. In the pseudo-trajectory 

calculation model, we incorporated the first two surrogate variables (SVs) to correct 

for unmeasured heterogeneity. These SVs were generated by applying the sva() function 

within the R (version 4.1.3) package sva (version 3.42.0). False Discovery Rate (FDR) 

correction (FDR p < 0.05) was used to define significance. Pseudo-trajectory calculations 

were performed in three steps: (1) we used a linear regression, lm() function from the stats 

package, to build the model with log 10-transformed proteins as the dependent variable, 

EYO as the independent variable, sex, and the first two SV as covariates for MCs and NCs, 

separately (Formula 1); (2) we compared the coefficient-estimates (b) of EYOs between 

MCs and NCs (Formula 2); and (3) we calculated when the pseudo-trajectories significantly 

deviate from each other in EYO by Student’s t test (Formula 3, 4).

FitMC: log 10 protein level ∼ DIAN_EYO + sex + sv2 + sv1

Formula 1:

FitNC: log 10 protein level ∼ DIAN_EYO + sex + sv2 + sv1

δSlope = coef FitMC ″DIAN_EYO″ − coef FitNC ″DIAN_EYO″

Formula 2:

SE = SEMC
2 + SENC

2

Formula 3:
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p value = 2 ∗ pnorm abs δSlope
SE

Formula 4:

Pseudo-trajectory intersections in ADAD—For each protein that displayed substantial 

differences, we calculated the pseudo-trajectory intersection point between MCs and NCs. 

This was done to calculate the exact moment when the protein levels between these 

two groups started to diverge significantly. A two-step process was employed to derive 

these pseudo-trajectory intersections for each protein. In the initial step, we utilized the 

predict() function to generate the predicted 95% confidence intervals (CI) for MCs and 

NCs independently (Formula 5). In the second step, we extracted the lower bound and 

upper bound values from the predicted 95% CIs of both MCs and NCs, assembling them 

into a new matrix. We established another linear regression model from this new matrix 

by selecting either the predicted lower bound or upper bound values for significant protein 

based on each protein’s specific β. If the β for a particular protein were > 0, indicating that 

its protein level was higher in MCs than NCs, we opted for the lower bound from the MCs 

matrix and the upper bound from the NCs matrix. Conversely, if the β < 0, indicating that 

the protein level was higher in NCs than MCs, we selected the upper bound from the MCs 

matrix and the lower bound from the NCs matrix. Following this selection, we extracted the 

two βs from the new linear regression models (Formula 6).

PredictMC = predict FitMC, interval = “prediction”

Formula 5:

PredictNC = predict FitNC, interval = “prediction”

FitMC−new:log 10 proteinlevel lwr/upr ∼ DIAN_EYO + sex + sv2 + sv1

Formula 6:

FitNC−new:log 10 proteinlevel lwr/upr ∼ DIAN_EYO + sex + sv2 + sv1

Then we obtained the two coefficients from the new linear regression models (Formula 6), 

and applied solve() function to calculate the pseudo-trajectory intersections for each protein.

ADAD protein change and sAD protein change analysis in ADAD and sAD—
Protein level changes between mutation status groups (MCs vs. NCs) in the DIAN cohort 

and between ATN status in sporadic late-onset AD cohorts (A+T+ vs. A−T−) were identified 

using the linear regression model. In these models, the log 10-transformed protein levels 

served as the dependent variable, mutation or ATN and the group status as the independent 

variable, and age at CSF draw, sex, and the first two SVs included as covariates (Formula 7).
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(proteinlevel)log10 ∼ Status + age at draw date + sex + SV1 + SV2

Formula 7:

Proteomic comparison across studies—To compare the analyses and results across 

cohorts and analyses, we evaluated the consistency of CSF ADAD results with other studies 

by comparing the effect sizes for each protein. These comparisons included (1) another two 

publicly available CSF ADAD studies,14,15 (2) the analyses for CSF in sporadic AD and 

(3) DIAN plasma ADAD results. We obtained correlation (R2) and significance (p value) by 

performing correlation tests using Spearman’s correlation test from the cor.test() function in 

R to test effect sizes of studies. The prediction line and regression line’s 95% confidence 

interval were utilized to assess the effect size of significant proteins between ADAD and 

sAD.

Predictive models—To identify the minimum and robust set of informative proteins to 

build a model to predict ADAD mutations status, we used the least absolute shrinkage and 

selection operator (LASSO – L1 regularization) regression. For those aptamers targeting the 

same protein, only the most significant one was included in the LASSO input, leaving the 

input matrix with 132 aptamer measurements. The full dataset was divided in 60% training 

40% testing randomly 50 times keeping the original proportion of carriers and noncarriers 

for each split. Minimum lambda was calculated at each iteration using cross validation prior 

to training and testing in each iteration using the glmnet function in the caret R package 

version 6.0. A final summary model was calculated using the full population. Predictive 

models performances were assessed by plotting the receiver operator characteristic (ROC) 

curves using pROC R package version 1.18.2.80

To further optimize the model and minimize the number of proteins included, we evaluated 

the predictive power of RIDGE (L2 regularization) based models. We computed 50 models, 

each of them based on the 50 random iterations. In brief, we computed how many times 

each of the 132 aptamers are selected by LASSO as informative and create RIDGE models 

in an incremental manner. In other words, the first model contains those proteins that were 

deemed informative by LASSO 50 times, the second model those that were selected by 

LASSO 50 and 49 times, and subsequentially until all aptamers that were included at least 

one time were included. Finally, we picked the model with the best performance and the 

minimum number of aptamer and fitted a final GLM model. All assessments were made 

with the complete population. We further interrogated the selected protein signature in the 

prediction of symptomatic vs non-symptomatic mutation carriers by re-fitting a new GLM 

model for the selected proteins.

Pathway analyses—We preformed pathway enrichment analysis, weighted gene 

correlation network analysis, and cell type enrichment analysis to interpret the function 

of significant trajectory proteins. We used the ClusterProfiler R package version 4.8.068 

for pathway enrichment analysis to identify the biological functions of proteins, utilizing 

default parameters and an FDR P-value <0.05 for significant pathway identification. The 

enriched pathways were categorized based on the 2022 version Reactome database’s81 
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"Event Hierarchy" and analyzed for disease associations using the DisGeNET database.70 

Additionally, we employed the WGCNA R package version 1.72.1 to create a network 

of protein co-expression modules, using hierarchical clustering and dynamic tree cutting 

for module identification.71 For cell type enrichment analysis, we focused on specific 

cell markers, particularly in human astrocytes, neurons, oligodendrocytes, microglia/

macrophages, and endothelial cells, to evaluate protein specificity. We matched proteins 

to gene symbols and assessed cell-type specificity, determining enrichment based on 

expression data across these cell types. We described the package versions, used functions, 

parameters, and thresholds for the significance cut-off in supplementary methods. In 

addition, protein-pro-ein interaction (PPI) networks were obtained using STRING.

Cell type enrichment—Cell type enrichment was performed using single sample using 

the GSVA package (v1.48) in R. The reference database used for the analysis was obtained 

from the study conducted by Zhang et al.44 This included markers specific to human 

astrocytes, neurons, oligodendrocytes, microglia/macrophages, and endothelial cells. In each 

of the three modules identified by our WGCNA analysis, we used the “ssGSEA” algorithm 

to calculate the GSVA scores for each cell type within each sample based on the expression 

levels of proteins included within the module. Protein levels were log10 transformed and 

missing values were imputed using random sampling prior to the analysis.

Co-expression network analyses—We utilized the blockwiseModules function 
from the WGCNA package with the following parameters: power=3, corType=“ bicor”, 

networkType=“ signed”, deepSplit=4, and mergeCutHeight=0.07. After adjusting for age, 

sex, and plate ID for proteomic samples, the soft threshold power was determined as 3 

by considering both the scale-free topology model fit (R2= 0.87) and mean connectivity. 

To measure similarity more robustly, we used bicor method, which is based on medians 

and less influenced by outliers compared to Pearson or Spearman correlation coefficient. A 

signed network was considered to account for both positive and negative correlations. The 

topological overlap matrix (TOM) was calculated to determine the interconnection within 

the network structure. Hierarchical clustering analysis was then conducted based on the 

calculated 1-TOM values to classify the proteins into distinct modules. The final modules 

were defined by grouping and rearranging similar groups.

ADDITIONAL RESOURCES

Data visualization—Data visualization plots were mainly generated by ggplot2 R 

package version 3.4.2.82 Specifically, the results of the differential proteins analysis in the 

form of significantly up- and down-regulated proteins were visualized as a volcano plot 

using the geom_point() function. Pseudo-trajectory curve and trajectory intersections were 

visualized by stat_smooth() function with ‘loess’ method.

Web browser for navigating results—We created a web portal (https://

proteomics.wustl.edu/csf/) with Shiny R package to facilitate both exploration of our 

analysis and further investigation into individual proteins across MC and NC. The browser 

provides three tabs. The first tab provides a brief explanation of the web portal, and a 

description of the datasets used. The second tab (Abundance distribution) displays a table 
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including proteomic abundance levels on each analyte that passed our QC process, along 

with its effect and p value for each comparison presented here. The table allows the user to 

select a protein, which displays the distribution of the selected protein levels between MC 

and NC. The third tab (Volcano plot) displays the volcano plots for each comparison.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• 137 CSF proteins’ trajectories differed between ADAD mutation carriers and 

non-carriers

• The identified proteins started changing between 15 and 20 years before onset

• The identified proteins are involved in neuronal death and immune pathways

• Six proteins showed high predictive power for mutation and cognitive status
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Figure 1. Study overview
A total of 6,163 proteins were measured in CSF sample from 286 mutation carriers (MCs) 

and 177 non-carriers (NCs). Differential pseudo-trajectory analyses were performed between 

MCs and NCs. Trajectory intersections were calculated for significant pseudo-trajectory 

proteins. Biological functions were identified by protein co-expression network analysis and 

pathway enrichment. A total of 1,763 sAD CSF samples and 538 DIAN plasma samples 

were analyzed to validate the approach and contextualize the findings. Several publicly 

available external proteomic datasets were used to validate our findings as well. Finally, 

the LASSO model was used to select significant trajectory proteins and to create predictive 

models for ADAD.
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Figure 2. Significant pseudo-trajectory proteins and significant proteins associated with ADAD 
mutation status in CSF
(A and B) Volcano plots displaying the estimate change (x axis) against −log10 statistical 

differences (y axis) for all tested proteins for pseudo-trajectory analyses between MCs 

and NCs (A) and ADAD mutation status only (B). The red dots show the significantly 

upregulated proteins, and the blue dots show the significantly downregulated proteins after 

multiple test correction (FDR p value < 0.05).

(C) Twelve significant pseudo-trajectory proteins that changed earlier than Tau, pTau, and 

Aβ42.
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Figure 3. Validation and replication of significant pseudo-trajectory proteins
(A) The pseudo-trajectory curve for TREM2 and GFAP, but these two proteins did not pass 

the FDR threshold between MCs vs. NCs. The yellow curve indicates the MCs’ proteins 

change with EYO, and purple curve indicates the NCs’ proteins change with EYO.

(B) The overlapped significant proteins from trajectory analysis and ADAD mutation status 

analysis of MCs vs. NCs at FDR threshold.

(C–H) Scatterplot of the significant trajectory proteins replicated in (C) CSF ADAD 

mutation status analysis; (D) significant pseudo-trajectory proteins replicated in Johnson 

et al.15 finding; (E) significant trajectory proteins replicated in Van der Ende et al.14 finding; 

(F) significant proteins associated with mutation status replicated in Johnson et al. finding; 

(G) significant proteins associated with mutation status replicated in Van der Ende et al. 

finding; (H) significant proteins associated with mutation status replicated in significant 

proteins associated with sAD. Gray line represent 95% confidence interval.
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Figure 4. Co-expression network analysis of significant pseudo-trajectory proteins and pathway 
enrichment for each module
(A) Heatmap showing GSVA scores for each cell type across modules. Higher GSVA score 

is shown in red, highlighting an enrichment for that cell type within the module, whereas 

lower GSVA scores, represented in blue, show depletion. Gray color indicates that the 

module did not have any genes/proteins associated with the cell type.

(B) EYO comparison for functional identified proteins from Reactome pathway analysis.

(C–H) Reactome pathway analysis for each module. Treemap (C, E, and G) represents 

the significantly enriched pathways with summarized categories (C#, such as C1); chord 

diagram (D, F, and H) shows the enriched proteins in categorized pathways. The colored 

patterns labeling proteins represent the different cell types, and the colors are consistent with 

bar colors in cell-type enrichment (A).

See also Figures S4 and S5.
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Figure 5. Predictive models for ADAD
(A and B) The ROC and AUC corresponding to the final protein signature fitted into 

a generalized linear model (GLM) model, compared with the predictive power of age 

and sex; β-amyloid 42, pTau 181, and the pTau181/Abeta42 ratio in predicting mutation 

carriers compared with non-carriers (A); and symptomatic mutation carriers compared with 

non-symptomatic mutation carriers (B).

(C) Violin plots comparing the levels of the six proteins included in the predictive 

model in non-carriers, non-symptomatic carriers, and symptomatic carriers. Gray dots with 

extended lines in each violin plot represent the median ± SD. * represents level of p value 

significance. ***p < 0.001; **p < 0.01; *p < 0.05; ns = not significant.

(D) Correlation matrix corresponding to the Spearman correlations for the six proteins 

included in the predictive models, age, β-amyloid 42, pTau 181, and the pTau181/ABeta42 

ratio in non-carriers.
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Figure 6. Multiple biological process trajectories’ summary
Highlighted pathology process and enriched significant trajectory proteins in each module 

by chronological order and highlighted biological process of early stage of ADAD (M1). It 

includes normal state and early ADAD disease stage. x axis represents the EYO in years.
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