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MicroRNAs (miRNAs) play dual roles in acute lymphoblastic leukemia (ALL) as both tumor suppressors 
and oncogenes, and miRNA expression profiles can be used for patient risk stratification. Precise 
assessment of miRNA levels is crucial for understanding their role and function in gene regulation. 
Quantitative real-time polymerase chain reaction (qPCR) is a reliable, rapid, and cost-effective method 
for analyzing miRNA expression, assuming that appropriate normalization to stable references is 
performed to ensure valid data. In this study, we evaluated the stability of six commonly used miRNA 
references (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) across nine B-cell 
precursor (BCP) ALL cell lines, 22 patient-derived xenograft (PDX) BCP ALL samples from different 
organ compartments of leukemia bearing mice, and peripheral blood mononuclear cells (PBMCs) from 
six healthy donors. We used four different algorithms (Normfinder, ∆CT, geNorm, and BestKeeper) 
to assess the most stably expressed reference across all samples. Moreover, we validated our data in 
an additional set of 13 PDX ALL samples and six healthy controls, identifying miR-103a-3p and miR-
532-5p as the most stable references for miRNA normalization in BCP ALL studies. Additionally, we 
demonstrated the critical importance of using a stable reference to accurately interpret miRNA data.

MicroRNAs (miRNAs) are short, approximately 22-nucleotide-long RNAs that post-transcriptionally regulate 
gene expression, thereby playing significant roles in both physiological and pathological processes1. They are 
transcribed by RNA Polymerase II into long primary miRNAs (pri-miRNAs), which are then processed by 
the endonuclease DROSHA into ~ 60-nucleotide precursor miRNAs (pre-miRNAs). These pre-miRNAs are 
transported to the cytoplasm, where the endonuclease DICER produces mature miRNA duplexes. The guide 
strand of the mature miRNA incorporates into the RNA-induced silencing complex (RISC) with Argonaute 
proteins, targeting specific messenger RNAs for degradation or translational repression, thereby regulating gene 
expression post-transcriptionally1. As of today, nearly 2,000 human pri-miRNAs are cataloged in the miRBase 
database (https://www.mirbase.org)2, highlighting their broad potential in being involved in physiological and 
disease situations, particularly cancer and including acute lymphoblastic leukemia (ALL)3.

ALL is the most prevalent malignant disease in children and adolescents, with 5-year event-free survival 
rates exceeding 90% due to the implementation of standardized, intensive chemotherapy regimens4. Recently, 
immunotherapies targeting leukemia-specific antigens have further improved treatment outcomes and 
reduced chemotherapy-associated side effects5. However, relapses still occur and are linked to poor prognosis, 
underscoring the need for novel treatment strategies6.

MiRNAs in ALL can act as oncogenes or tumor suppressors, and their expression profiles are useful for 
patient risk stratification7,8. For example, the miR-497/195 cluster, which is epigenetically regulated in BCP ALL, 
controls the expression of cell cycle relevant genes and is associated with patient outcomes9, and differential 
miRNA expression might provide information to identify novel therapeutic targets3. In BCR::ABL1-positive 
ALL, for instance, downregulated miR-17 ~ 19 is associated with increased levels of the anti-apoptotic protein 
BCL-2. Targeting BCL-2 has been shown to reduce the proliferation and induce apoptosis of BCR::ABL-positive 
ALL cells10.

In the search for novel therapeutic targets and biomarkers, high-throughput technologies have been 
established, providing omics data with high potential interest. Next-generation sequencing and microarray 
hybridization are frequently used methods to detect miRNA expression profiles in ALL patients3. Both approaches 
collect reliable and comparable data, assuming the miRNA amount and quality of each sample to be constant. 
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Nevertheless, to re-validate the miRNA expression levels of interest, qPCR is regularly performed, which needs 
data normalization using a reference gene with a constant expressional level within the cohort of interest11,12. 
The choice of reference gene is crucial to produce reliable data and to allow the comparisons of expression levels 
across various samples and experiments13. In studies analyzing the role of miRNAs in ALL biology and disease 
progression, a variety of different references have been used14. In particular, when profiling ALL-associated 
miRNAs, the choice of solid references is pivotal to allow data comparisons of studies analyzing the biology of 
ALL compartmentalization, establishing novel ALL biomarkers, or searching for new therapeutical targets.

To study ALL biology and test new anti-leukemic drugs in preclinical settings, mouse xenograft models, such 
as the NOD/SCID/huALL model, are frequently used15. Transplanting human patient-derived xenograft (PDX) 
ALL samples into recipient mice resembles the human disease by leukemia manifestation in the spleen, bone 
marrow (BM), and central nervous system (CNS), thus allowing for the investigation of compartment-specific 
features of ALL16,17. Importantly, in PDX mouse models, cancer histology, immunophenotype, and disease-
driver mutations are preserved, enabling the study of leukemia biology across a subset of heterogeneous ALL 
samples18–20.

This study aimed at identifying reliable references in a series of BCP ALL cell lines and primary PDX samples 
derived from different organ compartments for normalization of miRNA expression data obtained by qPCR. 
We screened six references frequently used in ALL-associated miRNA studies9,21–25 and analyzed the expression 
in nine ALL cell lines, 22 PDX samples in the identification, and 13 PDX specimens in the validation cohort. 
We analyzed the stability of used references by four different methods (geNorm26, BestKeeper27, Normfinder28, 
∆CT29) and identified miR-103a-3p and miR-532-5p to be the most stably expressed miRNA references in ALL 
samples.

Results
Characterization of ALL samples included in the identification cohort
MiRNAs have been described to be expressed in a tissue-specific fashion30 with varying expression levels between 
different organ compartments23. We aimed at identifying the most stably expressed miRNA references in BCP 
ALL cell lines (NALM-6, REH, RS4;11, KOPN-8, UoCB6, RCH-ACV, MHH-CALL2, EU3, and HAL-01), and 
human leukemia PDX samples derived from spleen, BM, and CNS. To investigate the expressional stability of 
miRNA references in PDX ALL specimens, we intravenously transplanted 22 PDX samples into NOD/SCID mice. 
Upon the onset of leukemia-related morbidity, leukemia cells were isolated from different organ compartments 
for further analysis. To validate the engraftment in the spleen, BM, and CNS, we analyzed the samples for the 
percentage of human CD19 by flow cytometry. For the analysis of miRNA references within these samples, we 
have chosen samples that were detected > 25% viable according to FSC/SSC criteria and presenting with > 60% 
human CD19-positive cells (Fig.  1), thereby identifying 22 spleen-, 22 BM-, and 12 CNS-derived leukemia 
samples which is concordant with previous findings on varying CNS engraftment phenotypes17. To detect copy 
number alterations, insertions, and deletions relevant to ALL biology and patient-risk stratification31 in the PDX 
specimens, we have performed multiplex ligation-dependent probe amplification (MLPA) on spleen-derived 
ALL cells identifying a heterogenous prevalence of genetic alterations within the identification cohort (Fig. 2).

Selection of miRNA references
For data normalization, miRNA references are accepted that are abundantly expressed, show the same stability 
and size as miRNAs, and have similar expression levels within the cohort. The group of small nuclear/nucleolar 

Fig. 1.  PDX sample selection of the identification cohort. 22 PDX ALL samples were intravenously 
transplanted into NOD/SCID mice. Upon leukemia-related morbidity, mice were sacrificed, and human 
leukemia cells were isolated as described previously8,9. Samples were stained for human CD19 and murine 
CD45 and subsequently analyzed according to FSC/SSC criteria determining the percentage of viable cells. 
Samples with > 25% viable cells (left) were further analyzed according to the percentage of human CD19-
positive leukemia cells (middle). 22 BM-, and spleen-, and 12 CNS-derived PDX ALL samples with > 25% 
viable and > 60% human CD19 were chosen for RNA extraction. PDX samples that were excluded according 
to FSC/SSC (left) are marked identically when analyzed for CD19-positivity (middle). PDX: patient-derived 
xenograft; ALL: acute lymphoblastic leukemia; FSC/SSC: forward scatter/side scatter; BM: bone marrow; CNS: 
central nervous system.
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RNAs, ribosomal RNAs, and stably expressed miRNAs meet the criteria of frequently used miRNA references32–34. 
Additionally, based on literature research, we selected relevant miRNA references considering (I) their previous 
application in ALL studies14,35, (II) their role in data normalization in prior ALL xenograft research9, (III) their 
stability in peripheral blood mononuclear cells (PBMCs) from healthy controls22,36,37, and (IV) their expression 
levels across various human tissues allowing taking into account organ-specific ALL manifestation23,34,37 (Fig. 3 
and Table 1). Applying this strategy, we selected six different miRNA references, including nuclear (RNU6 and 
RNU1A1), nucleolar (SNORD44), and ribosomal (5sRNA) RNAs, and miRNAs (miR-103a-3p and miR-532-5p) 
analyzing their expression stability in our cohort samples.

MiRNA references are abundantly expressed in the cohort samples (Fig. 4). Although SNORD44 expression 
varies significantly across different organ compartments, the expression levels of other references remain 
stable within the cohort (Fig. 4). The mean CT values ranged from 15.85 for 5sRNA to 28.98 for miR-532-5p 
(Supplementary Table 1). Next, we analyzed the most stably expressed miRNA reference within the identification 
cohort (ALL cell lines and PDX ALL specimens) using four different approaches: (1) Normfinder estimating the 
expression variation amongst cohort samples28, (2) ∆CT method of pairs of genes calculating the mean and 
standard deviations (STD) within the cohort samples and subsequently determining the most stably expressed 
reference according to the least mean STD29, (3) geNorm calculating the average pairwise variations of a set of 
references26, and (4) BestKeeper calculating the STD of the geometric means of the samples per reference finally 
identifying the most stably expressed reference according to the least deviation27. Finally, we applied RefFinder53 
to rank the reference genes according to their performance in the different algorithms.

When Normfinder was used, miR-532-5p followed by miR-103a-3p were identified to be the most stably 
expressed miRNA references (Fig.  5A). Interestingly, when we applied grouping to our samples (4 groups, 
namely cell lines, PDX spleen, PDX BM, and PDX CNS), the Normfinder algorithm again identified miR-532-
5p as having the best stability value across the groups (Fig. 5B). In the next step, we applied the BestKeeper 
algorithm. Consistent with the Normfinder data, miR-532-5p, followed by miR-103a-3p, showed the least STD 
(Fig. 5C). Further, we applied the geNorm algorithm, identifying that the use of miR-532-5p along with miR-
103a-3p was best suitable for qPCR data normalization (Fig. 5D). Last, we applied the ∆CT identifying miR-
103a-3p (mean STD: 2.215) followed by miR-532-5p (mean STD: 2.220) as the most stable miRNA references 
within the ALL sample cohort (Fig. 5E-F and Table 2).

To sum up, the RefFinder algorithm was applied to finally rank the performance of miRNA references. The 
geometric mean of ranking values identified miR-532-5p followed by miR-103a-3p as the most stable miRNA 
references that can be used for data normalization of qPCR studies in the identification cohort of ALL samples 
(Fig. 6 and Table 3).

Influence of sample type on reference gene
Next, we evaluated the expression levels of miRNA references in peripheral blood mononuclear cells (PBMCs) 
of 6 healthy controls (HCs; 3 female and 3 male). The mean CT values ranged from 15.75 for 5sRNA to 24.95 
for miR-532-5p (Supplementary Table 2). We identified the miRNA references heterogeneously expressed in 
PBMCs of HCs, with SNORD44 showing the smallest STD of 1.185 (Fig.  7A). Accordingly, when applying 
either the Normfinder (Fig. 7B), BestKeeper (Fig. 7C), or ∆CT algorithm (Fig. 7D, E, and Table 4), SNORD44 
was identified as the most stable reference to be used in miRNA studies on PBMCs from HCs. The expression 

Fig. 2.  Patient sample characteristics of the identification cohort. Spleen-derived ALL cells were subjected 
to multiplex ligation-dependent probe amplification, characterizing the samples for frequently detected 
genetic alterations in ALL. ALL: acute lymphoblastic leukemia; PDX: patient-derived xenograft; TTL: time to 
leukemia.
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of SNORD44 and RNU6 were detected as reliable references in PBMCs when the geNorm algorithm was 
used (Fig. 7F). These data were further substantiated when the RefFinder algorithm was applied, identifying 
SNORD44 as the most stable reference to be used in miRNA studies on PBMCs derived from HCs (Fig. 8 and 
Table 5).

Interestingly, when we included the data of PBMCs into the ALL sample cohort (cell lines and PDX) 
and applied the RefFinder algorithm, we identified miR-103a-3p followed by miR-532-5p as the most stable 
references (Fig. 9A and Table 6). Importantly, according to the RefFinder ranking of PDX ALL samples and HCs 
(both groups considered separately; Fig. 9B), the choice of reference gene has a more pronounced effect on the 
ALL samples, as evidenced by larger score variations for some references, including miR-103a-3p and miR-532-
5p. Moreover, to analyze inherent differences between samples derived from ALL specimens and HC, we used 
the Normfinder algorithm applying grouping to our samples (ALL and HC) and identified stable RNU6 and 
RNU1A1 levels (Fig. 9C). This demonstrates low expressional variation within sample types when using RNU6 

RNU6 RNU1A1 SNORD44 5sRNA miR-103a-3p miR-532-5p

Reference type Nuclear Nuclear Nucleolar Ribosomal miRNA miRNA

Used in ALL studies 14,35 21* 22* 23

Used in ALL xenograft studies 9,38–42 43 9

Used in miRNA studies on HCs 44–49 36,44,49 36,49

Analyzed for tissue specificity 34,50,51 37 34 52

Table 1.  Strategy for selecting miRNA references. *Not included in Fig. 3 as not mentioned in reviews; ALL: 
acute lymphoblastic leukemia, HC: healthy control.

 

Fig. 3.  Strategy for selecting miRNA references. Exclusion criteria included review articles, studies on non-
human samples or on pathogenic/non-BCP-ALL related diseases, studies focusing on gender-associated 
miRNAs or tissue not affected by ALL manifestation, studies published in languages other than English, and 
studies in which no data concerning the use of miRNA references were included. BCP ALL: B-cell precursor 
acute lymphoblastic leukemia; #number: reference in the corresponding article. Created in BioRender. Meyer, 
L. (2024) https://BioRender.com/l04p234
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or RNU1A1 for data normalization, also reflected by low RefFinder score variations of these miRNA comparing 
ALL and HC specimens (Fig. 9B).

Validation cohort
To validate miR-532-5p and miR-103a-3p as reliable references in BCP ALL studies, we additionally analyzed 
13 PDX ALL samples with viability exceeding 25% based on FSC/SSC and over 60% positivity for human CD19. 
Due to poor RNA quality, three samples were excluded, leaving 12 spleen-, 12 BM-, and 7 CNS-derived ALL 
samples for validation (Supplementary Fig. 1).

The CT values in the validation cohort ranged from 11.24 for 5sRNA to 31.93 for miR-532-5p 
(Supplementary Fig.  2 and Supplementary Table 3). Applying the Normfinder (Supplementary Fig.  3A), 
BestKeeper (Supplementary Fig. 3B), or ∆CT algorithm (Supplementary Fig. 3C-D and Supplementary Table 
4) to the validation cohort identified miR-103a-3p as the most reliable miRNA reference. When we grouped 
the samples according to the site of infiltration (spleen, BM, CNS), the stability of miR-103a-3p remained high 
ranking second with 5sRNA ranking first (Supplementary Fig. 3E). Interestingly, although performing worse in 
the previous algorithms, miR-532-5p in combination with miR-103a-3p was identified as the best combination 
according to the geNorm algorithm (Supplementary Fig. 3F). Moreover, RefFinder identified miR-103a-3p as 
the most reliable miRNA, with miR-532-5p ranking third (Fig. 10 and Table 7).

To assess the influence of sample type on reference gene expression, we assessed miRNA expression levels 
in six additional PBMCs of HCs (3 female and 3 male). The mean CT values ranged from 12.7 for 5sRNA to 
29.69 for miR-532-5p (Supplementary Table 5) with heterogenous expression of the miRNA references in the 
validation cohort of HCs (Supplementary Fig. 4A). SNORD44 was identified as most stably expressed when 
either the Normfinder (Supplementary Fig. 4B) or BestKeeper algorithm (Supplementary Fig. 4C) were used. 
Applying the ∆CT (Supplementary Fig.  4D, E and Supplementary Table 6) or geNorm algorithm identified 
5sRNA and 5sRNA/RNU6 to be used as reliable references, respectively (Supplementary Fig.  4F). Despite 

Fig. 4.  Expression of miRNA references in PDX ALL specimens and ALL cell lines of the identification cohort. 
The expression of RNU6, RNU1A1, SNORD44, miR-532-5p, miR-103a-3p, and 5sRNA were analyzed in 
previous-defined PDX ALL samples derived from spleen (n = 22), BM (n = 22), or CNS (n = 12), and in ALL 
cell lines (n = 9). Kruskal–Wallis test was applied to test whether the median CT values of miRNA references 
vary amongst the ALL sample groups. PDX: patient-derived xenograft; ALL: acute lymphoblastic leukemia; 
BM: bone marrow; CNS: central nervous system.
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5sRNA ranking first in the RefFinder algorithm, SNORD44 still demonstrated stable expression, validating its 
reliability as a reference gene in PBMCs of HCs (Fig. 11).

Applying the RefFinder algorithm to the combined PDX ALL samples and HC specimens of the validation 
cohort identified miR-103a-3p as most stably expressed (Supplementary Fig.  5A, Supplementary Table 
7). Importantly, also in the validation cohort, some miRNA references are characterized by increased score 
variations in ALL samples compared to HCs (Supplementary Fig. 5B). However, assessing intrinsic sample type 
differences by applying grouping to the Normfinder algorithm (ALL samples and HCs) still identified miR-103a-
3p as the most stable reference in the combined cohort (Supplementary Fig. 5C).

Influence of reference gene selection on miRNA expression in ALL
Selecting stably expressed miRNA references is critical for accurately identifying true biological differences in 
miRNA expression levels13. Therefore, we aimed at evaluating the consequences of choosing stably or varying 
expressed miRNA references on the expression data of miRNAs in PDX ALL samples. We assessed the expression 
of miR-181a-5p, which was shown to be consistently overexpressed in ALL patients as compared to healthy 
controls14 in BM ALL PDX samples in comparison to PBMCs of HCs. First, we aimed at demonstrating the 
applicability and relevance of xenograft-derived data in reflecting patient-specific features in terms of miRNA 
expression levels. Therefore, we analyzed the expression of miRNA references in a set of primary patient samples, 
which were used to establish the mouse model. Notably, we identified a significant positive correlation between 
patient- and xenograft-derived miRNA expression levels (Supplementary Fig. 6 and Supplementary Table 8). 
Next, we assessed the expression of miR-181a-5p in the identification cohort (Supplementary Table 1) in relation 
to miR-532-5p (most stably expressed in ALL samples; Fig. 6), miR-532-5p/miR-103a-3p (combining the most 
stable miRNA references in ALL and HCs specimens; Fig. 9A), or SNORD44 (most stably expressed in HCs; 
Fig. 8).

As shown in Fig. 12A-C, miR-181a-5p is significantly upregulated in BM-derived ALL samples as compared 
to HCs independent of the miRNA reference used. However, when using 5sRNA, the worst performing miRNA 

Fig. 5.  Stability of miRNA references in PDX ALL samples and ALL cell lines of the identification cohort. 
Expression stability within the cohort samples was analyzed applying the Normfinder (A and B; A: samples 
clustered in 1 group; B: samples sorted in 4 groups according to spleen-, BM-, CNS-derived PDX samples, and 
ALL cell lines), BestKeeper (C), geNorm (D), or ∆CT algorithm (E and F). For A-E: decreasing values indicate 
increasing stability. F: ∆CT calculations based on CT[reference 1] – CT[reference 2]; mean CT values with min 
to max whiskers are shown. PDX: patient-derived xenograft; ALL: acute lymphoblastic leukemia.
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Fig. 6.  RefFinder on PDX ALL samples and ALL cell lines of the identification cohort. Mean of ranking 
according to the Normfinder, BestKeeper, geNorm, and ∆CT method applying the RefFinder algorithm. 
Decreasing values indicate increasing stability. PDX: patient-derived xenograft; ALL: acute lymphoblastic 
leukemia.

 

Mean STD Mean STD

RNU6 vs miR-103a-3p  0.3925 2.339

RNU6 vs 5sRNA 8.302 3.8

RNU6 vs RNU1A1  4.632  2.233

RNU6 vs SNORD44 1.361 1.89

RNU6 vs miR-532-5p − 4.826 2.416 2.536

miR-103a-3p vs RNU6 − 0.3925 2.339

miR-103a-3p vs 5sRNA 7.909 3.297

miR-103a-3p vs RNU1A1 4.24 2.252

miR-103a-3p vs SNORD44 0.9681 2.066

miR-103a-3p vs miR-532-5p − 5.219 1.123 2.215

5sRNA vs RNU6 − 8.302 3.8

5sRNA vs miR-103a-3p − 7.909 3.297

5sRNA vs RNU1A1 − 3.67 2.268

5sRNA vs SNORD44 − 6.941 4.189

5sRNA vs miR-532-5p − 13.13 3.166 3.344

RNU1A1 vs RNU6 − 4.632 2.233

RNU1A1 vs miR-103a-3p − 4.24 2.252

RNU1A1 vs 5sRNA 3.67 2.268

RNU1A1 vs SNORD44 − 3.271 2.702

RNU1A1 vs miR-532-5p − 9.458 2.126 2.316

SNORD44 vs RNU6 − 1.361 1.89

SNORD44 vs miR-103a-3p − 0.9681 2.066

SNORD44 vs 5sRNA 6.941 4.189

SNORD44 vs RNU1A1 3.271 2.702

SNORD44 vs miR-532-5p − 6.187 2.268 2.623

miR-532-5p vs RNU6 4.826 2.416

miR-532-5p vs miR-103a-3p 5.219 1.123

miR-532-5p vs 5sRNA 13.13 3.166

miR-532-5p vs RNU1A1 9.458 2.126

miR-532-5p vs SNORD44 6.187 2.268 2.220

Table 2.  Mean of ∆CT values and STD of PDX ALL samples and ALL cell lines of the identification cohort. 
PDX: patient-derived xenograft; ALL: acute lymphoblastic leukemia; STD: standard deviation.
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reference in the cohort of ALL and HCs (Fig.  9A), no significant increase was observed in miR-181a-5p 
expression in BM PDX specimens as compared to HCs (Fig. 12D). The effect of using distinct references with 
varying stability was also reflected in the STD of miR-181a-5p expression in BM PDX ALL samples ranging from 
0.9173, to 1.029, 15.46, and 21.28 for miR-532-5p, the combination miR-532-5p/miR-103a-3p, SNORD44, or 
5sRNA, respectively (Fig. 12E).

In line with these analyses, we evaluated the expression of miR-181a-5p in BM-derived ALL cells as compared 
to PBMCs from HCs in the validation cohort (Supplementary Table 3). MiR-181a-5p expression levels were 
normalized to miR-103a-3p (most stably expressed in ALL samples; Fig. 10), miR-103a-3p/5sRNA (most stable 
references in ALL and HCs; Supplementary Fig. 5A), 5sRNA (most stable reference in PBMCs derived from 
HCs; Fig. 11), and to RNU6 (worst performing reference; Supplementary Fig. 5A). While increased expression 
levels of miR-181a-5p were observed in BM-derived PDX ALL samples when normalized to miR-103a-3p 
(Fig. 12F) or the combination of miR-103a-3p/5sRNA (Fig. 12G), normalization using 5sRNA (Fig. 12H) or 
RNU6 (Fig. 12I) did not reveal significantly altered miR-181a-5p levels. The STD of miR-181a-5p expression 

Fig. 7.  Expression and stability of miRNA references in healthy controls of the identification cohort. (A) 
Expression of miRNA references are depicted as CT values. Expression stability within healthy controls was 
analyzed by applying the Normfinder (B), BestKeeper (C), ∆CT (D and E), or geNorm algorithm (F). For 
A-D and F, decreasing values indicate increasing stability. E: ∆CT calculations based on CT[reference 1] – 
CT[reference 2]; mean CT values with min to max whiskers are shown.

 

miRNA reference

Rank

RefFinder Normfinder [Stability Value] BestKeeper [STD]
geNorm
[Stability Value]

∆CT
[Means of STD]

miR-532-5p 1 1.194 0.954 1.124★ 2.22

miR-103a-3p 2 1.209 0.963 1.124★ 2.216

RNU1A1 3 1.218 1.538 2.142 2.317

RNU6 4 1.818 1.756 2.017 2.536

SNORD44 5 2.046 1.777 1.819 2.623

5sRNA 6 3.038 2.318 2.543 3.344

Table 3.  RefFinder ranking of PDX ALL samples and ALL cell lines of the identification cohort. *Best 
performance in data normalization using miR-532-5p and miR-103a-3p in combination according to geNorm 
algorithm. PDX: patient-derived xenograft; ALL: acute lymphoblastic leukemia; STD: standard deviation.
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Fig. 8.  RefFinder on healthy controls of the identification cohort. Mean of ranking according to the 
Normfinder, BestKeeper, geNorm, and ∆CT method applying the RefFinder algorithm. Decreasing values 
indicate increasing stability.

 

Mean STD Mean STD

RNU6 vs miR-103a-3p 0.8783 2.418

RNU6 vs 5sRNA 5.7 1.761

RNU6 vs RNU1A1 4.268 1.867

RNU6 vs SNORD44 1.797 1.244

RNU6 vs miR-532-5p − 3.505 2.406 1.9392

miR-103a-3p vs RNU6 − 0.8783 2.418

miR-103a-3p vs 5sRNA 4.822 1.295

miR-103a-3p vs RNU1A1 3.39 2.789

miR-103a-3p vs SNORD44 0.9183 1.809

miR-103a-3p vs miR-532-5p − 4.383 2.424 2.147

5sRNA vs RNU6 − 5.7 1.761

5sRNA vs miR-103a-3p − 4.822 1.295

5sRNA vs RNU1A1 − 1.432 2.28

5sRNA vs SNORD44 − 3.903 1.907

5sRNA vs miR-532-5p − 9.205 2.596 1.9678

RNU1A1 vs RNU6 − 4.268 1.867

RNU1A1 vs miR-103a-3p − 3.39 2.789

RNU1A1 vs 5sRNA 1.432 2.28

RNU1A1 vs SNORD44 − 2.472 2.085

RNU1A1 vs miR-532-5p − 7.773 1.441 2.0924

SNORD44 vs RNU6 − 1.797 1.244

SNORD44 vs miR-103a-3p − 0.9183 1.809

SNORD44 vs 5sRNA 3.903 1.907

SNORD44 vs RNU1A1 2.472 2.085

SNORD44 vs miR-532-5p − 5.302 1.865 1.782

miR-532-5p vs RNU6 3.505 2.406

miR-532-5p vs miR-103a-3p 4.383 2.424

miR-532-5p vs 5sRNA 9.205 2.596

miR-532-5p vs RNU1A1 7.773 1.441

miR-532-5p vs SNORD44 5.302 1.865 2.1464

Table 4.  Mean of ∆CT values and STD of PBMCs from healthy controls of the identification cohort. PBMC: 
peripheral blood mononuclear cells; HC: healthy controls; STD: standard deviation.
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ranged from 1.102 to 0.9512, 1.114, and 30.38 when normalized to miR-103a-3p, miR-103a-3p/5sRNA, 5sRNA 
or RNU6, respectively (Fig. 12J).

Discussion
Understanding the molecular biology that gives rise to ALL is the basis for developing novel treatment modalities. 
Recent advances have been made in analyzing the role of miRNAs in leukemogenesis, response to therapy, and 
patient outcome, substantiating that the identification of novel oncogenic or tumor-suppressive ALL-associated 
miRNAs can be useful for the development of novel therapies7. MiRNA expression can be detected using various 
methods, including microarrays and qPCR with miRNA-specific primers or probes32. While microarrays enable 

miRNA reference

Rank

RefFinder Normfinder [Stability Value] BestKeeper [STD] geNorm [Stability Value]
∆CT
[Means of STD]

miR-103a-3p 1 1.246 1.145 1.277★ 2.244

miR-532-5p 2 1.309 1.227 1.277★ 2.272

RNU1A1 3 1.229 1.573 2.141 2.32

SNORD44 4 1.972 1.816 1.85 2.579

RNU6 5 1.765 1.821 2.025 2.507

5sRNA 6 3.044 2.239 2.546 3.356

Table 6.  RefFinder ranking of ALL cell lines, PDX ALL samples, and HCs of the identification cohort. *Best 
performance in data normalization using miR-103a-3p and miR-532-5p in combination according to geNorm 
algorithm. HCs: healthy controls; STD: standard deviation.

 

Fig. 9.  Influence of sample type on miRNA reference stability in the identification cohort. (A) Mean of ranking 
according to the Normfinder, BestKeeper, geNorm, and ∆CT method applying the RefFinder algorithm to 
the combined cohort of HCs and PDX ALL samples (BCP ALL cell lines, PDX ALL samples including spleen, 
BM, and CNS). (B) Combined graph of RefFinder results of PDX ALL samples (including cell lines and 
PDX specimens) and HCs as depicted in Fig. 6 and Fig. 8, respectively. (C) Stability values according to the 
Normfinder algorithm applying grouping (HCs and PDX) to the combined cohort. Decreasing values indicate 
increasing stability. BCP ALL: B-cell precursor acute lymphoblastic leukemia; PDX: patient-derived xenograft; 
HC: healthy control.

 

miRNA reference

Rank

RefFinder Normfinder [Stability Value] BestKeeper [STD] geNorm [Stability Value]
∆CT
[Means of STD]

SNORD44 1 0.937 0.848 1.243★ 1.782

RNU6 2 1.322 1.457 1.243★ 1.939

RNU1A1 3 1.59 1.166 1.732 2.094

miR-532-5p 4 1.673 0.98 1.818 2.146

5sRNA 5 1.377 1.35 1.945 1.968

miR-103a-3p 6 1.709 1.172 2.012 2.147

Table 5.  RefFinder ranking of HCs of the identification cohort. *Best performance in data normalization using 
SNORD44 and RNU6 in combination according to geNorm algorithm. HCs: healthy controls; STD: standard 
deviation.
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Fig. 11.  RefFinder on healthy controls of the validation cohort. Mean of ranking according to the Normfinder, 
BestKeeper, geNorm, and ∆CT method applying the RefFinder algorithm. Decreasing values indicate 
increasing stability.

 

miRNA reference

Rank

RefFinder Normfinder [Stability Value] BestKeeper [STD]
geNorm
[Stability Value]

∆CT
[Means of STD]

miR-103a-3p 1 0.926 0.757 0.908★ 1.601

5sRNA 2 1.025 0.777 1.174 1.694

miR-532-5p 3 1.643 0.833 0.908★ 1.961

SNORD44 4 1.222 1.364 1.502 1.83

RNU1A1 5 1.232 1.786 1.692 1.783

RNU6 6 1.819 2.319 1.828 2.101

Table 7.  RefFinder ranking of PDX ALL samples of the validation cohort. *Best performance in data 
normalization using miR-103a-3p and miR-532-5p in combination according to geNorm algorithm. PDX: 
patient-derived xenograft; ALL: acute lymphoblastic leukemia.

 

Fig. 10.  RefFinder on PDX ALL samples of the validation cohort. Mean of ranking according to the 
Normfinder, BestKeeper, geNorm, and ∆CT method applying the RefFinder algorithm. Decreasing values 
indicate increasing stability. PDX: patient-derived xenograft; ALL: acute lymphoblastic leukemia.
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Fig. 12.  Influence of miRNA reference on analyzed miR-181a-5p expression in BM PDX ALL specimens. 
The expression of miR-181a-5p in PDX BM specimens as compared to HCs of the identification cohort was 
analyzed by normalizing the miRNA expression to miR-532-5p (A), miR-532-5p/miR-103a-3p (B), SNORD44 
(C), and 5sRNA (D). Analysis of STD of miR-181a-5p expression dependent on miRNA reference used for 
data normalization in the identification cohort (E). MiRNA-181a-5p expression in relation to miR-103a-3p 
(F), miR-103a-3p/5sRNA (G), 5sRNA (H), and RNU6 (I) was assessed in BM-derived ALL cells compared 
to HCs of the validation cohort. STD of miR-181a-5p expression in association with used reference in the 
validation cohort (J). Mann–Whitney U test. BM: bone marrow; PDX: patient-derived xenograft; ALL: acute 
lymphoblastic leukemia; STD: standard deviation.
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high-throughput analysis, qPCR is faster, simpler, and more sensitive. Regardless of the method, normalization 
is crucial to reduce technical variation and ensure accurate data interpretation13. Normalization can be absolute 
or relative32. Absolute normalization uses standard curves but doesn’t account for variations in RNA quality. In 
contrast, relative quantification relies on stable exogenous or endogenous references, with endogenous controls 
adjusting for sample variability, making them a more reliable option54. Tools, including those used in this study, 
help identify the most stable references for accurate normalization.

Here, we evaluated the expression of six endogenous references in BCP ALL specimens using qPCR and 
assessed their stability by applying four different algorithms. We show miR-103a-3p and miR-532-5p to be 
stably expressed and to be used for miRNA qPCR data normalization in ALL cell lines and PDX ALL samples 
derived from BM, spleen, and CNS (Fig. 13), enabling accurate analysis of miRNA expression levels in different 
organ compartments commonly infiltrated in ALL patients. Interestingly, a recent study analyzed the expression 
levels of 47 candidate miRNAs (including miR-532-5p and miR-103a-3p) in extracellular vesicles derived from 
cerebrospinal fluid of ALL patients and platelet-free serum from peripheral blood of healthy individuals. While 
miR-103a-3p was identified to be differentially expressed in extracellular vesicles derived from the cerebrospinal 
fluid of patients with and without CNS involvement, miR-532-5p was identified as most stably expressed and 
was thus used as the reference23. However, the expression stability of miR-532-5p and miR-103a-3p in BCP 
ALL cells obtained from BM, CNS, or peripheral blood of patients was not assessed in this study. In contrast, 
our study is the first to demonstrate that miR-532-5p in combination with miR-103a-3p is stably expressed in 
leukemia cells derived from BCP ALL cell lines and PDX samples obtained from different organ compartments.

By now, a variety of different miRNA references, such as miR-16 or RNU6, have been used in ALL studies 
evaluating miRNA expression levels14,35. However, we detected varying expression levels of frequently used 
miRNA references in our ALL samples, which was further substantiated by a differential stability ranking of 
these miRNAs when the control group of healthy individuals was included in the ALL cohort. In line, using 

Fig. 13.  Graphical summary. After establishing the xenograft mouse model, human leukemia cells from 
spleen, BM, and CNS were isolated and, together with cells from nine individual BCP ALL cell lines (NALM-6, 
REH, RS4;11, KOPN-8, UoCB6, RCH-ACV, MHH-CALL2, EU3, and HAL-01) and PBMCs derived from six 
human healthy donors, were subjected to miRNA isolation and cDNA synthesis. The expression levels of six 
standards (5sRNA, SNORD44, RNU6, RNU1A1, miR-103a-3p, and miR-532-5p) in all samples were analyzed 
by qPCR. Four different algorithms (geNorm, BestKeeper, Normfinder, ΔCT) were applied, identifying miR-
103a-3p and miR-532-5p as the most reliable references to be used in accurate qPCR normalization in miRNAs 
studies in BCP ALL xenografts. NOD/SCID/huALL: non-obese diabetic/severe combined immunodeficiency/
human acute lymphoblastic leukemia; BM: bone marrow; CNS: central nervous system; PBMC: peripheral 
blood mononuclear cell. Created in BioRender. Meyer, L. (2024) https://BioRender.com/z55z209
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miR-16 for miRNA data normalization55–57 should be considered cautiously as it was shown to be differentially 
expressed in ALL patients compared to healthy controls58–60. Similarly, RNU6 was detected as differentially 
expressed in breast carcinoma cells as compared to HCs61, thus highlighting the importance of evaluating the 
expression stability of miRNA references before being used in miRNA studies.

Varying expression levels of frequently used miRNA references also differ between healthy and diseased 
tissues. Although SNORD44 was identified as stably expressed in PBMCs derived from HCs in both the 
identification and validation cohort, the stability of miR-103a-3p and miR-532-5p remained high when analyzed 
in combination with ALL specimens. However, we recognize the potential bias due to the disproportionate 
sample sizes, as the smaller HC cohort may be overshadowed by the larger ALL cohort, potentially leading to an 
overrepresentation of stability scores from ALL specimens. Despite this, the increased ranking of miR-103a-3p 
was only observed in the identification cohort, as reflected in Normfinder grouping results, where RNU6 was 
identified as the most stable reference when intra-group variation was considered. In contrast, in the validation 
cohort, miR-103a-3p remained stable even upon Normfinder grouping, which is further supported by the low 
variation in ranking scores in PDX ALL samples across both cohorts.

In addition to their varying expression in pathological conditions, miRNAs are also differentially expressed 
across distinct cell types and cell populations61,62. The expression of miR-532-5p was described to be increased in 
monocytes and plasmacytoid dendritic cells but not in other immune cell subsets62. This is further substantiated 
by the observation that RNU6 expression levels differ in cancerous epithelial and mesenchymal cells61. Hence, 
we took advantage of the NOD/SCID/huALL xenotransplantation model, allowing us to analyze the expression 
of miRNA references in leukemia cells derived from different organ compartments. Importantly, the previously 
observed engraftment phenotype of different PDX samples presenting with high or minor CNS manifestation in 
the NOD/SCID mouse model17 was also observed within the ALL cohorts analyzed here. Interestingly, we also 
identified varying expression levels of frequently used miRNA references, pointing to a diverse expression in ALL 
specimens of different organ compartments. However, when applying grouping to the Normfinder algorithm 
to both the identification and validation cohort, the stability of miR-103a-3p (in both cohorts) and miR-532-
5p (in the identification cohort) was maintained high, substantiating the reliability of using these miRNAs for 
data normalization in miRNA studies on ALL specimens. GeNorm further strengthens these findings in both 
cohorts, confirming miR-103a-3p in combination with miR-532-5p as most stable references in ALL specimens. 
Importantly, geNorm uses pairwise comparisons to assess gene stability across all samples, identifying reference 
genes with minimal variation, even across different experimental conditions or biological variability, making 
this algorithm a robust method for selecting stable reference genes in heterogeneous cohorts, including ALL.

Besides organ- and tissue-specific expression patterns, miRNA profiles have also been used to identify ALL 
subgroups: B- and T-cell ALL patients can be distinguished according to miRNA expression levels63–65, and the 
cytogenetic BCP ALL subgroups of KMT2A-, ETV6::RUNX1-, PBX1-rearranged and hypodiploid cases were 
shown to cluster according to their miRNA profiles25. The number of samples used in this study does not allow 
us to draw conclusions about the stability of reference genes across different BCP ALL subgroups. However, we 
show that expression levels of miRNA references correlate between primary material and PDX samples derived 
from BM, indicating that, as in a previous study9, miRNA expression data obtained from xenografts is likely 
applicable to patient samples.

The profound effect of using miRNA references with varying expression stabilities was demonstrated 
when we used the least stable miRNA reference 5sRNA (identification cohort) and RNU6 (validation cohort) 
for data normalization analyzing the expression of miR-181a-5p in PDX BM as compared to HCs: Using 
inappropriate references with only minor expression stability resulted in a loss of statistical significance and, 
hence, diminishing the biological relevance of these findings. The importance of using stable miRNA references 
for data normalization extends beyond our findings. Inconsistent or unstable references can lead to skewed 
results, masking biologically relevant differences or producing false positives. This is in line with a previous 
study on human cardiac tissue, which analyzed the effect of miRNA references on the outcome of differential 
miRNA expression, showing that in case of small expressional differences, the use of a stable miRNA reference 
is of tremendous importance to detect significant miRNA expression changes66.

Several limitations should be considered when interpreting the findings of this study. First, we analyzed 
a relatively small sample size, particularly for the HC cohorts, and no patient-derived material was used in 
this study; instead, patient-derived xenograft models and cell lines were employed. While PDX models are 
valuable for mimicking patient biology18–20, they may not fully capture the complexities of primary human 
samples. However, our study allowed us to analyze expression levels across different organ compartments, 
which is often highly limited when working with patient-derived material. The study design also focused on 
validating a limited set of miRNA references rather than a broader, high-throughput array approach. This may 
have restricted the scope of miRNA profiling and prevented the discovery of other potentially stable miRNAs. 
Furthermore, laboratory-related factors, such as sample preparation and handling, likely influenced the results, 
as evidenced by the variation in CT values between the identification and validation cohorts. Such discrepancies 
suggest that technical factors could contribute to the differences in miRNA stability across cohorts. Additionally, 
the study did not account for miRNAs associated to the heterogeneity of ALL subtypes24,25. The inability to 
analyze miRNA stability in a subtype-specific manner is a significant limitation, as it prevents the identification 
of potential reference miRNAs that could be more suitable for specific ALL subtypes.

In conclusion, we provide the first study analyzing the stability of a variety of miRNA references in ALL 
cell lines and PDX specimens derived from different organ compartments and identifying miR-103a-3p and 
miR-532-5p as the most stably expressed reference miRNAs in BCP ALL models. Since patient-derived material 
from different organ compartments is exceedingly rare and difficult to obtain, our work with PDX ALL samples 
provides essential groundwork for future studies focusing on miRNAs as diagnostic or prognostic markers. 
Given the significant differences in miRNA reference expression stability between ALL specimens and HCs 
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and expressional variations between cohorts, we suggest evaluating the stability of standards within the sample 
cohort to avoid introducing bias due to varying reference levels.

Methods
Cell lines and cell culture
The ALL cell lines NALM-6, REH, RS4;11, KOPN-8, RCH-ACV, MHH-CALL2, EU3, and HAL-01 were 
obtained from the German Collection of Microorganisms and Cell Cultures GmbH (DSMZ, Braunschweig, 
Germany). UoC-B6 cells were kindly provided by Dr. Rowley, Chicago, USA. Cell lines were regularly tested 
for Mycoplasm contamination (MycoAlert® Mycoplasma Detection Kit, Lonza, Basel, Switzerland) and were 
authenticated by short-tandem repeat profiling (GenePrint® 10 System, 12 Promega Madison, Wisconsin, USA). 
Cells were cultured in RPMI-1640 supplemented with 20% fetal calf serum, 1% L-glutamine, and 1% penicillin/
streptomycin (Thermo Fisher Scientific, Waltham, NA, USA).

PDX samples
Peripheral blood or BM of pediatric patients diagnosed with B-cell precursor ALL were obtained after informed 
consent was given by the patient and/or their legal guardian after approval and in accordance with the local 
ethical review board (Ethikkommission der Universität Ulm; No. 461/19). Animal experiments were approved 
by the appropriate authority (Tierschutz-Fachreferat 35, Regierungspräsidium Tübingen; No. V.048) and 
were performed in accordance with local guidelines and regulations, complying with the ARRIVE guidelines. 
3–10 × 106 leukemia cells were intravenously transplanted into NOD/SCID (NOD.Cg-Prkdcscid/J) mice. At the 
time of leukemia-related morbidity, mice were sacrificed, and leukemia cells engrafted in the spleen, BM, and 
CNS were isolated9,17. Leukemia loads in the different organ compartments were analyzed by flowcytometric 
stainings of cells using APC anti-human CD19 and PE anti-mouse CD45 antibodies (BD Biosciences, Franklin 
Lakes, NJ, USA), and viability of cells was analyzed according to forward and side scatter (FSC/SSC) criteria 
using the BD® LSR II Flow Cytometer (BD Biosciences, Franklin Lakes, NJ, USA).

PBMCs from HCs
To analyze the expression of miRNA references and miR-181a-5p in peripheral blood mononuclear cells 
(PBMCs) of HCs, we obtained buffy coats from anonymous blood healthy donors from the Institute of Clinical 
Transfusion Medicine and Immunogenetics Ulm. Donors provided written informed consent to the blood being 
used for research purposes according to local regulations (Ethikkommission der Universtät Ulm).

MLPA
PDX ALL samples were analyzed for the presence of genetic alterations performing SALSA MLPA analyses. We 
extracted DNA of leukemia cells derived from the spleen (QIAmp DNA Blood Kit, Qiagen, Hilden, Germany) 
and used MRC Holland probe mix P335 to assess copy number variations and single nucleotide polymorphisms 
according to the manufacturer’s instructions. We have denaturated 50–100 ng DNA containing 10 mM Tris–HCL 
pH 8–8.5 at 98 °C for 5 min. Subsequently, the probe mix was added and hybridized for 16 h at 60 °C. Following 
the manufacturer’s instructions, the ligation and PCR reactions were prepared. Capillary electrophoresis was 
performed using the GeneScan™ 500 ROX™ Dye Size Standard and was run on Applied Biosystems™ 3500xL 
Genetic Analyzer (ThermoFisher Scientific, Waltham, NA, USA). MLPA data were analyzed using Coffalyser.
Net™ (version 24.0.1; https:​​​//w​ww.mrcholl​and​.com/techn​ology/so​ft​ware/cof​falyser-net; MRC Holland, 
Amsterdam, Netherlands).

RNA extraction and cDNA synthesis
Total RNA was extracted using the Quick-RNA Miniprep Kit (Zymo Research, Freiburg, Germany), and 
concentration was determined at 260 nm using the NanoDrop 2000 (ThermoFisher Scientific, Waltham, NA, 
USA). Reverse transcription of miRNAs was performed on 20  ng RNA using the miRCURY LNA RT Kit 
(Qiagen, Hilden, Germany) following the manufacturer’s instructions.

qPCR
Expression levels of miRNAs were assessed by qPCR with the miRCURY LNA SYBR Green PCR Kit and the 
miRCURY LNA miRNA PCR Assay (Qiagen, Venlo, Netherlands) using primers for RNU6 (YP00203907), 
RNU1A1 (YP00203909), SNORD44 (YP00203902), 5sRNA (YP00203906), miR-103a-3p (YP00204063), miR-
532-5p (YP00204221), and miR-181a-5p (YP00206081).

Statistics and Software
The 2-∆∆CT method was used to analyze miRNA expression profiles in relation to references67. Prism 10 (version 
10.3.1; https://www.graphpad.com/; GraphPad software, Boston, MA, USA) was used for graphical illustration 
and statistical analyses. A p-value p < 0.05 was considered significant. Expressional stability applying the ∆CT 
algorithm was analyzed according to reference29. The online free-available tools Normfinder28 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​m​
o​m​a​.​d​k​/​s​o​f​t​w​a​r​e​/​n​o​r​m​f​i​n​d​e​r​​​​​)​, geNorm26 (https://genorm.cmgg.be/), BestKeeper27 ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​e​n​e​-​q​u​a​n​t​i​f​i​
c​a​t​i​o​n​.​d​e​/​b​e​s​t​k​e​e​p​e​r​.​h​t​m​l​​​​​)​, and RefFinder53 (https://www.ciidirsinaloa.com.mx/RefFinder-master/) were used 
to evaluate the stability of miRNA expression. Flow cytometry data were analyzed using FlowJo™ (version 10.4; 
https://www.flowjo.com/; Ashland, OR, USA).
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