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Unsupervised representation learning of
Kohn–Sham states and consequences for
downstream predictions of many-body
effects

Bowen Hou, Jinyuan Wu & Diana Y. Qiu

Representation learning for the electronic structure problem is a major chal-
lenge of machine learning in computational condensed matter and materials
physics. Within quantum mechanical first principles approaches, density
functional theory (DFT) is the preeminent tool for understanding electronic
structure, and the high-dimensional DFT wavefunctions serve as building
blocks for downstream calculations of correlated many-body excitations and
related physical observables. Here, we use variational autoencoders (VAE) for
the unsupervised learning of DFT wavefunctions and show that these wave-
functions lie in a low-dimensional manifold within latent space. Our model
autonomously determines the optimal representation of the electronic struc-
ture, avoiding limitations due to manual feature engineering. To demonstrate
the utility of the latent space representation of the DFTwavefunction, we use it
for the supervised training of neural networks (NN) for downstreamprediction
of quasiparticle bandstructures within the GW formalism. The GW prediction
achieves a low error of 0.11 eV for a combined test set of two-dimensional
metals and semiconductors, suggesting that the latent space representation
captures key physical information from the original data. Finally, we explore
the generative ability and interpretability of the VAE representation.

Recently, machine learning (ML) has emerged as a powerful tool in
condensed matter and materials physics, achieving substantial pro-
gress across areas including the identification of phase transitions1–7,
quantum state reconstruction8–10, prediction of topological order11,12,
symmetry13–19 and the study of electronic structure20–23. Among these
ML applications, exploring the electronic structure of real materials is
of particular interest, since it allows for the extension of computa-
tionally intensive predictive quantum theories to understand the
physics of larger and more complex systems, such as moiré
systems13,24–32 and defect states33–39. Within atomistic first principles
theories, density functional theory (DFT)40 is themost commonly used
approach for studying the electronic structure of materials. In princi-
ple, DFT gives accurate descriptions of the ground state charge

density, but quantitative prediction of excited-state properties
(including bandstructure) requires the introduction of excitations
from the many-body ground state41,42. However, DFT can be used as a
starting point for many-body calculations, where the wavefunctions
within Kohn–ShamDFT are used to construct correlation functions for
the excited states43,44. Therefore, harnessing the information embed-
ded in the Kohn–Sham (KS) wavefunction40 becomes crucial for
downstream applications. Here, a key challenge lies in distilling a
succinct representation of the electronic structure while preserving
the essential information45.

In contrast to the notable achievements of ML descriptors for
crystal geometry and chemical composition46–50, the electronic struc-
ture of materials remains extremely challenging to learn. The high
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dimensionality of the KS wavefunction of real materials creates a
complex data structure, making direct pattern detection challenging.
Secondly, electronic structure is highly nonlinear and sensitive to both
crystal configuration and intricate non-local correlations, making it
difficult to develop a general ML model applicable across a broad
spectrum of materials. ML models for electronic structure have been
mostly confined to the study of specific subsets of materials, such as
molecules51, perovskites52–54, or layered transition metal dichalcogen-
ides (TMDs)55. In most of these approaches, theML has focused on the
prediction of single-valued properties, such as band gaps, largely due
to the challenges of identifying well-defined, interpretable, and effi-
cient representations of the electronic structure56–59. Recently, the
development of operator representations, which capture more
nuanced data about the underlying quantum states, has provided new
opportunities for the prediction of full band structures. These tech-
niques involve the physically informed selection of specific operators
as fingerprints. Examples include the early successful use of energy
decomposed operator matrix elements (ENDOME), combined with
radially decomposed projected density of states (RAE-PDOS), to pre-
dict quasiparticle (QP) band structures60, and the use of spectral
operator representations to predict material transparency61. However,
the choice of descriptors in such approaches is informed by human
physical intuition on the domain science side. This raises the question
of whether more fundamental or generalizable descriptors can be
learned, independent of human selection.

Variational autoencoders (VAEs)62,63, a class of probabilistic
models that combine variational inference with autoencoders used to
compress and decompress high dimensional data, stand out as a
promising tool for learning electronic structure in away that allows for
unsupervised training and thus avoids feature engineering. The
effectiveness of VAE compression has been demonstrated for various
applications across condensed matter physics, including quantum
state compression64, detection of critical features in phase transitions65

and decoupled subspaces66,67.
Here, we show that a well-crafted VAE is capable of representing

KS-DFT wavefunctions on a manifold within a significantly com-
pressed latent space, which is 103 � 104 times smaller than the ori-
ginal input. Importantly, these succinct representations retain the
physical information inherent in the initial data. To validate the effi-
cacy of the VAE latent space in practical applications, we then build a
supervised deep learning model for downstream prediction of
k-resolved quasiparticle energies within the many-body GW
approximation68,69, whose input includes VAE representations of KS
states. Thismodel yields amean absolute error (MAE) of 0.11 eV, when
applied to a test set of two-dimensional (2D) metals and insulators,
which is comparable to the intrinsic numerical error of the GW
approach32,44,70. Moreover, the VAE inherently predicts a smooth,
physically realistic band structure, in contrast with previous models,
which required an additional manually-imposed smoothing function
to remove unphysical variations60. Lastly, we address the interpret-
ability of the VAE representation and show that the success of elec-
tronic structure representation learning and downstream GW
prediction is derived from the smoothness of the VAE latent space,
which corresponds to the smoothness of thewavefunction in k-space.
Because of this property, the VAE can serve as a promising wave-
function generator capable of predicting realistic wavefunctions at
arbitrary points in latent space, which has the potential to be used for
both wavefunction interpolation in k-space and materials design and
discovery across the compositional phase space.

Results and discussion
VAE for electronic structure representation
As Fig. 1a shows, the architecture of our VAE consists of two com-
plementary sets of NN: the encoder (eθ) and the decoder (dθ). The
encoder maps the input of high-dimensional KS wavefunction moduli

jϕnk rð Þj 2 RRx ×Ry ×Rz to a low-dimensional vector (μ 2 Rp,σ 2 Rp) of
variational mean and deviation in the latent space. Here,
p≪Rx ×Ry ×Rz , where p represents the dimension of the latent space,
and Rx, y, z is the dimension of the real-spacewavefunctionϕnk(r) in the
unit cell, where the wavefunction is indexed by the band n and the
crystalmomentum (k-point) k. Conversely, the decoder, mirroring the
structure of the encoder, has an opposite function, which is to
reconstruct the input wavefunction from its low-dimensional latent
vector (μ,σ). In essence, the VAE can be conceptualized as an infor-
mation bottleneck for electronic structure, where the encoder acts as a
data refinement process, discarding redundant information and noise
from the input wavefunction. Meanwhile, the decoder ensures that
vital physical information is preserved for wavefunction recovery.
Since the KS state is essentially a spatial distribution with local pat-
terns, convolutional neural networks (CNN)71–74 provide a practical
framework for the first two layers of the encoder and decoder.

By imposing a distribution of latent variables close to a standard
normal distribution Nð0, IÞ during training, the VAE is capable of a
smoothmapping from the connected KS states jn,ki and jn,k+Δki to
nearby points in the latent space, enabling generative power after
training. We define the total VAE loss function as:

L=
1
T

XT
nk

jjjϕnkj � dθðeθðjϕnkjÞÞjj2 +β � 1
T

XT
nk

Xp
j = 1

1
2

�1 + σðjÞ2
nk +μðjÞ2

nk � log σðjÞ2
nk

� �

ð1Þ
where the first term is the mean squared error (MSE) of the recon-
structed wavefunctions, and the second term is the Kullback-Leibler
(KL) divergence, which forces the latent space to approach a normal
Nð0, IÞ distribution. The parameter β is the weight of KL divergence,
tuning the degree of regularization of the latent space. T is the total
number of KS states in the training set and, and j is an index in the
latent space.

Additionally, we design our VAE to respect rotational and trans-
lational symmetries of the crystal so that downstream prediction of
physical observableswill not varywith the choice of unit cell. As shown
in Fig. 1a, b, we insert a global average pooling (GAP)75 layer between
theCNNand thedense layer in the encoder.TheGAP layer allowsCNNs
to accept inputs of varying sizes and produce a fixed-length output,
which is crucial for the subsequent fully connected layers in the
encoder. By aggregating the spatial information of the feature maps,
the GAP layer also enforces translational invariancewith respect to the
unphysical degree of freedom that arises from the choice of the origin
of the unit cell. Then, we include a circular padding technique in the
CNNs76 to account for the periodic boundary conditions of the crystal
system. The first layer of the encoder features a discrete rotational
CNN77 along the lattice constant directions, which select out the
combined feature maps with maximum summation value to preserve
invariance to the choice of lattice vectors and direction. With such a
CNN, given the same material, data from any continuously complete
periodicity of a specific KS state will generate the same latent space.
This allows us to capture properties associated with physical symme-
tries of the crystalwithout explicitly including symmetry labels. Finally,
to ensure that the VAE-generated wavefunction’s size aligns with the
input, allowing us to define a proper loss function, we include an
adaptive layer as the final layer in our decoder.

By feedingDFTwavefunctions to our VAEmodel, we can interpret
the vector (μ,σ) in latent space as a low-dimensional effective repre-
sentation associated with the individual KS state. This representation
has several advantages: (i) it is smooth due to the smooth nature of the
neural network; (ii) it can handle translational invariance and periodic
boundary conditions, (iii) it can handle any symmetry and cell size; (iv)
even when trained with unit cell data, it can be extended to supercells
beyond a single unit cell. More details and benchmarks regarding the
VAE model are given in Supplementary Notes 1–3.
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Neural network for downstream prediction of GW band
structures
Due to its ground-state nature, DFT calculations can yield inaccurate
single-particle band structures and tend to underestimate the band gap
of semiconductors compared to experiment78–80. To incorporate the
many-electron correlation effects that are missing in DFT and obtain
accuratequasiparticle (QP)bandstructures, one can replace the effective
single-particle exchange correlation potential in DFT with non-local and
energy-dependent self energy calculated within the GW approximation
in many-body perturbation theory43,68,81,82. This approach proves highly
effective for computingQPbandstructures in awide rangeofmaterials43.
However, in practice, constructing a GW self-energy, even for small
systems70,81,83–86, ismuchmore computationally expensive thanDFT, and
this remains a bottleneck to the broader adoption of the GW approach
for high throughput studies. Therefore, in the context of understanding
materials’ excited-state properties, a natural approach is to use low-
fidelity techniques like density functional theory (DFT) to try andpredict
the results of high-fidelity, computationally intensive many-body calcu-
lations. Currently, most ML work in this field focuses on the use of
indirect predictors for model training, using, for instance, crystal geo-
metry, chemical composition, and the DFT bandgap as input46–49,56,57.
Thesemethods, however, are generally limited to single valueprediction
of the band gap, and only effective within specific subsets of materials,
such as inorganic solids59. Operator fingerprint methods like ENDOME
and RAD-PDOS extend predictive capability to k-resolved band struc-
tures, but the selection of features in these models heavily relies on
human intuition and can introduce unphysical fluctuations in band
structures, which are then smoothed in post-processing60. There have
also been ML models dedicated to predicting the screened dielectric
function87–89, which can speed up GW calculations but don’t provide
information that is generalizable to different systems.

Due to the challenging nature of capturing non-local frequency-
dependent correlations in the electronic structure, we select the
downstream prediction of GW bandstructures as proof of principle of
the effectiveness of our VAE latent vector representation of the KS
wavefunctions. We develop a supervised deep NN on top of the VAE
latent space to predictmany-body GWcorrections. The goal of this NN
is to successfully learn the diagonal part of GW self-energy ΣGW

nk
68,69:

Σ
GW

nk
=

i
2πV

X
GG0

XBZ
~q

Xall
m

Z 1

�1
dω0WGG0 ð~q,ω0Þ

×
ρnk,mk�qðGÞρ*

nk, mk�qðG0Þ
εn,k +ω0 � εm,k�q + iη � sgnðεm,k�q � μÞ

ð2Þ

where G is a reciprocal lattice vector; q is the difference between any
two k-vectors k� k0 and is integrated over the Brillouin zone (BZ); ε is
KS-DFT energy; and ρnk,mk�qðGÞ= nk eiðq +GÞr�� ��mk� q

� �
. WGG0 is the

screened Colomb interaction calculated within the random phase
approximation, and ω is the frequency dependence of the self energy.
Notably, the calculation of the GW self energy includes a sum over
infinite bands, m. In practice, the sum over states is treated as a
convergence parameter, and the number of bands included in the
summation is of the same order as the number of reciprocal lattice
vectors ~G included in W .

The diagonal self-energy matrix element for a specific state jn,ki
shown in Eq.(2) can be expressed as: ΣGW

nk = f ðϕnk, εnk,ϕ, ε,ρÞ, where
ϕnk 2 CRx ×Ry ×Rz and ϕ 2 CN ×Rx ×Ry ×Rz are the KS state vectors; ρ 2
RRx ×Ry ×Rz is the charge density;N is the total number of occupied and
unoccupied states jn0,k0i used inGWcalculations. εnk 2 R1 and ε 2 RN

are the corresponding DFT eigenvalues. Here, we note thatϕ includes
ϕnk and ε includes εnk, but we include both terms explicitly in the

Fig. 1 | Neural network architecture of variational autoencoders (VAE) for
crystal systems. a Schematic of the VAE. The encoder (green trapezoid) consists of
a rotational convolutional neural network (CNN), a circular CNN, a global pooling
layer and one flattened dense layer, which are explicitly presented in (b). The
encoder maps a real space wavefunction to a latent space vector of variational
mean μ and variance σ. Z is the sampled latent vector, drawn from a variational
Gaussian distribution using a reparameterization trick63. The decoder (blue trape-
zoid) has symmetric neural networks (NN) structures. The latent space serves as an
information bottleneck for the VAE as its dimensions are 103 � 104 smaller than the
input and output (represented by the colormaps of thewavefunction in real space).
b The circular CNN layer includes circular padding techniques based on the peri-
odic boundary conditions. The width of the circular padding equals the size of the
CNN kernel so that the output of the CNN has the same periodicity as the input.
Global pooling layers output the average value of each channel from the CNN

feature map. Rotational CNN layers scan the input along four directions and out-
puts the max of (left, right, up, down) feature maps to the next layer. The detail of
model parameters and additional benchmarks are listed in Supplementary Note 1.
c Schematic of the overall semi-supervised learning model, including both the
unsupervised VAE and supervised dense NN. The VAE inputs are the Kohn–Sham
(KS) wavefunction modulus jφnk rð Þj, all super states jφsup rð Þj and charge density
ρðrÞ in real space. The input layer of the supervised dense NN is comprised of
density functional theory (DFT) energies, denoted as εDFT , along with low dimen-
sional effective representations of φnkðrÞ, φsup rð Þ and ρðrÞ denoted as eθðφnkðrÞÞ,
eθ supðφsup rð ÞÞ and eθρðρðrÞÞ respectively. These representations are encoded within
the VAE latent space (yellow square) through an encoder with parameters θ, θsup
and θρ, which are unsupervisedly trained for all KS wavefunctions, super states and
charge density.
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function f to make later steps more transparent. The output ΣGW
nk 2 R1

is the GW self energy. Due to the closed-form expression of the self-
energy, mathematically, we expect that a simple dense NN can acquire
an understanding of the non-linearmapping from theKSwavefunction
and energies to ΣGW

nk , which consists of the mapping
of (CðN + 1Þ× ðRx ×Ry ×Rz Þ,RRx ×Ry ×Rz ,RðN + 1Þ ! R1)90,91.

However, two significant challenges prevent the application of a
simple NN model such as Σ̂

GW
nk = f̂ NNðϕnk, εnk,ϕ, ε,ρ,ηÞ, where Σ̂

GW
nk 2

R1 is the NN predicted self-energy, and ~η are the parameters of the
model. (i) Due to the high computational cost of the GW algorithm,
only a limited subset ofGWenergies near the Fermi level canbe exactly
calculated and used for the supervised learning training set, denoted
as Σtrain

nk 2 RNtrain . As a result, Ntrain≪ðN + 1Þ× ðRx ×Ry ×RzÞ, and over-
fitting is inevitable (see Supplementary Fig. 8). (ii) The curse of
dimensionality makes it formidable to learn the nonlinear mapping
from a high-dimensional sparse ϕ wavefunction space to the self-
energy Σtrain

nk space. To address these challenges, we adopt the mani-
fold assumption92–95 that the DFT electronicwavefunction in real space
can be modeled as lying on a low-dimensional manifold. Additionally,
we assume that two DFT wavefunctions mapped to nearby points on
the manifold should have comparable contributions to the final GW
energy corrections. If these two assumptions hold true, then the VAE is
ideal for downstream prediction of GW self energies.

Here, to capture the non-local correlation, the pseudobands
approximation96–98 is further employed for all states. That is, DFT wave
functions with close energies are summed into effective super states
(see SupplementaryNote 6). We assume that themanifold assumption
also applies to the super states and charge density, and the VAE is used
to further remove redundant information in them. Eventually, our
semi-supervised, physics-informed model reads:

Σ̂
GW

nk
= f̂ NNðeθðϕnkðrÞÞ, εnk, eθ sup ϕsup rð Þ

� �
, εsup, eθρðρÞ,ηÞ ð3Þ

where eθ, eθ sup and eθρ are encoders exclusively trained for KS states,
super states and charge density respectively. The schematic workflow
of our model is shown in Fig. 1b. The output of the NN is the predicted
GW diagonal self-energies Σ̂

GW
nk = ε̂GWnk � εDFTnk , and the inputs are the

wavefunction of jn,ki, super bands corresponding to occupied and
unoccupied states on a uniform k-grid, and the ground state energies.
These inputs are identical to the input of an explicit GW calculation to
eliminate bias due to feature selection.

Application to dataset of 2D materials
To benchmark the predictive power of our model, we select 302
materials with unit cells of 3 to 4 atoms, including both metals and
insulators, from theComputational 2DMaterials Database (C2DB)99–101,
for training and validation. For the unsupervised VAE training, our
dataset is comprised of 68,384 DFT electronic states sampled on a
6 × 6 × 1 uniform k-grid, which are randomly split into 90% training set
and 10% test set. For supervised training of GW corrections, the entire
GWenergy dataset is randomlypartitioned into two subsets: 10% (2201
electronic states) is allocated as the test set, while the remaining 90%
(19801 electronic states) is designated as the training set. We further
completely exclude a small subset of 30materials from the training set
for the VAE and three monolayer TMD materials—MoS2, WS2, and
CrS2—from both the VAE and GW training datasets. Comprehensive
details regarding dataset, training dynamics and additional bench-
marks are listed in Supplementary Note 5.

Figure 2a shows three DFT electronic wavefunctions, A, B, and C,
for monolayer MoS2, which is completely excluded from the training
data, within the x-y plane of the unit cell, which correspond to the dark
blue circles shown in Fig. 2e. Figure 2b shows the VAE-reconstructed
wavefunction of states A, B and C, which are nearly identical to the
original wavefunction after recovery from the low-dimensional latent

spacewithhigh coefficients of determination,R2, of 0.96,0.94 and0.91
respectively. Figure 2c shows the VAE variational mean vector ~μ for
states A, B and C respectively. Overall, the R2 of the VAE-reconstructed
wavefunction is 0.92 across the test set when compared with the
amplitude of the original DFT wavefunction, and the normalization of
the wavefunction is preserved within 1% (see Supplementary Fig. 10).
Remarkably, the VAE-reconstructed wavefunctions reproduce the
ground state charge density, the physically relevant quantity in DFT,
with a highR2 =0:99 even though the total charge density is never used
in the VAE training. The results demonstrate that the original electronic
wavefunction in the high-dimensional real space can be effectively
compressedby 103 � 104 times into a representative vector inRp= 30 in
a way that still preserves the vital information needed for reconstruc-
tion. Our autonomously determined representation is over 100 times
more compact than previous electronic fingerprint approaches60.

Figure 2d shows the comparison between the GW corrections
calculated explicitly and predicted by the downstream ML model,
where orange (blue) dots represent the test (training) sets. The model
yields an MAE of 0.06 eV (R2 =0:96) and 0.11 eV (R2 =0:94) for the
training and test sets respectively, confirming that the VAE-learned
representations of the DFT wavefunctions contain sufficient informa-
tion to describe the non-local GW self-energy. We emphasize that the
GW correction is more than a simple scissor shift. The average stan-
dard deviation of GW corrections across all bands and k-points in each
material is 0.54 eV, which is much larger than the prediction accuracy
of 0.11 eV (see Supplementary Fig. 4). Figure 2e shows the ML pre-
dicted GW band structure of monolayer MoS2, which agrees remark-
ably with results obtained by explicit GW calculation (red circles in the
bandstructure). Due to the generative power of the VAE latent space63,
even in the absence of electronic states along the high-symmetry path
and the material MoS2 in the training set, our model can accurately
predict a smooth GW bandstructure along Γ�M� K� Γ for MoS2.
Figure 2f shows how each individual input affects the accuracy of the
GW NNmodel. We find that excluding the latent space representation
of the wavefunction jn,ki in training significantly reduces the R2 value
by 0.5, directly showing the importance of VAE representation of
individual KS states in GW prediction. GW calculations can also be
accomplished through the self-consistent Sternheimer equation, uti-
lizing solely the occupied electronic states102–104, so in principle,
inclusion of empty state information through the use of super states is
not strictly necessary. Here, excluding the super states encoding the
empty states reduces the R2 value by 0.05. More details regarding
training dynamics are presented in Supplementary Figs. 5–7.

Interpretability and generative power of the latent space
Next, to understand the generative power of our model, we open up
the black box of the VAE and explore the meaning of the latent space
obtained from unsupervised learning. We utilize a 3D t-distributed
stochastic neighbor embedding (t-SNE) to visualize the VAE latent
space for the electronic structure. As depicted in Fig. 3a, the circles
linked by blue dashed lines represent the latent points of the first
valence band states along the Γ-K-M-Γ high symmetry path of mono-
layer MoS2. These points form a continuous and enclosed trajectory in
the latent space, corresponding to the smooth closed path in the
k-space shown in the lower bandstructure of Fig. 3b. For comparison,
the latent trajectories from two other TMDmonolayersWS2 (blue) and
CrS2 (red), are also shown in Fig. 3a. The similarity in the electronic
structures of these three TMDs (see Fig. 3b) is encoded in the simila-
rities of the paths in latent space. To further demonstrate the gen-
erative power of the VAE, Fig. 3b shows the continuous evolution of 15
VAEgenerated real-spaceKSwavefunctionmoduli fromM-K in thefirst
valence band of monolayer MoS2. The generated wavefunctions are
constructed using the VAE decoder, which processes sampled points
along a smooth curve from K to M in the latent space, denoted by the
blue arrows in Fig. 3a. Notably, even though the VAE training set is only
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comprisedof states sampledonauniformk-point grid, and these three
TMDs are entirely excluded from the training set, the generated
wavefunction in Fig. 3b can still have a high R2 around0.9, showing the
VAE accurately generates wavefunctions that the training has never
seen. The underlying reason is that the three trajectories in Fig. 3a lie
on the smooth latent surface learned by the well-trained VAE, where
similar states are mapped to neighboring points in the latent space.
Therefore, the smoothness and regularity of the VAE latent space can
be used to quantify the extrapolative and generative power of our
model and suggest that any sampled points from the learned latent
surface are physically meaningful and can be reconstructed back to a
wavefunction.

Additionally, to explain the success of ourmodel inpredictingGW
corrections at arbitrary k-points, we investigate how the supervised
training at certain k-points affects the GW prediction at untrained k-

points in the BZ. Figure 3c illustrates the average GWMAE for different
k-points, as predicted by a dense NN that is only trained with GW
energies at the Γ point (left panel) or a single finitemomentum k-point
(right panel). Notably, the prediction error tends to be lower for k-
points in proximity to the trained k-point, contrasting with higher
errors for those farther away from the trained k-point. This trend ori-
ginates from the smoothness of the VAE latent space, indicating that
two states that are close in the latent space should contribute com-
parably to the GW corrections, as they are also expected to be close in
k-space as shown in Fig. 3b. This explains the capability of ourmodel to
accurately predict k-resolved GW band structures when trained with
limited and uniform k-grid data.

Finally, to further verify the manifold assumption for electronic
structure in real materials and explore how GW energies correlate to
the VAE-coded representation, we apply the 3D t-SNE on top of the

All

Fig. 2 | Application of crystal variational autoencoders (VAE) and downstream
GW predictions. a Density functional theory (DFT) calculated wavefunction of
states A, B and C in MoS2 (see (e)) used as input to VAE encoder, in crystal coor-
dinates in units of the lattice vector. WFN denotes wavefunction. b VAE recon-
structed wavefunctions of states A, B and C through latent space decoding. c Low-
dimensional variational mean latent space for states A, B and C. (d) parity plot
comparing the exact calculated values (x-axis) to the Machine learning (ML) pre-
dicted values (y-axis) of the GW correction for individual states. Blue (orange) dots
represent training (test) sets. The mean absolute error (MAE) for the training set
and test set are 0.06 and 0.11 eV respectively. The total number of data points in
training (test) set are 19801(2201). e ML predicted GW band structures (blue solid
curve) and calculated PBE band structures (blue dashed line) for monolayer MoS2.
The red circles are the exactly calculated quasiparticle (QP) energies from GW self-

energy. The red dashed lines are the interpolated GW band structures. f Whisker
plot of ML predicted GW error without utilizing representations of KS states jnki,
DFT energies εDFT , superstates φsuper or charge density ρ. "All" denotes using all
information. The orange (blue) boxes represent the test (training) set. The total
number of data points under each box are 19801(2201) for training(test) sets. Each
box plot displays the absolute error distribution of the self energies Σ̂

GW
nk � ΣGW

nk

���
���,

highlighting themedian (box center line, i.e. Q2), 25th – 75th percentiles of dataset
(lower and upper boundary of box, i.e. Q1 and Q3), mean (small square within box)
and outlier cutoff (lower and upper whisker mark are defined as Q1-(Q3-Q1)×0.2
and Q1 + (Q3-Q1)×0.2, so all datapoints beyond the range are considered outliers).
The training process spans 1,000 epochs. Source data are provided as a Source
Data file.
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latent mean μ space for all 22002 states with GW labels, whose colors
are coded to their calculatedGW-correction (Fig. 3d) andDFT energies
(Fig. 3e). The t-SNE analysis provides direct evidence for the manifold
assumption that the VAE effectively maps the latent ~μ space of the
electronic wavefunction to a smooth manifold even for different
materials. More intriguingly, even though the unsupervised VAE
learning procedure is entirely independent of GW labels, the magni-
tude of both the GW corrections and DFT energies exhibit a distinct
pattern with different branches in the manifold corresponding to the
magnitude of different GWcorrections or DFT energies, as opposed to
a random distribution. As a result, the t-SNE analysis serves as a crucial
validation, demonstrating that unsupervised representation learning
can effectively capture the inherent statistical correlation between GW

energies and the electronic wavefunction. Thus, the unsupervised VAE
acts as a form of pre-learning, which can significantly lower the barrier
for the subsequent supervised learning of GW self energies.

In summary, we demonstrate that a properly designed VAEmodel
can unsupervisedly learn KS DFTwavefunctions, compressing them as
a low-dimensional latent space, in a way that preserves physical
observables like total charge density and fundamental information
needed for downstream prediction of excited-state properties. Since
our model autonomously determines the crucial information for pre-
servation through the unsupervised reconstruction of wavefunction
data, it can establish a low-dimensional representation that avoids
limitations due to feature engineering and selection. The representa-
tions preserve the translational invariance, discrete rotational
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Fig. 3 | Interpretation andgenerative ability of lowdimensional representation
of Kohn–Sham (KS) states learnt by variational autoencoder (VAE). a 3D
t-distributed stochastic neighbor embedding (t-SNE) visualization of the μ latent
space for KS wavefunctions in the first valence band along Γ�M� K� Γ for the
transition metal dichalcogenide (TMD) monolayers MoS2, WS2 and CrS2, as shown
in the lower band structures in (b). The dots (latent points) are mapped from the
high-dimensional electronic wavefunction with color coded by Density Functional
Theory (DFT) energies. The blue, orange and red dashed lines connect latent points
corresponding to the KS states from the first valence band of MoS2, WS2 and CrS2
respectively. Blue arrows denote latent points of 15 states along M� K fromMoS2,
as shown in (b). b Generated real-space wavefunction moduli decoded from latent
points, which are sampled from the smooth latent curve of monolayer MoS2, for
each KS state from M� K in the first valence band. The inset white number

represents the R2 value, showing the correlation with the explicitly calculated
wavefunction. The order of states are in row-major order and from left to right. The
lower figure represents the DFT bandstructures of monolayer MoS2 (Blue), WS2
(Orange) and CrS2 (Red). The blue arrows indicate the KS states shown in the upper
figures. The leftmost arrow indicates the first (top left) state shown in the upper
part. c Mean absolute error (MAE) of GW prediction for different k-points and
generative power for k-point interpolation. Here, the model is trained exclusively
using GW energies at the Γ (left panel) point or k= ð0:1667, 0, 0Þ (right panel). The
x-axis is the distance from the trained k-point to the untrained k-points in reciprocal
space. d-e 3D t-SNE components of VAE latent μ vector of 22002 KS wavefunction
with GW labels, whose color are mapped to the GW correction ϵGW � ϵDFT cor-
rections (d) and DFT energies ϵDFT (e) respectively. Source data are provided as a
Source Data file.
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invariance, and periodic boundary conditions of crystals with different
cell sizes and symmetry. Our VAE model achieves a R2 of 0.92 when
reconstructing the wavefunctions in the test set. To further test the
effectiveness of the VAE representation of KS states, we train a
supervised dense NN for downstream prediction of GW self-energies
on top of the latent space of KS states. The resulting model demon-
strates a remarkably lowMAEof0.11 eV on a test set and can be used to
predict both arbitrary k-points and materials held back from the
training set. While other ML models have been used to predict GW
bandstructure, the main advantage of our approach lies in our ability
to interpret the smoothness of the latent space in relation to the
completeness of our training set across both k-space and the space of
material chemical and structural composition. This eliminates unphy-
sical oscillations seen in previous models and allows us to confidently
evaluate the generalizability of ourmodel to states outside the training
set improving its generative power. The smooth evolution of KS states
in k-space can be mapped to a smooth trajectory in the latent space,
and the sampled points from this continuous trajectory are physically
meaningful and can also be reconstructed, enabling the generation of
wavefunctions (and related physical observables) at uncalculated
points at no additional cost. Here, in this first demonstration, we focus
on predicting GW bandstructures of 2D materials, but we expect this
framework to be generalizable to other crystalline systems and
downstream applications, given expanded training sets. Notably, VAE
wavefunction generation suggests a general route to building ML
models for many post-Hartree-Fock (HF) corrections, including quan-
tum Monte Carlo (QMC)105, Density Matrix Downfolding106, coupled
cluster singles and doubles (CCSD)107,108, and complete active space
configuration interaction (CASCI)109,110, all of which rely on the con-
struction of higher-order wavefunctions, Green’s functions, and den-
sity matrices from DFT wavefunctions.

Methods
This section describes the details of construction of the translationally
invariant variational autoencoder (VAE) model, downstream neural
networks, and first principles density functional theory (DFT) and GW
dataset. The mathematical proof of invariance, training dynamics,
ground state applications of the latent space, additional benchmarks,
and analysis of the pseudobands approximation are given in the Sup-
plementary Notes. The atomic structure ofmaterials used in this study
are from the open database: Computational 2D Materials Database
(C2DB)99–101.

Translationally invariant VAE
Ourmodel is developed utilizing the Pytorch packagewith parameters
shown in Table 1111. The first column categorizes each layer by its
functionality, alongside the respective layer indices. Specifically,
‘Conv2d’ denotes a two-dimensional CNN layer, ‘RotationalConv2d’
denotes the two-dimensional rotational CNN layer. A kernel size of
3 × 3 and 320 channels per CNN layer are sufficient to recover KS states
with an overall R2 score exceeding 0.87. ‘ReLU’ stands for the rectified
linear unit, an activation function renowned for its widespread appli-
cation in neural networks112. ‘MaxPool2d’ indicates the max pooling
layer, while the ‘Flatten’ layer plays a pivotal role by transforming the
multi-dimensional outputs from preceding layers into a format sui-
table for the subsequent fully connected layers. ‘AdaptiveAvgPool2d’
indicates the GAP layer by specifying output as 1 × 1. The ‘Linear’ layer
refers to the fully connected layer. ‘Sigmoid’ is mentioned as a non-
linear activation function that generates an output ranging from 0 to
1113, which is ideal for modeling the reconstruction of wavefunction
moduli. The architecture’s layout is further detailed by listing the
number of parameters contained within each model layer in the sec-
ond column.

The input grid size (resolution) of wavefunctions in real space
within a primitive unit cell depends on both the crystal lattice and the

kinetic energy cutoff of the plane wave basis in the density functional
theory (DFT) calculations. However, even if the number of trainable
parameters in the convolutional neural network (CNN) layers remains
constant regardless of the size of the input grid, the fully connected
dense layer always requires the same input size from the output of the
CNN layer. To address this, a commonly used preprocessing technique
is cropping/resizing before passing input to CNN. However, this
straightforwardmethod does not adequately account for the freedom
to choose the origin of the unit cell and the invariance of physical
properties under discrete translational and rotational symmetries.

The main bottlenecks faced by using a simply rigid and uniform
grid are (i) lack of preservation of translational invariance, (ii) lack of
preservation of discrete rotational symmetry, (iii) improper handling
of periodic boundary conditions (PBC), and (iv) lost information about
unit cell size and symmetry. To address these issues and improve the
generalizability of the VAE, we integrate a circular CNN layer, global
average pooling layer, and rotational CNN technique in the encoder as
shown in Fig. 1a, b As a result, the latent vector zi R

p of KS state jii are
invariant to the unphysical degree of freedom of arbitrary translation
and lattice constant selection. In addition, given the same crystal
structure, zi are a representation of ij i in the whole real space, so it is
identical for different supercells constructed from the same unit cell.
i.e.,

zi = f NN z1, 1, i
� �

= f NN zm,n, i

� �

where zm,n, iR
C are the output of the last CNN layer, C is the number of

channels, andm,n are arbitrary positive integers defining the number
of primitive cells in a supercell. f NN is the fully connected neural net-
work following the CNN. The mathematical demonstration, model
parameters, and corresponding benchmark are detailed in Supple-
mentary Note 1.

For the downstreamprediction of GWbandstructures, we employ
a vanilla neural network including three fully connected layers with
13,801 trainable parameters. To reduce the risk of training set depen-
dence, we also adapt k-fold cross validation for our evaluating model,
where the data set is evenly split into 10 subsets (see Supplementary
Fig. 6c). To visualize the latent space learnt by the VAE, we employed
3D t-distributed stochastic neighbor embedding (t-SNE). The per-
plexity in t-SNE calculations is set as 10,000 (22,002 datapoints in
dataset) to balance the preservation of the global and local structure of
the high dimensional data.

Table 1 | VAE Parameters

Layer (type) Parameter number

RotationalConv2d-1 115,520

MaxPool2d-3 0

Conv2d-4 921,920

ReLU-5 0

AdaptiveAvgPool2d-6 0

Flatten-7 0

Linear-8 19,260

Linear-9 48,608

ReLU-10 0

Unflatten-11 0

ConvTranspose2d-12 17,340

ReLU-13 0

ConvTranspose2d-14 9,640

Sigmoid-15 0

Total Trainable Parameters 1,132,288

The table shows the detail of each layer of variational autoencoder (VAE).
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DFT and GW dataset
To benchmark the predictive power of our model, we select 302
materials from the Computational 2D Materials Database (C2DB)99–101,
which was also used in the work of Knøsgaard et al.60, for training and
validation. The dataset includes both metals and semiconductors
across all crystal systems (we note that previousML for GWprediction
in this database was restricted to the subset of semiconducting
materials) with the number of atoms ranging from 3 to 4. For the
unsupervised VAE training, our dataset is comprised of 68,384 DFT
electronic states sampled on a 6 × 6 × 1 uniform k-grid for 302 2D
materials, which are randomly split into 90% training set and 10% test
set. We include the same number of conduction states as valence
states for eachmaterial in the VAE training, ensuring a comprehensive
understanding of the electronic structure of both occupied and
unoccupied states. For supervised training of GW corrections, the
entire GW energy dataset is randomly partitioned into two subsets:
10% (2201 electronic states) is allocated as the test set, while the
remaining 90% (19801 electronic states) is designated as the training
set. We further completely exclude a small subset of 30materials from
the training set for the VAE and three monolayer TMD materials—
MoS2,WS2, andCrS2—fromboth theVAEandGWtraining datasets. The
DFT and GW datasets are generated using GPAW114,115. Comprehensive
details regarding dataset, training dynamics and additional bench-
marks are listed in Supplementary Note 5.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data (KS wavefunction and GW energies of 302 materials) gener-
ated in this study have been deposited in the Materials Data Facility
repository under https://doi.org/10.18126/rpa1-yp91. Source data are
provided with this paper.

Code availability
Code associated with this work is available from the public github
repository https://github.com/bwhou1997/VAE-DFT with https://doi.
org/10.5281/zenodo.13617033116 and from Code Ocean117.
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