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A benchmark for domain 
adaptation and generalization in 
smartphone-based human activity 
recognition
Otávio Napoli1,3 ✉, Dami Duarte2,3, Patrick Alves1,3, Darlinne Hubert Palo Soto1, 
Henrique Evangelista de Oliveira1, Anderson Rocha1, Levy Boccato2 & Edson Borin1

Human activity recognition (HAR) using smartphone inertial sensors, like accelerometers and 
gyroscopes, enhances smartphones’ adaptability and user experience. Data distribution from these 
sensors is affected by several factors including sensor hardware, software, device placement, user 
demographics, terrain, and more. Most datasets focus on providing variability in user and (sometimes) 
device placement, limiting domain adaptation and generalization studies. Consequently, models 
trained on one dataset often perform poorly on others. Despite many publicly available HAR datasets, 
cross-dataset generalization remains challenging due to data format incompatibilities, such as 
differences in measurement units, sampling rates, and label encoding. Hence, we introduce the 
DAGHAR benchmark, a curated collection of datasets for domain adaptation and generalization studies 
in smartphone-based HAR. We standardized six datasets in terms of accelerometer units, sampling 
rate, gravity component, activity labels, user partitioning, and time window size, removing trivial 
biases while preserving intrinsic differences. This enables controlled evaluation of model generalization 
capabilities. Additionally, we provide baseline performance metrics from state-of-the-art machine 
learning models, crucial for comprehensive evaluations of generalization in HAR tasks.

Background & Summary
In recent years, there has been an increasing interest in expanding smartphones’ capabilities so that they can 
detect user, system, and environmental patterns and autonomously take actions to assist the user, thus providing 
an adaptable and customized experience/interaction. For instance, the smartphone can detect that the user is 
driving and automatically switch to a driving mode, or detect that the user is walking and automatically switch 
to a fitness mode.

Human activity recognition (HAR) using smartphone inertial sensors constitutes one example of such 
efforts, which involves the automatic identification of what the user is doing based on samples of different sen-
sors, such as accelerometer (henceforth denoted as Acc) and gyroscope (Gyr)1. In particular, inertial sensors 
have proved to be useful in discriminating among different activities and other related tasks, allowing for the 
development of applications in several domains2–15.

However, a major challenge in HAR is the generalization of models to new scenarios, a process known as 
domain adaptation or domain generalization in machine learning16,17, which involves transferring knowledge 
from a source domain to a target domain, where the source and target domains have different distributions. 
These differences can arise from several factors, including: (i) sensor differences, such as the type and quality of 
sensors and the sampling rate, which can affect data quality and lead to variations in resolution and granular-
ity; (ii) sensor placement, such as body position (e.g., wrist, waist, ankle) and attachment method (e.g., tightly 
strapped, loosely worn), which can influence movement patterns and capture different motion patterns for the 
same activity; (iii) data collection protocols can vary due to environmental conditions (indoor vs. outdoor, dif-
ferent weather conditions) and activity execution, with differences in how activities are performed (e.g., walking 
speed, running style) resulting in variations in recorded data; (iv) user demographics such as age, gender, height, 
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weight, and physical fitness, as well as the number of users in the dataset, are crucial for generalizing to a broader 
population; and (v) device differences, including hardware variations and preprocessing techniques such as 
filtering, smoothing, and feature extraction methods, also impact data quality and the information extracted.

In HAR literature, several datasets have been created to allow the evaluation of HAR models, typically used 
in isolation3,18–20. Some datasets are extensive and encompass a wide range of activities collected in real-world 
scenarios, while others are smaller and feature a limited number of activities in controlled environments. These 
datasets include various users, activities, and sensors, providing a good starting point for developing HAR mod-
els. For example, the RealWorld dataset3 allows for studying the impact of sensor position on model perfor-
mance in a controlled setting. At the same time, the ExtraSensory20 dataset facilitates the study of data collection 
protocol impacts on model performance in real-world environments.

Even though these datasets present good variability, it is important to notice that each dataset constitutes a 
domain due to bias introduced by data collection protocols, demographic settings, and other factors. Thus, it is 
essential to evaluate the generalization capabilities of models across different datasets to ensure that they per-
form well in new scenarios, something often overlooked in the literature. This is a very challenging task partly 
due to the lack of a standardized approach for evaluating model generalization among different datasets, as 
they have different unit measurements, sampling rates, gravity components, as well as tasks and labels that are 
not shared among them, making it difficult to assess the generalization capabilities of models across different 
datasets.

We present the DAGHAR benchmark21, a curated dataset collection designed for domain adaptation and 
domain generalization studies in HAR tasks. It features raw inertial sensor data sourced exclusively from smart-
phones. We carefully selected six publicly available datasets and standardized them for accelerometer units of 
measurement, sampling rate, gravity component, activity labels, user partitioning, and time window size. This 
standardization process allowed us to create a comprehensive benchmark for evaluating the generalization capa-
bilities of HAR models in cross-dataset scenarios.

We demonstrate that the standardization process does not remove the intrinsic differences among the data-
sets, but it enables a more controlled evaluation of model generalization capabilities. To accomplish this, we also 
provide a set of baseline performance metrics from state-of-the-art deep learning models and classical machine 
learning models applied to the DAGHAR benchmark21. This is a crucial first step towards creating a more com-
prehensive benchmark for HAR.

Methods
Here, we describe the datasets selected to compose the DAGHAR benchmark21 and the preprocessing steps 
applied to standardize each dataset. Using the t-SNE22 visualization, we show the data distribution of the datasets 
in the time and frequency domains, and we also report a performance evaluation of state-of-the-art deep learn-
ing and classical machine learning models on the standardized views of the datasets to verify that the proposed 
standardization does not remove the intrinsic differences among the datasets.

Datasets selection.  Human activity recognition (HAR) is a well-established field of machine learning and 
signal processing research. Various approaches can be employed to tackle the HAR task, including wearable sen-
sors, cameras, or smartphones. This study focuses on non-invasive continuous monitoring sensors, narrowing 
our scope to inertial sensors, specifically tri-axial accelerometers and tri-axial gyroscope sensors, commonly 
found in smartphone and wearable inertial measurement units (IMUs). Additionally, we concentrate on smart-
phone sensors due to their widespread availability and accessibility to the general public, unlike wearable sensors, 
which are less common. Consequently, our search for HAR datasets specifically targeted those containing data 
from smartphone inertial sensors.

The set of publicly available datasets that meet this requirement and are known by the HAR literature is lim-
ited. To address this, we conducted an extensive survey of over 40 HAR datasets, gathering key information such 
as the number of samples, types of activities recorded, participant demographics, sampling rates, sensor charac-
teristics, citation frequency, and data collection protocols. From this initial list, we selected datasets based on the 
following criteria: (CR1) the availability of raw data, not just preprocessed data, to ensure flexibility in analysis 
and preprocessing; (CR2) data integrity, where the dataset must: (i) include timestamps, (ii) be free from missing 
values, inconsistencies, or irregularities, (iii) have at least one associated research publication, (iv) originate from 
smartphones, and (v) include both accelerometer and gyroscope data. These sub-criteria are essential to ensure 
the data’s reliability and its suitability for further analysis; datasets failing any sub-criteria were excluded; (CR3) 
the inclusion of a substantial set of shared activities, ensuring that the dataset can support a broad range of activ-
ity recognition tasks; (CR4) a focus on regular human daily activities, excluding datasets that primarily feature 
sports, geographic-based activities, or require invasive data collection methods, such as using microphone data. 
Table 1 shows the datasets analyzed according to these criteria.

These criteria allowed us to select three datasets, which we describe in the sequence. Initially, we selected only 
datasets containing at least the activities: sit, stand, walk, walk upstairs, walk downstairs, and run. However, to 
increase the number of datasets in our experiments, we allowed datasets with at least four out of the six activities, 
so the WISDM and the UCI-HAR datasets were incorporated.

After analyzing the datasets, we decided to work with: KU-HAR version 5 (raw time domain data folder)23, 
MotionSense24, RealWorld3, WISDM2, and the updated version of the UCI-HAR dataset25. Table 2 summarizes 
the main characteristics of these datasets. Notice that they differ regarding the smartphone position, the metric 
used to record the accelerometer samples, the sampling rate, and the number of users and activities registered.

KU-HAR and WISDM contain samples for 18 different human activities, while the other datasets contain 
at most eight different activities. We kept only the samples from our standard activity set, aforementioned, and 
discarded the remaining activities. Table 3 shows the set of activities kept for each dataset.
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Dataset CR1 CR2 CR3 CR4

KuHar23 ✓ ✓ ✓ ✓

MotionSense24 ✓ ✓ ✓ ✓

RealWorld3 ✓ ✓ ✓ ✓

UCI25 ✓ ✓ ✓ ✓

WISDM2 ✓ ✓ ✓ ✓

RealLifeHAR36 ✓ ✓ ✓

The SHL Dataset37 ✓ ✓ ✓

HARSENSE38 ✓ ✓ ✓

TNDA-HAR39 ✓ ✓ ✓

Extrasensory20 ✓ ✓ ✓

CHARM26 ✓ ✓ ✓

FallDAD40* ✓ ✓ ✓

HASC-Challenge41 ✓ ✓ ✓

PAR42 ✓ ✓ ✓

Opportunity43 ✓ ✓ ✓

Bike&Safe44* ✓ ✓

DRIVER/DRIVER-2145* ✓

Phone-Sensor-Driving46* ✓

Writing-Behavior47* ✓

TOOTHBRUSHING48 ✓

eGLASSES49 ✓

Entry-Exit-CAR50 ✓

RecodGait v151 ✓

RecodGait v28 ✓

DailySports52 ✓ ✓ ✓

LAR53 ✓ ✓ ✓

FallAllD54 ✓ ✓

HAD-AW55 ✓ ✓

DU-MD56 ✓ ✓

Crowds57

Embedded58

INDOOR59*

Parkinson-acoustic60*

Distributed-Recognition61

ElderlyFall62

FallADL63

HealthDetection*

Mob-Battery-20*

UbiqLog64

WIDAR65

HAR-AUDIO66

Table 1.  List of datasets found in literature and their respective criteria status. CR1: Availability of raw data; 
CR2: Data integrity; CR3: Inclusion of a substantial set of shared activities; CR4: Regular human daily activities. 
Asterisks means that dataset has no published work associated.

Acronym Dataset Name
Smartphone 
Position

Accelerometer 
Metricb

Sampling 
Rate

Number of 
Users/Activ

KH KU-HAR23 waist bag m/s2 100 Hz 90/18

MS MotionSense24 pocket G 50 Hz 24/6

RW RealWorld3 thigh/waista m/s2 50 Hz 15/8

UCI UCI-HAR25 waist bag G 50 Hz 30/5

WDM WISDM2 pocket m/s2 20 Hz 51/18

Table 2.  Selected datasets and their main features. aThis dataset employs multiple smartphones placed in 
different locations during data collection (e.g., thigh, waist, shin, head, etc.). We used data collected by sensors 
placed at thigh (RW-Thigh) and waist (RW-Waist), which should be equivalent to a pocket and a waist bag. bAll 
datasets record gyroscope samples in rad/s.
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We decided to discard some well-known datasets from our analysis, but they are worth mentioning. The first 
one is the CHARM dataset26. At first glance, the CHARM dataset would easily fit our criteria, but we spotted a 
crucial problem with the gyroscope data at the preprocessing stage. After analyzing a significant portion of the 
Acc and Gyr time series data, we found that the Gyr samples in CHARM correspond to slightly distorted ver-
sions of the Acc samples (delayed signal plus noise). Moreover, we verified that the signals in CHARM display 
significant irregularities in the sampling rate.

Another dataset worth mentioning is the ExtraSensory dataset20, probably the largest publicly available data-
set. One of its main characteristics is the data collection protocol, called by the authors “in-the-wild”: data 
collected from users engaged in their regular natural behavior. Users were responsible for labeling the collected 
data as recorded or later. This option led to a huge imbalance in the number of samples per activity and a certain 
distrust of the data labels. So, we decided to reserve the ExtraSensory dataset for future explorations with themes 
that might better suit its characteristics.

Once the data was selected, we created views of the dataset. These views represent the dataset as a pair (X, y),  
where X is a matrix with N samples, each with dimension d, and y is the corresponding set of labels. The 
views are obtained after preprocessing the raw data files. Each dataset sample may vary from a few seconds 
to a few minutes of inertial sensor recordings. We sliced the original time series of each Acc / Gyr axis into 
non-overlapping 3-second windows. Although there are several works that used the fixed duration windowing 
scheme with values as small as 0.5 seconds to values larger than 30 seconds2,3,24,27, the most common range for 
HAR tasks is between 1–5 seconds, as described in detail in the systematic review work by Straczkiewicz et al.1. 
More specifically, according to Wang et al.28, a window duration between 2.5–3.5 seconds allows a better balance 
between performance and latency for human activity recognition tasks.

It was necessary to treat the irregular time spacing between consecutive observations within each time series 
in order to produce the initial views of the datasets. Since UCI and MotionSense do not provide timestamp 
annotations, we relied on the authors’ sampling rate description and assumed uniform sampling.

We could analyze the sampling period in more detail as KU-HAR, WISDM, and RealWorld include the 
timestamp annotation. In the case of RealWorld, according to the authors, the sampling rate was 50 Hz. However, 
we verified that a non-negligible amount of data was inconsistent with this value, which indicates that some 
distortion occurred during the recording. By carefully analyzing these samples, we observed that the distortion 
probably lies in the timestamps. If they were discarded and regular sampling with 50 Hz was assumed, the dis-
torted samples presented a consistent behavior compared to those with more regular sampling. This observation 
raises some questions regarding the reliability of the timestamp annotation, such as: What kind of distortions can 
occur in these sensors? What are the reasons behind such distortions? How can we mitigate their occurrence?

For the WISDM dataset, the authors indicated a 20 Hz sampling rate with the following remark: “Due to the 
nature of the Android OS, the sampling rate is only taken as a suggestion, so actual sampling rates sometimes differed”2. 
In our analysis, we could verify a trimodal distribution of the instantaneous sampling rate centered at 50 Hz,  
25 Hz, and 20 Hz, with less than half of the samples matching the nominal sampling rate. This discrepancy may 
be due to the differences in the devices used during the data recording (three smartphone models were used in 
WISDM). However, this information cannot be confirmed since it is not available. Thus, we decided to interpo-
late the data using the cubic spline method29 to regularize the sampling rate to 20 Hz.

Another relevant aspect to observe is the presence or absence of the gravitational contribution in the acceler-
ometer time series. Let us first define three perspectives of the Acc signal: the body acceleration (the component 
of the sensor’s movement), the gravity component (which affects all Acc axes during rotational motion), and the 
total acceleration (body plus gravity). The Acc can only sense the total acceleration, so some procedures must be 
performed to separate the body and gravity acceleration. Several methods described in the literature are suitable 
for this task. However, the most common involves applying a high-pass Butterworth filter of low order (e.g., 
order 3) with a cutoff frequency below 1 Hz1. Similarly to the previous observations concerning the sampling 
rate, the datasets are significantly diverse in terms of the set of acceleration series each one provides: some data-
sets provide only the body acceleration or the total acceleration, body and gravity acceleration, body and total 
acceleration, or even gravity and total acceleration. Additionally, sometimes the process of capturing body and 
gravity acceleration is reported, and sometimes, not. We decided to maintain all the natural (innate) aspects of 
the data. For the datasets that provide only body acceleration (KuHar and UCI), we process the data without 
adding gravity. For the MotionSense dataset, that provide body and gravity acceleration separately, we sum both 
signals. For the datasets that provide the total acceleration, we use this signal directly.

In the literature, several preprocessing steps have been explored, among which we cite20: denoising (signals are 
filtered out from unnecessary or redundant information); rotation (signals are projected onto another coordinate 
system); normalization (to ensure the same measurement unit and also to limit the energy of the signals in some 
perspectives); interpolation and resampling (to deal with missing data, irregular sampling rate, and to alleviate 

Activity KH MS RW WISDM UCI

Sit ✓ ✓ ✓ ✓ ✓

Stand ✓ ✓ ✓ ✓ ✓

Walk ✓ ✓ ✓ ✓ ✓

Upstairs ✓ ✓ ✓ ✓

Downstairs ✓ ✓ ✓ ✓

Run ✓ ✓ ✓ ✓

Table 3.  Set of activities selected per dataset.
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the mismatch between requested and effective sampling rate); dataset imbalance strategies (dealing with class 
and user imbalance); outlier removal; relabeling (when labels are reassigned to better match transitions between 
activities); trimming (when part of the signal is removed for some reason); separation (when the signal is sepa-
rated into body and gravitational components), and arbitrary transformation (for early stage feature extraction)1.

We first focused on having dataset views as close as possible to the original datasets to verify whether our 
results would still corroborate previous findings in the literature. Hence, our approach to the preprocessing stage 
followed the principle of “minimum interference”. We call these versions of the datasets as the baseline views.

The adopted procedure involved processing the accelerometer (Acc) and gyroscope (Gyr) data by considering 
the sampling rate specified by the dataset authors and segmenting the raw time series into non-overlapping 3-second 
time windows. For the WISDM dataset, we opted to interpolate the signals in the baseline view to account for the 
trimodal distribution of the instantaneous sampling period. Given that both Acc and Gyr are tri-axial time series, the 
dimensionality of a baseline view sample is defined as 2 × 3 × sampling rate × 3 seconds, where the x-y-z Acc time 
series are concatenated with the x-y-z Gyr time series. The resulting baseline views were subsequently relabeled using 
a standard activity code and divided into training, validation, and test sets, ensuring balanced class distributions.

The partitioning process was executed at the user level with a 70/20/10 ratio for training, validation, and test 
sets, respectively. This means that for each dataset, users were partitioned into these three sets such that all samples 
from a given user were contained within a single set, thereby preventing any mixing of samples from the same user 
across different sets. This approach ensures that the model is tested on entirely unseen users, which better reflects 
real-world scenarios for human activity recognition (HAR) tasks. However, as users may have different numbers of 
samples, the actual number of samples in each set might not strictly follow the 70/20/10 ratio. After partitioning, the 
number of samples per activity within each set was balanced by randomly sampling the same number of samples 
for each activity, corresponding to the activity with the fewest samples in the set. It is important to highlight that our 
methodology was applied independently to each dataset, which may lead to variations in the number of samples 
across different partitions for each dataset. The number of samples in each dataset partition is detailed in Table 4.

Figure 1 shows the t-SNE visualization of the baseline views of the datasets in the time domain (1a) and in 
the frequency domain (1b), a common practice in HAR literature30,31. The t-SNE algorithm is a dimensionality 
reduction technique that preserves the local structure of data in a lower-dimensional space, making it easier to 
visualize the data distribution. In these figures, t-SNE was applied separately to each dataset, and the points are 
colored according to the activity label.

As we can notice, the classes within the datasets are better separated in the frequency domain than the time 
domain. This observation aligns with the expectation since the frequency domain often provides a more dis-
criminative feature space for HAR tasks23,32,33. In the frequency domain, we can see that low-energy activities 
(➊) are well-separated from mid-energy activities (➋) and high-energy activities (➌). In the time domain, this 
separation is less clear despite the fact that the low-energy activities overlap in the same region.

We also assess the separability of the classes in the baseline view datasets by training different classifiers on 
each dataset and measuring their performances. We select three classical yet powerful classifiers: K-Nearest 
Neighbors (KNN), Random Forest (RF), and Support-Vector Machine (SVM). Additionally, we include twelve 
state-of-the-art deep learning models, each representing different principles, architectures, and complexities. These 
include two multi-layer perceptrons with 2 and 3 hidden layers (MLP-2L and MLP-3L), nine convolutional-based 
neural networks12–15,34, and one transformer-based network14. The training partition was used to train the classi-
fiers, while the test partition was used to evaluate model performance. For the deep learning models, we used a 
validation partition to prevent overfitting and employed an early stopping criterion based on the validation loss.

The performance results are presented in Table 5. Since the baseline view is balanced regarding the number 
of samples per activity, we report the mean accuracy over five runs for each dataset and model. We explored 
two representations, the time domain (raw data) and the frequency domain, to evaluate model performance. To 
avoid introducing biases, we did not apply any feature extraction methods to the raw data, such as statistical fea-
tures33. Moreover, it is expected that deep learning methods can learn proper features from the raw data without 
the need for additional feature extraction.

Firstly, it is worth remarking that the performances of the models vary significantly across the datasets. The 
CNN (1D)12 model stands out, achieving the highest average performance. It also performs well in the frequency 
domain, with a mean accuracy close to the best model. Additionally, all deep learning models perform well in 
both domains. Finally, the results reported in Table 5 demonstrate that although time-domain data may not be 
as informative as frequency-domain data in this task, it is still possible to achieve good results using machine/
deep learning models.

Standardization process.  The baseline views of the datasets differ in format, including dimensionality, 
accelerometer units of measurement, and sampling rate. While all datasets are sliced into 3-second time windows, 

Dataset Train Validation Test

KH 1386 426 144

MS 3558 420 1062

RW-T 8400 1764 2628

RW-W 10332 1854 2592

UCI 2420 340 690

WDM 8736 944 2596

Table 4.  Number of samples for each dataset partition in the baseline views.
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relabeled, and split into training and test sets, allowing isolated evaluation of model performance, these differ-
ences in data format prevent direct comparison. To address this issue, we propose a new view of the datasets, 
called the standardized view, to ensure uniform representation across all datasets.

In this standardized view, we apply a series of preprocessing steps to standardize the datasets, as detailed in 
Table 6. It is important to emphasize that this standardization process does not change the number of samples in 
each dataset partition but only the number of features per sample.

Firstly, we convert the accelerometer measurement unit from G to m/s2 for the MS and UCI datasets. We 
then resample the data to 20 Hz and remove gravity acceleration by applying a high-pass 3rd order Butterworth 
filter with a cutoff frequency of 0.3 Hz. Next, we split the data into non-overlapping 3-second time windows and 
relabel the data to ensure activities are consistently encoded across datasets. Finally, we split the samples into 

Fig. 1  t-SNE visualization of the baseline views of the datasets.
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training, validation, and test sets, ensuring different users are in the training and test sets and maintaining the 
same procedure as the baseline views. The standardized views use the same Train/Validation/Test split employed 
in the baseline views to preserve the same samples in the training, validation, and test subsets.

The only differences from the baseline views are the initial three preprocessing steps necessary to ensure all 
datasets are compatible with the data format. The final three steps remain consistent with the baseline view. This 
view corresponds to our DAGHAR benchmark dataset21.

Figure 2 shows the t-SNE visualization of the standardized views of the datasets in the time domain (2a) and 
in the frequency domain (2b). The goal is to demonstrate that the standardization process preserves underlying 
data patterns while making datasets more comparable. In the frequency domain, classes are better separated 
than in the time domain, maintaining the same pattern observed with the baseline views. Low-energy (➊), 
mid-energy (➋), and high-energy (➌) activities forms three separated clusters. The time domain also shares the 
same pattern as the baseline views but with less class separation than the frequency domain.

This indicates that the standardization process preserves the intrinsic differences among the datasets while 
removing external biases that could impact conclusions about generalization. By factoring out these biases, we 
can evaluate the generalization capabilities of models in a more controlled manner.

Table 7 shows the performance of the models on the standardized views of the datasets. Analogously to the 
case with the baseline views, we can observe that convolutional neural networks are generally the best perform-
ing models: they reached the best performance in 10 out of the 12 scenarios (dataset + domain).

Table 8 shows the ratio of model performance using the standardized views compared to the baseline views, 
providing a more comprehensive assessment of the standardization process’s impact on model performance. 
It is worth recognizing that the standardized views slightly increase the classification difficulty in most cases, 
although the differences are not significant. This suggests that the standardization process does not eliminate the 
intrinsic differences among the datasets. However, it enables the evaluation of model generalization capabilities 
in cross-dataset scenarios, which is crucial for assessing the performance of HAR models in new, unseen envi-
ronments, as described in the sequence.

Model

Time Frequency

KH MS RW-T RW-W UCI WDM Mean KH MS RW-T RW-W UCI WDM Mean

KNN 42.4% 81.0% 31.0% 46.1% 54.6% 60.4% 52.6% 86.8% 88.9% 73.6% 68.9% 81.7% 93.5% 82.2%

Random Forest 80.6% 87.9% 74.1% 77.4% 85.5% 92.1% 82.9% 79.7% 91.0% 83.8% 76.2% 92.2% 97.0% 86.7%

SVM 57.6% 76.9% 81.1% 68.8% 85.7% 92.5% 77.1% 70.1% 84.7% 85.5% 79.9% 86.2% 98.6% 84.2%

CNN (1D)12 77.5% 93.4% 80.8% 73.0% 95.2% 95.6% 85.9% 75.0% 91.2% 82.4% 82.9% 94.5% 96.6% 87.1%

CNN (2D)12 76.0% 93.2% 71.3% 77.7% 95.3% 91.5% 84.1% 79.6% 91.8% 79.6% 78.6% 89.1% 95.5% 85.7%

CNN PF34 79.4% 93.2% 70.7% 73.8% 94.2% 88.1% 83.3% 82.1% 92.1% 77.5% 83.2% 92.9% 96.6% 87.4%

CNN PFF34 79.4% 93.5% 73.4% 72.6% 95.8% 89.7% 84.1% 85.0% 90.4% 78.5% 83.3% 93.2% 96.3% 87.8%

ConvNet13 75.0% 93.5% 68.3% 74.2% 91.9% 90.5% 82.2% 87.6% 91.5% 86.3% 82.3% 95.0% 96.9% 89.9%

IMU CNN14 75.0% 87.4% 60.0% 64.3% 89.6% 84.8% 76.8% 84.2% 91.7% 75.6% 78.7% 94.1% 96.6% 86.8%

IMU Transf.14 74.9% 70.5% 73.0% 74.2% 92.2% 89.4% 79.0% 72.2% 73.1% 78.5% 76.9% 78.8% 96.3% 79.3%

MLP (2 Layers) 75.0% 83.2% 77.8% 63.3% 79.9% 91.4% 78.4% 86.7% 92.7% 82.5% 77.5% 92.8% 97.9% 88.4%

MLP (3 layers) 78.8% 82.7% 76.4% 64.5% 80.8% 88.6% 78.6% 86.2% 90.5% 81.7% 76.9% 93.7% 98.5% 87.9%

ResNet15 79.6% 86.8% 74.6% 76.9% 97.6% 91.9% 84.6% 70.4% 86.0% 80.5% 71.4% 92.8% 93.6% 82.5%

ResNetSE67 78.2% 90.9% 72.2% 76.1% 97.4% 92.9% 84.6% 76.2% 82.7% 80.3% 76.1% 91.6% 94.1% 83.5%

ResNetSE-567 78.6% 89.0% 70.0% 75.3% 95.3% 90.4% 83.1% 76.1% 90.3% 79.0% 78.2% 92.5% 94.5% 85.1%

Max 80.6% 93.5% 81.1% 77.7% 97.6% 95.6% 85.9% 87.6% 92.7% 86.3% 83.3% 95.0% 98.6% 89.9%

Table 5.  Performance of models using baseline view. The best results for each dataset and for each domain 
(time and frequency) are highlighted in bold. Mean column represents the average performance of the model in 
the datasets.

Preprocessing Step KH MSa RW UCI WISDM

→G m s/ 2 ✓ ✓

Resampling (20 Hz) ✓ ✓ ✓ ✓ ✓

Gravity Removal ✓ ✓ ✓ ✓

Slicing (3 s) ✓ ✓ ✓ ✓ ✓

Re-labeling ✓ ✓ ✓ ✓ ✓

Train/Test split ✓ ✓ ✓ ✓ ✓

Table 6.  Set of preprocessing steps applied to generate the Standardized view for each dataset. a: MotionSense 
does not provide total acceleration data, only the body and gravity components. To keep it consistent with 
other datasets, we combined both components together and removed the gravity acceleration by applying the 
Butterworth filter.
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Data Records
The DAGHAR benchmark dataset is available at Zenodo repository21. Each dataset view is stored in a separate 
folder: baseline_view and standardized_view. Inside each view folder, there are subfolders corre-
sponding to each dataset: KuHar, MotionSense, RealWorld-Thigh, RealWorld-Waist, UCI, 
and WISDM. Each dataset folder contains the following three CSV files, corresponding to each partition of the 
dataset: train.csv, validation.csv, and test.csv.

For each CSV file, the rows correspond to the samples, and the columns correspond to the features. Thus, 
each row stores the time-series data of a 3-second window from both triaxial accelerometer and gyroscope sen-
sors. The following columns are always present in the CSV files:

Fig. 2  t-SNE visualization of the standardized views of the datasets.
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•	 accel-x-: Columns starting with this prefix correspond to instants of the x-axis accelerometer time series. 
For instance, accel-x-0 is associated with the first instant of the x-axis Acc time series, while accel-x-1 
corresponds to the second instant of observation. Thus, a 3-second window sampled at 20 Hz will have 60 
columns for the x-axis accelerometer time series. The same logic applies to all other prefixes.

•	 accel-y-: Columns starting with this prefix correspond to an instant of the y-axis Acc time series.
•	 accel-z-: Columns starting with this prefix correspond to an instant of the z-axis Acc time series.
•	 gyro-x-: Columns starting with this prefix correspond to an instant of the x-axis Gyr time series.
•	 gyro-y-: Columns starting with this prefix correspond to an instant of the y-axis Gyr time series.
•	 gyro-z-: Columns starting with this prefix correspond to an instant of the z-axis Gyr time series.
•	 standard activity code: The activity label of the sample matches the same code across all datasets.

Some datasets may also have metadata information, which is dataset-specific and can be discarded for train-
ing and evaluation purposes. However, we maintain these metadata in the same CSV in case it is needed.

Model

Time Frequency

KH MS RW-T RW-W UCI WDM Mean KH MS RW-T RW-W UCI WDM Mean

KNN 49.3% 66.6% 43.6% 53.4% 66.7% 60.7% 56.7% 86.8% 90.9% 65.2% 74.5% 81.7% 89.8% 81.5%

Random Forest 80.7% 89.1% 62.5% 67.2% 88.1% 85.5% 78.8% 82.6% 92.9% 80.5% 74.7% 92.8% 89.5% 85.5%

SVM 61.1% 76.7% 64.7% 65.2% 78.6% 74.6% 70.2% 71.5% 81.9% 74.1% 73.6% 79.7% 78.7% 76.6%

CNN (1D)12 78.1% 92.2% 69.8% 73.4% 94.9% 90.3% 83.1% 73.5% 91.1% 74.7% 81.6% 94.0% 90.7% 84.3%

CNN (2D)12 80.7% 94.2% 74.0% 75.8% 93.7% 87.6% 84.3% 77.2% 91.9% 74.6% 80.9% 91.0% 89.9% 84.3%

CNN PF34 79.2% 94.9% 69.9% 79.3% 95.2% 85.7% 84.0% 80.6% 90.7% 65.6% 83.8% 95.3% 91.0% 84.5%

CNN PFF34 80.0% 94.0% 67.4% 80.6% 96.9% 87.5% 84.4% 78.2% 91.7% 64.3% 83.0% 95.7% 90.2% 83.8%

ConvNet13 78.5% 95.8% 63.6% 77.5% 96.9% 87.3% 83.3% 81.2% 92.4% 81.5% 84.5% 94.4% 91.3% 87.6%

IMU CNN14 78.2% 87.7% 59.9% 69.7% 91.9% 83.6% 78.5% 80.7% 93.6% 65.3% 81.1% 95.5% 91.7% 84.6%

IMU Transf.14 73.5% 64.3% 63.0% 73.1% 62.8% 45.9% 63.8% 70.8% 77.6% 63.5% 77.4% 78.7% 57.9% 71.0%

MLP (2 Layers) 75.8% 84.3% 57.3% 62.5% 79.7% 81.7% 73.5% 86.9% 91.2% 74.3% 80.9% 92.6% 90.3% 86.0%

MLP (3 layers) 79.4% 84.1% 57.6% 64.1% 81.8% 81.4% 74.7% 86.0% 90.9% 74.8% 79.7% 93.5% 90.5% 85.9%

ResNet15 81.4% 79.5% 67.6% 74.6% 91.0% 79.6% 78.9% 71.9% 85.9% 67.2% 80.6% 90.7% 85.0% 80.2%

ResNetSE67 80.8% 83.0% 69.6% 74.7% 90.7% 76.9% 79.3% 67.4% 84.6% 70.0% 74.5% 84.6% 85.0% 77.7%

ResNetSE-567 82.6% 84.9% 74.1% 69.1% 92.1% 82.0% 80.8% 71.3% 88.5% 68.6% 78.6% 91.3% 81.0% 79.9%

Max 82.6% 95.8% 74.1% 80.6% 96.9% 90.3% 84.4% 86.9% 93.6% 81.5% 84.5% 95.7% 91.7% 87.6%

Table 7.  Performance of models using standardized view. The best results for each dataset and for each domain 
(time and frequency) are highlighted in bold. Mean column represents the average performance of the model in 
the datasets.

Model

Time Frequency

KH MS RW-T RW-W UCI WDM Mean KH MS RW-T RW-W UCI WDM Mean

KNN 1.16x 0.82x 1.41x 1.16x 1.22x 1.01x 1.08x 1.00x 1.02x 0.89x 1.08x 1.00x 0.96x 0.99x

Random Forest 1.00x 1.01x 0.84x 0.87x 1.03x 0.93x 0.95x 1.04x 1.02x 0.96x 0.98x 1.01x 0.92x 0.99x

SVM 1.06x 1.00x 0.80x 0.95x 0.92x 0.81x 0.91x 1.02x 0.97x 0.87x 0.92x 0.92x 0.80x 0.91x

CNN (1D)12 1.01x 0.99x 0.86x 1.01x 1.00x 0.95x 0.97x 0.98x 1.00x 0.91x 0.98x 1.00x 0.94x 0.97x

CNN (2D)12 1.06x 1.01x 1.04x 0.98x 0.98x 0.96x 1.00x 0.97x 1.00x 0.94x 1.03x 1.02x 0.94x 0.98x

CNN PF34 1.00x 1.02x 0.99x 1.07x 1.01x 0.97x 1.01x 0.98x 0.99x 0.85x 1.01x 1.03x 0.94x 0.97x

CNN PFF34 1.01x 1.01x 0.92x 1.11x 1.01x 0.98x 1.00x 0.92x 1.02x 0.82x 1.00x 1.03x 0.94x 0.96x

ConvNet13 1.05x 1.02x 0.93x 1.05x 1.06x 0.96x 1.01x 0.93x 1.01x 0.94x 1.03x 0.99x 0.94x 0.97x

IMU CNN14 1.04x 1.00x 1.00x 1.08x 1.03x 0.99x 1.02x 0.96x 1.02x 0.86x 1.03x 1.01x 0.95x 0.97x

IMU Transf.14 0.98x 0.91x 0.86x 0.99x 0.68x 0.51x 0.81x 0.98x 1.06x 0.81x 1.01x 1.00x 0.60x 0.90x

MLP (2 Layers) 1.01x 1.01x 0.74x 0.99x 1.00x 0.89x 0.94x 1.00x 0.98x 0.90x 1.04x 1.00x 0.92x 0.97x

MLP (3 layers) 1.01x 1.02x 0.75x 0.99x 1.01x 0.92x 0.95x 1.00x 1.01x 0.92x 1.04x 1.00x 0.92x 0.98x

ResNet15 1.02x 0.92x 0.91x 0.97x 0.93x 0.87x 0.93x 1.02x 1.00x 0.83x 1.13x 0.98x 0.91x 0.97x

ResNetSE67 1.03x 0.91x 0.97x 0.98x 0.93x 0.83x 0.94x 0.88x 1.02x 0.87x 0.98x 0.92x 0.90x 0.93x

ResNetSE-567 1.05x 0.95x 1.06x 0.92x 0.97x 0.91x 0.97x 0.94x 0.98x 0.87x 1.00x 0.99x 0.86x 0.94x

Max (Ratio) 1.03x 1.02x 0.91x 1.04x 0.99x 0.95x 0.98x 0.99x 1.01x 0.94x 1.01x 1.01x 0.93x 0.97x

Table 8.  Ratio of model performance between the baseline view and the standardized view. Values close to one 
indicate no significant difference between the two views, values below one indicate better performance in the 
baseline view, and values above one indicate better performance in the standardized view. The Max (Ratio) line 
is the ratio between both maximum values of the two views.

https://doi.org/10.1038/s41597-024-03951-4


1 0Scientific Data |         (2024) 11:1192  | https://doi.org/10.1038/s41597-024-03951-4

www.nature.com/scientificdatawww.nature.com/scientificdata/

Technical Validation
Using the standardized views, DAGHAR21 enables the evaluation of model generalization capabilities in 
cross-dataset scenarios, factoring out known biases and ensuring a more controlled environment. Figure 3 
shows the t-SNE visualization with all samples from all datasets concatenated into a single dataset and projected 
into a single 2D space. The coloring and marker scheme is based on the activity label (3a) and the smartphone 
position (3b). This visualization allows us to observe the data distribution across all datasets, providing insights 
into their similarities and differences.

By examining Fig. 3a, in the frequency domain, we can see that the classes are well-separated, with low-energy,  
mid-energy, and high-energy activities forming distinct clusters, independent of the dataset. This corroborates 
the insights on individual datasets presented in previous sections. In the time domain, however, the classes are 
less separated, with some overlap between low-energy and other activities.

An interesting point to highlight is associated with the smartphone position (Fig. 3b), which should be ana-
lyzed in conjunction with the activity label (Fig. 3a). In the frequency domain, datasets with different smartphone 
positions (pocket and waist bag) occupy the same space for low-energy activities, indicating that smartphone 
position does not significantly impact the data distribution for these activities. However, for other activities, 
datasets with different smartphone positions form distinct clusters, suggesting that smartphone position may sig-
nificantly impact the data distribution for these activities. For instance, activities like walking, walking upstairs, 
and walking downstairs seem more affected by the smartphone position, as they are more sensitive to the body’s 
movement and position. The same trend appears in the time domain but with less cluster separation.

This suggests a domain shift between datasets with different smartphone positions, which could impact 
model generalization capabilities in cross-dataset scenarios. Therefore, smartphone position should be consid-
ered in domain adaptation or domain generalization studies to ensure robust performance.

An usual procedure to estimate the domain shift resorts to the Maximum Mean Discrepancy (MMD) met-
ric35. MMD is a statistical measure of the discrepancy between two probability distributions. A low MMD value 
(close to 0) suggests that the distributions of the two datasets are very similar, while a high MMD value indicates 
significant differences between the distributions. These differences can arise due to variations in mean, variance, 
or other higher-order moments.

Figure 4 presents two MMD matrices: one showing the MMD between all pairs of datasets in the standard-
ized views independent of the activities, and the other showing the MMD between all pairs of activities in the 
standardized views, disregarding the dataset. The diagonal values are always 0 because they represent the MMD 
of a dataset with itself. In contrast, the off-diagonal values represent the MMD between two different datasets 
(MMD generates a symmetric matrix as the order of the datasets does not matter). For both matrices, we calcu-
lated MMD using a Gaussian kernel with γ = 1.0.

The MMD matrix between datasets reveals that KH is one of the most dissimilar datasets compared to the 
others (MS, RW-T, RW-W), as indicated by higher MMD values. This is intriguing since KH has the same smart-
phone position as the UCI and RW-W datasets. Similar but less pronounced patterns are observed with other 
datasets, such as MS.

The MMD matrix between activities shows that “sit” and “stand” are the most dissimilar activities compared to the 
others, indicated by higher MMD values. This quantitatively corroborates the insights from t-SNE visualizations, where 
these activities are separated from others. The mid-energy and high-energy activities are more similar, as evidenced by 
lower MMD values, indicating a greater similarity in their data distributions despite being different activities.

Our evaluation of the models on the standardized views of the datasets in a cross-dataset scenario is based on 
a leave-one-dataset-out strategy. This widely used method for assessing domain adaptation and generalization 
involves training a model on all datasets except one, and then testing it on the left-out dataset. The reported 
value is the performance on the left-out dataset. We repeat this process for each dataset to evaluate the generali-
zation capabilities of the models across different datasets.

The results are presented in Table 9, and the performance improvement compared to the same-dataset regime 
is shown in Table 10. Only training subsets are used for training the models, and only test subsets are used for 
evaluation. This ensures that the models are not exposed to any test data during training, preventing data leakage 
and ensuring a fair comparison between models trained in other regimes.

A significant drop in performance can be observed when comparing cross-dataset evaluation to same-dataset 
evaluation. This is expected, as cross-dataset evaluation is more challenging since the model must generalize 
to new, unseen environments. Interestingly, datasets with similar smartphone positions and low MMD values 
between them also exhibit a significant drop in performance. This indicates that even when a model is exposed 
to similar environments or is made more generic by incorporating more samples from different environments, 
it still needs to generalize to new scenarios. This suggests that external factors such as user demographics, data 
collection protocols, and other variables may significantly impact model performance more than smartphone 
position alone, highlighting the necessity of research into adaptation strategies.

Interestingly, there results reveal that convolutional models consistently outperforms other models in 
cross-dataset evaluation, demonstrating its robustness to domain shifts. This novel insight underscores the 
potential of convolutional-based models in generalizing to new, unseen environments, making them a promis-
ing option for HAR tasks.

Usage Notes
In this section, we demonstrate how to read and handle the data, train and evaluate machine learning models, as 
well as how to extend the DAGHAR dataset using the same standardization process.

Reading data and training machine learning models.  The dataset consists of time series data from 
accelerometers and gyroscopes, along with associated metadata. These are stored in a single CSV file per partition, 
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as described in the Data Records section. The data can be easily handled using the Pandas library in Python to 
train machine learning models.

Below is a simple example that shows how to read the data, train a Random Forest model from the scikit-learn 
library, and evaluate it on a test set. The trainable data, which is represented as an (N, F) matrix, where N is the 
number of samples and F is the number of features (calculated as 2 × 3 × sampling rate × 3 seconds), is stored 
in a variable named X, while the labels are stored in a variable named y, which is a common practice in machine 
learning tasks.

Fig. 3  t-SNE visualization of the standardized views of the datasets. The t-SNE was applyied to all datasets 
together and the coloring/marker scheme is based on the activity label (3a) and the smartphone position (3b). 
Thus, both figures show the same data distribution, but with different coloring/marker schemes.
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import pandas as pd
from sklearn.ensemble import RandomForestClassifier
# Global variables, adjust accordingly
sampling_rate_hz = 20
window_size_seconds = 3
num_features_per_sensor_axis = sampling_rate_hz * window_size_seconds
# Load train and test data
train_data = pd.read_csv('path/to/train.csv') test_data = pd.read_

csv('path/to/test.csv')
# Create a list of column names to select for the X matrix
X_columns_to_select = []
for axis in ['accel-x', 'accel-y', 'accel-z', 'gyro-x', 'gyro-y', 

'gyro-z']:
for i in range(num_features_per_sensor_axis):
X_columns_to_select.append(f'{axis}-{i}')
# Name of label column
y_column = 'standard activity code'
# Select the columns to compose the train X matrix
X_train = train_data[X_columns_to_select].values

Fig. 4  Mean Maximum Discrepancy (MMD) between datasets and activities in the standardized views.
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y_train = train_data[y_column].values
# Select the columns to compose the test X matrix
X_test = test_data[X_columns_to_select].values
y_test = test_data[y_column].values
# Create the RF model, train it, and evaluate accuracy on the test set
model = RandomForestClassifier()
model.fit(X_train, y_train)
# Predict and calculate mean accuracy
accuracy = model.score(X_test, y_test)
print(f'Accuracy: {accuracy}')

Model

Time Frequency

KH MS RW-T RW-W UCI WDM Mean KH MS RW-T RW-W UCI WDM Mean

KNN 58.3% 49.8% 38.1% 36.6% 34.6% 43.4% 43.5% 61.1% 81.4% 66.4% 58.8% 59.6% 72.2% 66.6%

Random Forest 54.3% 60.3% 47.6% 42.6% 65.8% 59.0% 54.9% 62.8% 82.8% 67.0% 69.6% 79.5% 71.4% 72.2%

SVM 52.1% 62.4% 49.5% 49.9% 66.5% 55.7% 56.0% 52.8% 80.6% 72.4% 68.3% 67.7% 69.6% 68.6%

CNN (1D)12 63.3% 79.0% 71.7% 68.0% 81.1% 70.3% 72.2% 66.2% 84.6% 71.4% 69.7% 77.2% 73.9% 73.9%

CNN (2D)12 61.4% 70.2% 61.9% 67.8% 70.7% 60.3% 65.4% 66.1% 83.6% 73.9% 69.9% 75.9% 73.3% 73.8%

CNN PF34 61.9% 67.2% 65.0% 66.1% 73.0% 54.9% 64.7% 71.9% 82.8% 70.5% 70.6% 78.3% 74.1% 74.7%

CNN PFF34 63.2% 66.3% 64.8% 67.5% 74.4% 56.0% 65.4% 70.3% 84.3% 69.5% 70.4% 77.6% 74.1% 74.4%

ConvNet13 63.9% 65.6% 47.3% 61.2% 70.1% 53.9% 60.3% 69.7% 85.6% 75.0% 71.3% 81.8% 79.1% 77.1%

IMU CNN14 54.2% 62.5% 42.9% 48.7% 64.8% 59.4% 55.4% 70.4% 85.6% 68.5% 71.3% 78.8% 74.7% 74.9%

IMU Transf.14 63.1% 58.5% 35.7% 57.5% 62.6% 59.8% 56.2% 67.5% 84.0% 67.7% 68.1% 76.4% 73.8% 72.9%

MLP (2 Layers) 55.7% 71.8% 54.9% 55.1% 68.7% 60.9% 61.2% 74.2% 83.9% 70.5% 65.0% 74.6% 73.2% 73.5%

MLP (3 layers) 53.3% 73.6% 54.2% 56.3% 67.3% 59.7% 60.8% 77.9% 85.4% 73.5% 67.2% 75.5% 75.2% 75.8%

ResNet15 58.5% 68.0% 41.1% 66.9% 76.8% 57.4% 61.4% 62.9% 79.8% 66.8% 65.5% 74.1% 69.1% 69.7%

ResNetSE67 60.4% 68.8% 47.1% 68.1% 73.3% 54.2% 62.0% 58.2% 77.5% 68.4% 66.9% 74.7% 67.1% 68.8%

ResNetSE-567 49.0% 67.0% 49.6% 66.2% 72.7% 51.7% 59.4% 65.4% 81.1% 67.5% 66.3% 75.0% 70.6% 71.0%

Max 63.9% 79.0% 71.7% 68.1% 81.1% 70.3% 72.2% 77.9% 85.6% 75.0% 71.3% 81.8% 79.1% 77.1%

Table 9.  Performance of models using standardized view in the cross-dataset scenario, using leave-one-dataset-
out strategy. The best results for each dataset and for each domain (time and frequency) are highlighted in bold. 
Mean column represents the average performance of the model in the datasets.

Model

Time Frequency

KH MS RW-T RW-W UCI WDM Mean KH MS RW-T RW-W UCI WDM Mean

KNN 1.18x 0.75x 0.87x 0.69x 0.52x 0.72x 0.77x 0.70x 0.90x 1.02x 0.79x 0.73x 0.80x 0.82x

Random Forest 0.67x 0.68x 0.76x 0.63x 0.75x 0.69x 0.70x 0.76x 0.89x 0.83x 0.93x 0.86x 0.80x 0.84x

SVM 0.85x 0.81x 0.77x 0.76x 0.85x 0.75x 0.80x 0.74x 0.98x 0.98x 0.93x 0.85x 0.88x 0.90x

CNN (1D)12 0.81x 0.86x 1.03x 0.93x 0.85x 0.78x 0.87x 0.90x 0.93x 0.96x 0.85x 0.82x 0.82x 0.88x

CNN (2D)12 0.76x 0.75x 0.84x 0.89x 0.75x 0.69x 0.78x 0.86x 0.91x 0.99x 0.86x 0.83x 0.82x 0.88x

CNN PF34 0.78x 0.71x 0.93x 0.83x 0.77x 0.64x 0.77x 0.89x 0.91x 1.08x 0.84x 0.82x 0.81x 0.88x

CNN PFF34 0.79x 0.71x 0.96x 0.84x 0.77x 0.64x 0.77x 0.90x 0.92x 1.08x 0.85x 0.81x 0.82x 0.89x

ConvNet13 0.81x 0.68x 0.74x 0.79x 0.72x 0.62x 0.72x 0.86x 0.93x 0.92x 0.84x 0.87x 0.87x 0.88x

IMU CNN14 0.69x 0.71x 0.72x 0.70x 0.71x 0.71x 0.71x 0.87x 0.92x 1.05x 0.88x 0.83x 0.82x 0.89x

IMU Transf.14 0.86x 0.91x 0.57x 0.79x 1.00x 1.30x 0.88x 0.95x 1.08x 1.07x 0.88x 0.97x 1.27x 1.03x

MLP (2 Layers) 0.73x 0.85x 0.96x 0.88x 0.86x 0.75x 0.83x 0.85x 0.92x 0.95x 0.80x 0.81x 0.81x 0.85x

MLP (3 layers) 0.67x 0.88x 0.94x 0.88x 0.82x 0.73x 0.81x 0.91x 0.94x 0.98x 0.84x 0.81x 0.83x 0.88x

ResNet15 0.72x 0.85x 0.61x 0.90x 0.84x 0.72x 0.78x 0.87x 0.93x 0.99x 0.81x 0.82x 0.81x 0.87x

ResNetSE67 0.75x 0.83x 0.68x 0.91x 0.81x 0.70x 0.78x 0.86x 0.92x 0.98x 0.90x 0.88x 0.79x 0.89x

ResNetSE-567 0.59x 0.79x 0.67x 0.96x 0.79x 0.63x 0.73x 0.92x 0.92x 0.98x 0.84x 0.82x 0.87x 0.89x

Max (Ratio) 0.77x 0.82x 0.97x 0.85x 0.84x 0.78x 0.86x 0.90x 0.92x 0.92x 0.84x 0.86x 0.86x 0.88x

Table 10.  Ratio of model performance between standard training and cross-dataset training using a leave-one-
dataset-out strategy. Values close to one indicate no significant difference between the two scenarios, values 
below one indicate better performance in the standard training scenario, and values above one indicate better 
performance in the cross-dataset scenario. The Max (Ratio) line is the ratio between both maximum values of 
the two scenarios.
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For training deep learning models, we recommend using the PyTorch Lightning library. Additionally, we 
recommend using the Minerva framework (https://github.com/discovery-unicamp/Minerva), which is built on 
top of PyTorch Lightning and offers a set of models, data modules, and tools for training deep learning models 
and evaluating them on the DAGHAR dataset as well as other HAR datasets.

Extending DAGHAR.  Datasets often come in various formats and structures, which can make the stand-
ardization process challenging. To address this, we have organized our processing scripts into two parts, available 
at official Github repository: reading datasets and standardizing them. The first part is the most complex, as it 
requires understanding the dataset’s structure and determining the proper way to read it. The second part is more 
straightforward since the standardization process is almost uniform across all datasets and the same steps can be 
applied to most datasets, with minor adjustments.

To add a new dataset, the user must create a function at readers.py file, whose name is prefixed with 
read_, that reads the dataset given a valid path and returns a Pandas DataFrame with some required informa-
tion. This dataframe is what we will name as the “intermediate representation” of the dataset, that is a single table 
where each row corresponds to a time step with its respective features. All of our processing steps will be applied 
to this intermediate representation to standardize the dataset. The required columns are as follows:

•	 accel-x, accel-y, accel-z: accelerometer data;
•	 gyro-x, gyro-y, gyro-z: gyroscope data;
•	 accel-start-time, accel-end-time: the start and end times of the accelerometer data (for a 

single time instant, start and end times are the same);
•	 gyro-start-time, gyro-end-time: the start and end times of the gyroscope data (for a single time 

instant, start and end times are the same);
•	 activity code: the activity code associated with the time instant;
•	 user: the user associated with the time instant;
•	 trial: the trial associated with the time instant, as one user may have multiple trials;
•	 index: the index of the time instant within a user’s trial; and
•	 csv: the CSV file name of the dataset.

The dataframe may also contain other metadata information (additional columns, along the required ones), 
which is dataset-specific and can be discarded (or used) during the standardization process.

After creating the function, the user must define a pipeline to standardize the dataset. A pipeline is a sequence 
of steps applied sequentially to the dataset. Steps are simple functions that take a Pandas DataFrame as input and 
return a modified Pandas DataFrame as output. Each step is responsible for a specific operation, such as applying 
a Butterworth filter or performing normalization. Since datasets can vary significantly in characteristics, different 
steps may be needed to standardize them. Thus, the user must define a pipeline (inside pipelines.py file) 
that is specific to the dataset being processed, by creating a list of steps that will be applied to the intermediate rep-
resentation. Common steps are already implemented, and users are encouraged to reuse them when applicable.

For more detailed instructions on how to add a new dataset, please refer to the official repository.

Code availability
All codes are open-source, licensed under MIT License, and available at https://github.com/H-IAAC/DAGHAR.
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