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Developing non-contact, non-destructive monitoring methods for marine life is crucial for sustainable 
resource management. Recent monitoring technologies and machine learning analysis advancements 
have enhanced underwater image and acoustic data acquisition. Systems to obtain 3D acoustic 
data from beneath the seafloor are being developed; however, manual analysis of large 3D datasets 
is challenging. Therefore, an automatic method for analyzing benthic resource distribution is 
needed. This study developed a system to estimate benthic resource distribution non-destructively 
by combining high-precision habitat data acquisition using high-frequency ultrasonic waves and 
prediction models based on a 3D convolutional neural network (3D-CNN). The system estimated the 
distribution of asari clams (Ruditapes philippinarum) in Lake Hamana, Japan. Clam presence and count 
were successfully estimated in a voxel with an ROC-AUC of 0.9 and a macro-average ROC-AUC of 
0.8, respectively. This system visualized clam distribution and estimated numbers, demonstrating its 
effectiveness for quantifying marine resources beneath the seafloor.

The seafloor harbors numerous benthic organisms, which are indispensable as marine resources targeted by 
fisheries and for marine ecosystems and material cycles1,2. However, as most benthic organisms are always 
concealed in sediments, determining their population size and observing their behavior is difficult. Surveys are 
inevitably destructive, time-consuming, and costly. Conventional sampling methods cannot cover large areas, 
making it difficult to detect changes over time. This limitation is an impediment to sustainable management of 
sub-benthic resources and environment.

Benthic organisms such as asari clam (Japanese littleneck clam, Ruditapes philippinarum) have become a 
concern regarding stock management3. The asari clam is a bivalve that lives in the shallows of inner bays and 
is an important target fishery species. The harvest of asari clams in Japan has been on a downward trend, with 
a significant decrease from 160,000 tons in the 1980s to less than 10,000 tons since 2016. Various factors have 
been revealed as causes for this trend, including overfishing, feeding damage, disease and insect damage, and 
the prey environment4. Monitoring of clams has recently been conducted with the aim of sustainable fisheries 
management and resource conservation; however, this relies on manual digging and counting5. The current 
methods are very costly, and comprehensively monitoring the dynamics trends in the asari clam ecosystem over 
time is difficult.
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Various monitoring methods have recently been developed by linking technological improvements in 
image and acoustic data acquisition with machine learning analysis, including deep learning6–10. For example, 
two-dimensional (2D) imaging of tracer particles11 and three-dimensional (3D) computed tomography 
(CT) imaging12 have been developed as data acquisition methods under the seafloor. Acoustic systems with 
various operating frequencies are commonly used to detect objects buried in seafloor sediments. For instance, 
wooden wrecks buried on the seafloor can be visualized using chirp signals with sweep pulses ranging from 
1.5 to 13 kHz13. Recently, a new monitoring tool, a 3D acoustic coring system, has been developed and used to 
precisely survey buried roots of plants with an outer diameter of 3 to 5 cm using ultrasonic waves with a center 
frequency of 100 kHz14. In addition, high-frequency signals with a center frequency of 1 MHz have recently 
been used to survey small creatures of 3–5 cm, such as the clams15. Other deep learning analysis methods have 
been proposed for monitoring seafloor data, such as corals and seaweeds6–8. Furthermore, attempts have been 
made to classify organisms under the seafloor in the laboratory from data acquired with the 3D acoustic coring 
system9. However, such analysis methods need to be verified outside of the laboratory for the practical use of the 
3D acoustics to estimate the distribution of targets in the obtained 3D data and the validation of such methods 
for benthic resource managements.

In this study, we developed a system to estimate the distribution of asari clams in a non-contact and non-
destructive manner. Our system first acquires 3D benthic data containing clams using the 3D acoustic coring 
system. Then, the system predicts whether and how many clams are present in a local voxel region using a 
3D convolutional neural network (3D-CNN)16, a method that has been used successfully in a wide range of 
tasks involving 3D data10,17–22. The proposed system can also estimate the distribution and number of targets 
by integrating the prediction results at multiple voxels within a certain region. To validate the proposed system, 
benthic organisms, such as clams and mussels, were obtained to verify the estimation. We also reported 
examples of the distribution visualization and estimation results of the count distribution within a certain 
region. Furthermore, we showed that Gradient-weighted Class Activation Mapping (Grad-CAM)23, a visual 
explanation method for interpretation in the prediction of neural network models, can be used to analyze and 
interpret regions that are important for the prediction of 3D data.

Results and discussion
Overview
The workflow of this study is shown in Fig. 1. The proposed system was divided into two parts: 1) preparation 
of input data for the deep learning model and 2) prediction by two 3D-CNN models. The 3D-CNN models 
predicted the presence or absence of clams and the count of clams in the local voxel data.

Model for classifying the presence or absence of clams
First, we constructed the 3D-CNN model to discriminate the presence or absence of clams from the 3D data 
measured with the A-core-2000. The model training and evaluation were conducted using Stratified Group 
5-fold cross-validation with the aforementioned data types A and C, including data types M containing mussels 
and sand and AM containing clams, mussels, and others (Fig.  2(a)). Figure  2(b) and (c) shows the model’s 
performance using ROC-AUC curves and confusion matrices. The prediction achieved an ROC-AUC of 0.90, 
an accuracy of 0.87, and an F1 score of 0.87. The detailed predictions for each data are shown in Fig. 2(d). Data 
type A containing only clams consistently exhibited high predictive accuracy, with accuracy exceeding 0.8 across 
all buckets. In contrast, AM and M showed several buckets with accuracy below 0.80, indicating lower overall 
accuracy than A. Additionally, most of the data in C showed high accuracy, except for C1, which had a value 
below 0.8. Predictions using only the intensity information of each voxel without 3D-CNN were also performed 
for comparison. Supplementary Fig. 1(a) and (b) shows the classification results using the mean and maximum 
intensity values for each voxel, respectively, with very low ROC-AUC values of 0.51 and 0.53. These results 
indicate that the presence or absence can be estimated with a certain level of accuracy using 3D-CNN.

We used Grad-CAM23 to analyze where the prediction model focuses on in a 3D acoustic image to determine 
the presence or absence of clams. Grad-CAM enables the visualization of regions that constitute the basis for the 
predictions made by the model. Figure 3 shows the original images and the Grad-CAM visualizations averaged 
every 10 pixels in the z-direction. The upper rows of Fig. 3 show examples of successful predictions visualized 
by Grad-CAM. Figure 3(a) and (b) are cases in which clams are present in the voxel, and (c) and (d) are cases in 
which clams are absent. Figure 3(a) and (b) shows that when the model predicted the voxel as the presence of 
clams, it responded strongly to signals that appeared to be clams in relatively deep areas. In contrast, the model 
focused on shallow areas when predicting the voxel as the absence of clams. The lower row of Fig.  3 shows 
examples of failed predictions, whereas (e) and (f) represent cases where clams were predicted to be present 
even though there were no clams. Relatively strong signals were observed in the acoustic images; thus, the model 
responded to these signals and predicted the voxel as the presence of clams. As observed in (i) and (j) in Fig. 3, 
even C, which contained only sand, contained small clams and stones, which may have adversely affected the 
prediction. Although signals that appeared to be clams were present in the acoustic images and were focused by 
the model to some extent, the predictions were incorrect. These results suggest that although there remains room 
for improvement in accuracy, the prediction model focuses on signals that appear to be clams and the prediction 
of the presence of clams.

Model for classifying the count of clams
Next, the model for estimating the count of clams was trained and evaluated. The model training and evaluation 
were conducted through Stratified Group 5-fold cross-validation. The output was performed as a 3-class 
classification: “0”, “1”, and “2 or more.” Fig. 4(a) shows the prediction examples for each data type. Figure 4(b) 
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and (c) shows the model’s performance using ROC-AUC curves and confusion matrix. The prediction achieved 
a macro-average ROC-AUC of 0.90, an accuracy of 0.64, and a macro-average F1 score of 0.64. The confusion 
matrix indicated that the discrimination accuracy of “1” and “2 or more” was lower than the prediction accuracy 
of “0”. This is probably because predicting the count of clams becomes difficult when the reflections overlap 
due to the high density of clams. The prediction results for each data type regarding accuracy are also shown 
in Fig. 4(d). The accuracy of data type C, which contained only sand, was high, whereas that of data types A 
and M was slightly low. The accuracy of data type AM, containing various objects other than clams, was further 
reduced. This result suggests that small stones or clams may make classification more difficult, as discussed in 
the model predicting presence.

Estimating the distribution of clams
The proposed method enabled us to estimate the distribution of clams (Fig. 2(a) and 4(a)) because the trained 
models predicted the presence and count of clams in each voxel. Furthermore, the count of clams within a 
certain region containing multiple voxels was estimated by integrating the prediction results. Here, we evaluated 
the accuracy of estimating the clams contained within each bucket’s region, consisting of 20 voxels (Fig. 5). The 
estimated and measured counts for each bucket are listed in Supplementary Table 1. The overall correlation 
coefficient was 0.92, and the correlation coefficient for only the A and AM data was 0.68, confirming the 
correlations of the clam counts. The mean absolute error (MAE) and mean relative error (MRE) for each data 

Fig. 1. The workflow of the proposed system. This system is divided into two parts: 1) preparation of input 
data for the deep learning model and 2) prediction using the deep learning model. In 1), the A-core-200024 
was first used to measure the reflected waves from the subseafloor (a), extract the areas where clams are 
present (b), and create datasets on the presence/absence and the count of clams for training and evaluation 
of the deep learning model (c). In 2), the datasets created in (c) were used to train two independent 3D-CNN 
(3D convolutional neural network) models (d), and finally, the 3D-CNN models were evaluated using three 
evaluation metrics (e).
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Fig. 2. Prediction performances of the model for predicting the presence or absence of clams in a voxel. The 
model was trained and evaluated using Dataset 1 (presence or absence of clams). (a) Predicted distribution 
examples for each data type: control data containing sand only (C), data containing asari clams and sand (A), 
data containing a mixture of mussels and sand (M), and data containing a mixture of clams, mussels, and other 
materials (AM). Note that the presence or absence of clams is predicted from the corresponding voxel data, 
not from these photo images. The prediction is performed for the voxel corresponding to each square on these 
images. Regions marked with × indicate failed predictions, and regions marked with ✔ indicate successful 
predictions. (b) and (c) The prediction accuracy and the ROC curve for each voxel. (d) The prediction 
accuracy for each bucket.
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Fig. 3. Visualized attention by the prediction model using Grad-CAM. The visualized data were averaged 
every 10 pixels in the z-direction. Pred indicates predicted results; GT indicates Grand Truth. Data type: 
control data containing sand only (C), data containing asari clams and sand (A), data containing a mixture of 
mussels and sand (M), and data containing a mixture of clams, mussels, and other materials (AM). (a) to (h) 
The original input data visualized in grayscale (left) and the corresponding heatmap calculated by Grad-CAM 
(right). (a) A data where both prediction and actual were “presence.” (b) AM data where both prediction and 
actual were “presence.” (c) C data where both prediction and actual were “absence.” (d) C data where both 
prediction and actual were “absence.” (e) C data where the actual was “absence” but predicted as “presence.” (f) 
M data where the actual was “absence” but predicted as “presence.” (g) A data where the actual was “presence” 
but predicted as “absence.” (h) AM data where the actual was “presence” but predicted as “absence.” (i) 
Excavation scene for C data where the actual was “absence” but predicted as “presence.” (j) Excavation scene for 
M data where the actual was “absence” but predicted as “presence”.
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Fig. 4. Prediction results of the model for estimating the clams count. The model was trained using Dataset 
2 (labels: 0 clams, 1 clam, and 2 or more clams). (a) Examples of predictions for each data type: control data 
containing sand only (C), data containing asari clams and sand (A), data containing a mixture of mussels 
and sand (M), and data containing a mixture of clams, mussels, and other materials (AM). Regions marked 
with × indicate failed predictions, and regions marked with ✔ indicate successful predictions. (b) and (c) The 
prediction model’s performance for each voxel regarding ROC curves and confusion matrix. (d) The prediction 
accuracy for each bucket.
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Fig. 5. Estimated and actual count of clams per local region (bucket). The count of clams per bucket was 
calculated by integrating the results predicted by the model to estimate the count of clams. Data type: control 
data containing sand only (C), data containing asari clams and sand (A), data containing a mixture of mussels 
and sand (M), and data containing a mixture of clams, mussels, and other materials (AM).
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type are presented in Table 1. The MRE values were 0.20 for A and 0.12 for AM, indicating that the estimation is 
possible with an error of approximately 10–20%. These results suggest that the count of clams in each region can 
also be estimated, although with some error. 

Conclusion
In this study, we prepared and measured benthic data, including clams, to validate the resource survey method 
using the three-dimensional acoustic coring system. Using the measured data, two prediction models based on 
3D-CNN were trained and evaluated to estimate the presence and count of clams. We successfully estimated 
the presence or absence of clams in each voxel with an ROC-AUC of approximately 0.9 and the count of clams 
in local areas with a macro-average ROC-AUC of 0.8. The count of clams within a certain area (bucket) was 
confirmed to be estimated by MAE values of 0.12 or 0.20. These results indicate the potential of the proposed 
method for estimating benthic resources.

Unlike conventional sampling methods that involve drilling and disturbance of the marine environment, 
this method does not require physical interference with the ecosystem, thus minimizing potential harm to other 
marine species and maintaining habitat integrity. This reduced environmental impact is a significant advantage 
over traditional methods and would be a more sustainable option for resource surveys. Additionally, while 
traditional methods have often difficulties grasping spatial distribution and temporal changes, the approach 
proposed in this study allows for the observation of these aspects.

However, this study has the potential for improvement. First, the prediction accuracy tended to decrease 
when factors other than clams were introduced, such as AM. To solve this problem, it is beneficial to prepare a 
larger amount of various data and to use more advanced neural networks, such as vision transformers, to process 
voxel data for learning. Because the measurement speed of data by A-core-2000 is slow and the measurement 
area is relatively narrow, considerably faster measuring devices (array sonar system) are needed. As this study 
was conducted in a relatively controlled environment, verification in the outside field is desired in the future.

Methods
Data preparation and measurement using the acoustic coring system
Preparation of benthic data containing clams Benthic data, including clams, were obtained from a portable 
pool at the Hamanako Branch, Shizuoka Prefectural Research Institute of Fishery, Shizuoka Prefecture, Japan. 
Four types of benthic data were prepared to verify whether estimation could be performed for various types of 
data: control data containing sand only (C), data containing asari clams and sand (A), data containing a mixture 
of mussels and sand (M), and data containing a mixture of clams, mussels, and other materials (AM). Each 
benthic data was prepared by placing sand and mussels from Lake Hamana in a rectangular bucket with internal 
dimensions of 580 × 155 × 200 mm. Six buckets were prepared for each data type. For the A and AM data, 40 
live clams from the nearby Mikawa Bay were placed in each bucket three days before the measurement date and 
stored until the measurement date.

Measurement using the acoustic coring system A convergent ultrasonic sensor, the A-core-200024 was used to 
observe benthic data in the prepared buckets (Fig. 1(a)). The bucket’s 250 × 200 mm area was scanned at 2 mm 
intervals while continuously irradiated with ultrasound, and the reflected sound wave was measured and record-

Absence Presence

A 2,125 16,717

C 13,000 0

M 15,600 0

AM 2,075 19,177

Total 32,800 35,894

Table 2. Dataset regarding the presence or absence of clams (Dataset 1). Data type: control data containing 
sand only (C), data containing asari clams and sand (A), data containing a mixture of mussels and sand (M), 
and data containing a mixture of clams, mussels, and other materials (AM).

 

A C M AM

MAE 2.4 1.2 3.3 1.8

MRE 0.20 - - 0.12

Table 1. MAE (mean absolute error) and MRE (mean relative error) for predicting the count of clams for each 
data type: control data containing sand only (C), data containing asari clams and sand (A), data containing 
a mixture of mussels and sand (M), and data containing a mixture of clams, mussels, and other materials 
(AM). The count of clams was estimated for each bucket using the prediction model of the count of clams. The 
MAE in the count of clams was calculated for each data type. MRE was calculated only for A and AM because 
relative absolute error cannot be calculated when the count of clams is zero.
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ed. Square pulse with a central frequency of 500 kHz was generated by a pulsar receiver in the acoustic unit and 
applied to the focus probe. The pulse repetition interval was 200 ms. The distance of focal point, beam width, 
and focal depth were around 70 mm, 4 mm, and 30 mm, respectively. The median grain size of sands which we 
used in this study was 2.6 ×  10−4 and thus the attenuation coefficient was estimated 102 dB/m according to the 
analysis in the previous study24. In this study, the absorption attenuation was considered dominant because the 
ratio kd ( k = wavenumber, d = grain size) was 8.6 ×  10−2 and this value is quite small (kd ≪ 1)25. Enve-
lope processing was performed on the recorded waveform data. The acoustic image constructed by the Viewer24 
showed that the reflection from the clams was between reflections from the soil surface and reflection from the 
soil surface again (the 2nd reflection in Fig. 1(b)). In this study, the range of analysis was defined as the area 
between the first and second reflections (multiple reflections) from the sediment surface. The total reflection 
intensity in the XY plane was calculated for each z-coordinate in the 3D data of the acquired reflection intensity, 
the region of clam presence was extracted, and the size was standardized for each bucket (Sl). Therefore, the 3D 
data of reflectance intensity measured at 125 × 100 × 693 points in each bucket were used in this study.

Manual identification of positions of asari clams The positions of asari clams in the measured data were iden-
tified to evaluate the prediction models. First, x and y coordinates, the candidate positions of asari clams in the 
horizontal direction, were manually obtained from the reflection intensity data. Next, the positions of the asari 
clams were identified by comparing them with the image data of the dug clams taken at the time of measure-
ment. The backscatter of the clams was measured, and the center position of the backscatter was defined as the 
clam position. The data on the positions of the clams were recorded in Supplementary Tables 2 and 3. The data in 
A5, C4, and AM5 were excluded from the data set because mechanical issues with the probe resulted in excessive 
noise, rendering the measurements inaccurate.

Preparation of datasets for model training and evaluation Datasets 1 and 2 were created to construct models 
to predict the presence or absence of clams in a local voxel and the count of clams in a local voxel. First, the data 
obtained from each bucket was divided into 25 × 25 pixels, shifting every 1 pixel in the horizontal direction, re-
sulting in 124,689 local voxel data, each with size 25 × 25 × 693 pixels (Fig. 1(b)). Here, backscatter data of clams 
could be included in the boundary of the divided data. Therefore, if the position of a clam recorded above was 
included in a local voxel or the shortest distance of the position from a local voxel was less than 11 pixels, the lo-
cal voxel data was regarded as including the clam. Based on the positions of clams identified in the above Section, 
for Dataset 1, a label of “Absence” was assigned if no clams were included in a local voxel data, and “Presence” 
was assigned if at least one clam was included in a local voxel data. The number of labeled data is presented in 
Table 2; for C and M, all data were labeled as “absence” because no clams were included in the buckets. Based 
on the positions of clams identified in the above Sect. 3.1.3, for Dataset 2, the count of clams was assigned as a 
label (Table 3). The number of data containing three or more clams in one local voxel was very small (1,137); 
therefore, data containing three or more clams were treated as data containing two or more clams. Datasets 1 and 
2 were created by randomly extracting data from the 124,689 local voxel data, each with a size of 25 × 25 × 693 
pixels; thus, the number of data for each label was approximately the same.

Classification using deep neural networks In this study, we employed the 3D-CNN16 to develop the prediction 
models. 3D-CNN has demonstrated success in various tasks involving 3D data, such as classification, detection, 
and segmentation of medical images10,17–20, as well as action recognition21,22. It mainly consists of convolutional, 
pooling, and fully connected layers. We modified the 3D-CNN developed in our previous study9 to build two 
independent models: one for classifying the presence or absence of clams and another for classifying the count of 
clams. In the model for classifying the presence or absence of clams, we used Dataset 1, containing information 
on the presence or absence of clams as input and obtained outputs of either ‘Absence’ or ‘Presence’ (Fig. 6). The 
model employed the Adam optimizer, with a batch size of three and a learning rate of 10−6, and was trained for 
a maximum of 50 epochs, stopping if there was no improvement for 10 epochs. For the model classifying the 
count of clams, we used Dataset 2, containing information on the count of clams as input, and obtained outputs 
of ‘0’, ‘1’, or ‘2 or more clams’ (Fig. 6). The model employed the Adam optimizer, with a batch size of three and 
a learning rate of 10−6, and was trained for a maximum of 30 epochs, stopping if there was no improvement for 
10 epochs.

In this study, TensorFlow (version 2.4.1)26 was used to construct two 3D-CNN models, and the performance 
of the models was evaluated using Stratified Group 5-fold cross-validation27. The groups represented each 
bucket. Additionally, the dataset was divided into training (60%), validation (20%), and test (20%) sets.

0 1 ≥ 2

A 1,147 2,500 1,939

C 1,250 0 0

M 1,500 0 0

AM 1,034 2,500 3,136

Total 4,931 5,000 5,075

Table 3. Dataset on the count of clams (Dataset 2). Data type: control data containing sand only (C), data 
containing asari clams and sand (A), data containing a mixture of mussels and sand (M), and data containing a 
mixture of clams, mussels, and other materials (AM).
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Evaluation metrics of the prediction model
Three evaluation metrics were employed to evaluate the trained models: accuracy, F1-score, and the area under 
the receiver operating characteristic curve (ROC-AUC). Accuracy represents the proportion of correctly 
predicted data, and this metric is the most basic measure to evaluate the overall performance of a classification 
model. F1-score is defined as the harmonic mean of precision and recall:

 
F1− score =

2 · precision · recall
precision + recall

.

The precision indicates the percentage of data predicted to be positive that is actually positive, and the recall 
indicates the percentage of actual positive data that is predicted to be positive. The F1 score was employed to 
evaluate the balance between precision and recall. ROC-AUC refers to the area under the ROC curve, which 
plots the true-positive rate against the false-positive rate as the classification threshold varies. ROC-AUC was 
employed to evaluate how well the model was able to detect the presence of clams while allowing for certain 
errors, balancing true positive and false positive rates at different thresholds. Each metric ranges from 0 to 1, 
with higher values indicating better model performance.

Furthermore, to evaluate the model for classifying the count of clams, we used macro-average ROC-AUC 
and F1-score, which are the averages of the ROC-AUC and F1-score calculated for each class. Macro-average 
refers to the method of computing the ROC-AUC and F1-score for each class individually and then averaging 
these scores. This metric considers the performance of each class equally and allows for a balanced evaluation of 
the overall performance, even in cases with class imbalance.

Data availability
The acoustic voxel data have been archived on Zenodo. You can access the datasets using the following links: 
https://zenodo.org/records/13381836, https://zenodo.org/records/13377864,  h t t p s : / / z e n o d o . o r g / r e c o r d s / 1 3 3 8 1 
8 9 3     .  

Received: 30 August 2024; Accepted: 25 October 2024

Fig. 6. Overview of predictions using 3D-CNN (3D convolutional neural network). The 3D-CNN models 
predict (a) the presence/absence of clams and (b) the count of clams (0, 1, and “2 or more”) from the input of 
3D acoustic data. For training and evaluation of the models, Dataset 1 and 2, shown in Fig. 1, were used for the 
predictions (a) and (b), respectively.
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