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Active learning comprises machine learning-based
approaches that integrate surrogate model inference,
exploitation and exploration strategies with active
experimental feedback into a closed-loop framework.
This approach aims at describing and predicting
specific material properties, without requiring
lengthy, expensive or repetitive experiments.
Recently, active learning has shown potential as an
approach for the design of sustainable materials, such
as scrap-compatible alloys, and for enhancing the
longevity of metallic materials. However, in-depth
investigations into suited best-practice strategies of
active learning for sustainable materials science
are still scarce. This study aims to present and
discuss active learning strategies for developing and
improving sustainable alloys, addressing single-
objective and multi-objective learning and modelling
scenarios. As model cases, we discuss active
learning strategies for optimizing Invar and magnetic
alloys, representing single-objective scenarios, and
more general steel design approaches, exemplifying
multi-objective optimization. We discuss the
significance of finding the right balance between
exploitation and exploration strategies in active
learning and suggest strategies to reduce the number
of iterations across diverse scenarios. This kind of
research aims to find metrics for a more effective
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application of active learning and is used here to advance the field of sustainable alloy
design.

This article is part of the discussion meeting issue ‘Sustainable metals: science and
systems’.

1. Introduction
Designing alloys with novel sets of physical properties is critical in enabling sustainable
solutions in energy conversion, transport, households and industry [1,2]. However, the
significant environmental impact linked to metal extraction and alloy synthesis necessitates
not only that the metal components themselves have to contribute to sustainable technologies,
but that their production processes must also transition to become more environmentally
benign [3–5]. For example, designing metallic alloys from scrap is an essential approach to
sustainable materials development, contributing to resource conservation and lower environ-
mental impact [6,7]. For example, recycling aluminium from scrap rather than extracting it from
ores provides substantial energy savings. The energy required to produce one single tonne
of primary aluminium (referred to as primary production) from about 4–5 tonnes of bauxite
ore is around 170–220 GJ. In contrast, producing aluminium from recycled materials (called
secondary production) requires only about 5% of the energy compared to primary production
[8–10]. Producing 1 tonne of steel from about 2 tonnes of hematite ore consumes about 20 GJ of
energy per tonne. When instead produced from scrap through electric arc furnaces, the energy
required is about 25–30% of this value [11–14].

Another approach for enhancing the sustainability of metals is to improve their resistance
to environmental degradation because we do not need to replenish what does not have to be
scrapped. Thus, enhancing the corrosion resistance of alloys ensures longevity and reliability of
structural parts in multiple load-bearing applications while omitting the environmental impact
associated with material degradation and replacement. However, designing materials with
tailored properties—be it for high scrap tolerance or improved corrosion resistance—is a very
complex and multi-faceted task. Conventional alloy development of such immense complexity
has traditionally been done by applying thermodynamically and kinetically guided design rules
in conjunction with often laborious and costly trial-and-error experiments needed to estab-
lish the resulting relations between chemical composition, structure, processing and proper-
ties. This traditional approach is time-consuming and often inefficient. Moreover, empirically
developed material design rules can fail when the ever-increasing chemical complexity of
modern advanced materials comes into play, such as for advanced steels [15,16], high-strength
aluminium alloys, high-entropy alloys (HEAs) [17] or medium-entropy alloys (MEAs) [18,19].

Using machine learning (ML) to design materials under such multi-parameter constraints
is an emergent field of materials research, and this trend is rapidly growing [20,21]. ML can
accelerate material discovery due to the innovation of ML algorithms, more available informa-
tion resources and databases and new promising automatable workflow connections between
ML, large language models and classic simulation [22–24]. A typical example is the inverse
design [25], which benefits from the rapid development of generative algorithms, e.g. varia-
tional autoencoder (VAE) [22,26] and generative adversarial network methods [23]. Another
strong impetus comes from the rapid growth of databases, e.g. the AFLOW [27], OQMD [24],
Materials Project [28] and NOMAD [29] repositories, which contain millions of calculations
with hundreds of millions of properties [20]. In contrast, there are worldwide efforts to curate
reliable experimental databases, as exemplified by the national research data infrastructure
recently launched in Germany and the European materials modelling ontology initiative [30,31].
These large-scale efforts further motivate a closed-loop materials design framework, integrating
ML modelling, theoretical simulations and experimental validations.
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In comparison with rather linear and single feature-oriented property predictions in most
previous ML-enabled materials design approaches [32,33], active learning has been proposed
and applied as a next step in sustainable alloy design in recent years [34–36]. The term active
learning refers in general to an ML technique where a model iteratively selects the most
informative data from an unlabelled pool for labelling by an expert (referred to as an oracle).
This approach enhances model efficiency by prioritizing data that the model finds either
uncertain or valuable. The process starts by initializing with a small, well-labelled dataset,
using the model to identify key unlabelled instances, having an expert label these data and then
feeding back to the original dataset and updating the model accordingly. This iteration can be
repeated sequentially, depending on data availability, until the defined performance target is
reached or data resources are depleted.

So far, active learning has demonstrated its effectiveness in small datasets within materials
science. For example, Xue et al. discovered low thermal hysteresis NiTi-based shape memory
alloys Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2, by synthesizing and characterizing 36 predicted compositions
after 9 iterations based on a small dataset with only 22 original data [34]. Similar design
processes have been applied to magnetocaloric materials [37], superconductors [37] and HEAs
[38], among others. However, most such studies on active learning have so far mainly pursued
the discovery of new types of structures and materials based on different datasets. Yet, detailed
investigations into more holistic strategies to solve complex and multi-property and multi-con-
straint material problems are still scarce. In particular, more practical strategies are needed
because iterating over all the suggested possibilities can be time- and resource-consuming.
Although it is less pertinent to compare different material discovery processes across diverse
scenarios, it makes sense to elaborate on a few more universal strategy approaches.

In this work, we focus on the study of active learning-based alloy design strategies for
the development of Invar alloys, magnetic materials and steels using datasets curated from
the literature [39–44]. Invar alloys are a type of material characterized by their exceptionally
low thermal expansion coefficient (TEC) [45], making them suitable for emerging markets
involving the transportation of liquid hydrogen, ammonia and natural gas. The magnetic
material data we collected encompass both soft and hard magnetic alloys, which are important
materials in energy conversion and utilization. The third group considered here, viz., Transfor-
mation-Induced Plasticity (TRIP) steels are high-strength ductile alloys for demanding sheet
forming applications. Focusing here on the optimization of these alloys, we aim to illustrate
the fundamental concepts and provide generic solutions for both single- and multi-objective
optimization of sustainable alloys.

In the context of single-objective optimization, our initial step involves utilizing the
autoencoder to visualize the whole data distribution from the corpora in latent space. The
autoencoder approach harnesses a neural network (NN) framework, consisting of an encoder
and decoder, for efficient dimensionality reduction. By gaining insights into the data distribu-
tion through visualization, we can subsequently identify inherent clusters and patterns. This
approach is essential for two reasons. First, it becomes in principle visible if the underlying
data are at all rich and detailed enough to reveal groups and patterns. In other words, these
first steps help to explore if an ML approach makes sense in that context or not. Second, data
clustering and certain shape metrics of such data clusters can act as a guide to identify and
pursue pertinent material development directions.

In the subsequent section, following the division of the dataset into training and testing
datasets, we then show how to train a model using the training dataset. To evaluate the
efficiency of various active learning strategies, we sample promising alloy compositions from
the test dataset, alternatively employing diverse approaches which are commonly used in
previous publications [34,46–49] such as pure exploitation, pure exploration, dependent and
independent methods with the exploitation–exploration combination. The pure exploitation
strategy prioritizes new compositions with target mean values, like low TEC for Invar alloys,
while the exploration strategy seeks compositions with high uncertainty values. Dependent
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and independent methods aim to balance the exploitation and exploration strategies. In the
independent strategies, only one exploration or exploitation is conducted per iteration, whereas
in the dependent methods, both are used per iteration. Further details are provided in §2d.4
and illustrated in figure 1. Our goal is to assess the efficiency of these strategies across different
alloy datasets, specifically measuring how quickly they can identify compositions with desired
properties (e.g. low TEC for Invar alloys and high magnetization for magnetic alloys) from the
test dataset, in terms of required active learning iterations. A similar workflow is presented for
multi-objective optimization of TRIP steels in electronic supplementary material, figure S1.

Through our comparison of various active learning strategies, we elucidated the significance
of both exploitation and exploration strategies. Exploitation aids in identifying the optimal
optimization path based on the current known probability distribution, while exploration
actively explores an unknown space while preventing getting trapped in local optima.
Furthermore, we delve into the intricacies of balancing these strategies to reduce the number
of iterations required. In the last part, similar strategies are discussed for the multi-objective
optimization active learning of TRIP steels, focusing on various ways to balance exploitation
and exploration in such scenarios.

2. Methods
(a) Database
Our Invar dataset has been curated from previous publications [38–44]. The alloys in the
dataset include 717 different alloys, from simple binary alloys to complex MEAs and HEAs.
The chemical compositions, atomic properties, density functional theory and thermodynamic
calculations are used as input (i.e. descriptors) and TEC at room temperature as output. The
magnetic alloy dataset comprises 246 distinct magnetic alloys, with chemical compositions
serving as the sole input. The corresponding output is the saturation magnetization (MS). For
the TRIP steel dataset, chemical compositions along with elemental attributes that affect the
mechanical properties are considered as input. The details of the features and bias of the data
are shown in electronic supplementary material, tables S1, S2 and figure S7.

(i) Data distribution in the latent space
The Wasserstein autoencoder (WAE) was employed to visualize alloy distributions in latent
space. As a variant of the VAE family [22], WAE is a constrained architecture that optimizes a
loss function combining reconstruction and regularization terms, expressed as:L = Lrec + Lreg .

In this study, binary cross-entropy was used for Lrec, and the maximum mean discrepancy
between the latent space distribution and a Gaussian prior for Lreg [51]. The WAE’s encoder
and decoder each comprise three neural layers with 80, 64 and 48 nodes, respectively, using
a leaky ReLU activation function with a slope of −0.02. Hyper-parameters were optimized via
Bayesian optimization (BO), which efficiently searches complex spaces by balancing exploration
and exploitation. The architecture was kept simple to prevent overfitting, focusing on tuning
the number of epochs, batch size and learning rate. The training history is depicted in electronic
supplementary material, figure S2.
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(b) Ensemble regression model and uncertainty calculation
The ensemble regression model is an ML approach that combines multiple individual regres-
sion models to improve predictive accuracy and robustness. Employing an ensemble regression
model as a surrogate model in active learning is crucial because it offers not only the predicted
mean value but also uncertainty estimation. The predicted mean value guides exploitation
strategies, while uncertainty estimation informs exploration strategies.

The Invar and magnetic datasets were modelled using an ensemble approach, consisting
of 10 NN models and 10 gradient-boosted decision tree (GBDT) models. NNs are basic ML
models made up of layers of interconnected neurons, each layer transforming the input data to
generate outputs. GBDT models enhance predictive accuracy by iteratively combining multiple
decision trees, with each new tree correcting errors from the previous ones, resulting in a strong
ensemble. The training and testing outcomes for the NN and GBDT models are displayed in
electronic supplementary material, figures S3 and S4, respectively.

In addressing the TRIP steel dataset, training was conducted employing two discrete
random forest (RF) regressors, one for yield strength and another one for ductility. RF is a
versatile ML model that belongs to the ensemble learning family. It operates by constructing a
multitude of decision trees during training and outputs the mode of the classes (classification)
or the mean prediction (regression) of the individual trees. A total of 10 distinct RF models were
deployed for training, each using a varied random training dataset. Subsequently, aggregation
of model predictions was used to compute mean prediction values and related uncertainties.

Invar alloy

Database

Data visualization with WAE Ensembled regression
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local minima
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Figure 1. Overview of active learning framework for the single-objective optimization in this work. First, the alloys in
the dataset are visualized with the Wasserstein autoencoder (WAE). Second, the alloys in the training dataset are trained
with ensemble models comprised of neural networks and boosting trees. Third, different exploitation and exploration
strategies are alternatively used to search for promising compositions in the test dataset. In the last step, the most promising
compositions are selected and then fed back into the training dataset to initiate the next iteration. This figure is adapted from
figure 1 in [50]. This framework is used to test the efficiency of the active learning strategies including pure exploitation,
pure exploration, dependent and independent methods, respectively, for different dataset. The pure exploitation strategy
prioritizes compositions with target mean values, such as those with low TEC for Invar alloys. Conversely, the pure exploration
strategy seeks compositions with high uncertainty values to explore unknown regions. Independent methods conduct either
exploration or exploitation in each iteration, while dependent methods combine both in each iteration. Further details of
these methods are provided in Methods §2d.
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The optimal model parameters were determined through 10 000 iterations of random search
followed by 10 iterations of Bayesian search, focusing on optimizing hyper-parameters such as
the number of layers and nodes per layer. The mean absolute percentage error (MAPE) was
selected as the loss function, which yields:

MAPE = 100n Σi = 1
n Ai − PiAi ,

where Ai is the actual value, Pi is the prediction and n is the number of datapoints. The
surrogate models trained on the TRIP steel datasets were evaluated using the R2 score and
mean-squared error (m.s.e) values.

R2 = 1 − ∑ Ai − Pi 2

∑ Ai − A− 2

MSE =  1n∑ Ai − A− 2,

where A−  is the average value, Ai is the actual value, Pi is the prediction and n is the number of
the data.

(c) Exploration and exploitation strategies for single-objective optimization

(i) Pure exploitation and exploration

The pure exploitation strategy prioritizes compositions with target mean values, such as those
with low TEC for Invar alloys. Conversely, the pure exploration strategy seeks compositions
with high uncertainty values to explore unknown regions.

We also employ various strategies to balance exploitation and exploration for single-objec-
tive optimization. These strategies fall into two categories: independent and dependent.
Independent methods conduct either exploration or exploitation in each iteration, while
dependent methods combine both in each iteration.

(ii) Dependent methods

The dependent methods are commonly used in previous publications [34,46–50] to balance
exploitation and exploration for single-objective optimization. These methods provide a good
compromise between exploration and exploitation strategies in each iteration, allowing the
screened compositions to have the promise of becoming good performance alloys while
simultaneously exploring the entire composition universe. We choose several mostly used
dependent methods to be involved in this article and alternatively test their performance:

Upper confidence bound (UCB): In this strategy, we select the alloys with the highest upper
bound: x = arg maxx ∈ ℵ  μ∼x +  σx ,

where x is the most promising alloy composition, μx is the mean and σx is the uncertainty. ℵ
represents the whole composition space.

Boltzmann strategy (BS): In this strategy, we first define a sampling probability using a
softmax function of a Boltzmann type according to

Pn x =   eρu∼xn
∑x´ ∈ ℵeρu∼x´

n ,
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where μx is the predicted mean and ρ is a constant. By gradually decreasing the ρ, we encour-
age exploration initially, developing towards exploitation over time. And on the contrary, by
gradually increasing the ρ, we gradually increase the degree of exploration. Here, we use ρ = 1
to increase the degree of exploration.

Alpha strategy: We employ a rank-based objective function as a guide for our experiments
[38,52], which mitigates the impact of outliers and eliminates inhomogeneity or skewness in the
predicted TEC distribution by treating all ranks as equally spaced from each other:

Rankscore = α × rank_of_prediction + (1 − α) × rank_of_uncertainty,

where rank_of_prediction is the rank of the predicted mean and rank_of_uncertainty is the
rank of the predicted uncertainty. α is the weight to combine these two ranks. We choose the
composition with the highest rank score as the most promising composition. By gradually
increasing the weight, we gradually increase the degree of exploitation. Here, we use α = 0.8.

BO: We implement a Gaussian Process Regression (GPR)-based BO framework to guide the
exploration of alloy compositions. The acquisition function, specifically the Expected Improve-
ment (EI) criterion, balances exploration and exploitation by prioritizing compositions that offer
the potential for the greatest improvement over the current best result. The EI is calculated as
follows:

EI X = μ X − μbest = Φ Z + σ (x)∅ Z ,

where μ x  is the predicted mean, σ(x) is the predicted uncertainty, μbest is the current best
mean, Φ(Z) is the cumulative distribution function and ∅ Z  is the probability density function
of a standard normal distribution. The most promising composition is selected based on the
maximum EI value. By fine-tuning the hyper-parameters of the GPR model, we optimize the
trade-off between exploration of new alloy spaces and exploitation of known high-performing
regions, thereby efficiently navigating the vast compositional design space.

(iii) Independent methods

As a compromise approach, dependent methods tend to overlook certain compositions with
the highest uncertainties or compositions with the most promising properties. This limitation
arises because dependent methods cannot simultaneously explore and exploit at 100% capacity
in each iteration. To address this limitation, we introduce a complementary method, referred
to as independent methods. Unlike dependent methods, which seek to balance exploration and
exploitation within each iteration, independent methods balance these aspects across the entire
process. Consequently, independent methods enable full exploration and exploitation in each
iteration while also integrating both exploration and exploitation. The independent methods
employed in this study include the following:

Brute force search: Brute force search means adding exploration at the initial iterations to
explore the unknown regions and then using exploitation to discover alloys in the later
iterations. Specifically, we first perform different times of exploration, namely 0, 2, 4, 5, 6, 7
and 8 explorations, and then use exploitation.

Interactive learning: Interactive learning involves initially prioritizing exploitation in the first
few iterations. If exploitation yields no further gains, we then transition to exploration before
returning to exploitation again.

(d) Active learning for multi-objective optimization
The notion of the Pareto front (PF), which outlines the trade-offs involved in simultaneously
improving many objectives, is central to multi-objective optimization. As shown in electronic
supplementary material, figure S8, the axes of the PF plot represent the different properties,
and a characteristic boundary is defined. This boundary includes materials where none of
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the objectives can be enhanced without compromising the value of the other objective. The
non-dominated data points, known as boundary points, establish a PF, which signifies the
optimal balance between the objectives [53]. The design aims to determine the unidentified PF
using the available initial data while minimizing the need for additional measurements. After
several iterations, the sub-optimal PF will transform into the optimal PF. Several techniques
relating to such adaptive multi-objective design problems have been discussed in the literature
[34,48,49] to maximize the EI, while selecting the next candidate data point, with a focus on
minimizing the number of iterations required [54].

Electronic supplementary material, figure S8 represents the distribution of the initial training
dataset along with the sub-optimal PF. The beige-shaded zone represents the area where a
candidate alloy, after measurement, would lead to an enhancement compared to the current
front indicated by the purple dots. This implies that the existing sub-optimal PF would be
altered to incorporate the newly measured alloys. The probability of improvement P(I) that the
new point is better than all existing points is the cumulative probability of a candidate data
point integrated over the beige-shaded region.

P(I) = φ y1, y2 dy1dy2 .

The variables y1 and y2 are the targets and the function φ y1, y2  is a Gaussian probability
distribution function that is estimated by combining the mean and variance of the y1 andy2 distributions. This function may be expressed as φ y1, y2  = φ y1 φ y2 , indicating that it is
uncorrelated. Consequently, we have made the assumption that the anticipated values follow
a Gaussian distribution characterized by a mean and variance. Similarly, the two objective
EI is identical. The expression E[I(x)] is the first moment of the function I applied to the
joint probability distribution φ y1, y2  over the beige area shown in electronic supplementary
material, figure S8 concerning the current sub-optimal PF.

From a geometric perspective, the calculation of E[I(x)] yields the value of P[I(x)]L. The value
of L can be evaluated in two different ways to balance exploration and exploitation: either using
the Centroid approach or the Maximin approach.

The EI-Centroid [55] methodology is a method of calculating the E[I] using the centroid.
Here,

L = Y1 x −  y1 x 2 +  Y2 x −  y2 x 2,

where L is the distance between the centroid (Y1(x), Y2(x)) at the candidate data point, x, and the
nearest point on the sub-optimal PF (y1(x), y2(x)). The centroid of the probability distribution for
the candidate point in the beige-shaded region (electronic supplementary material, figure S8) is
determined by evaluating the integral:

Y1 x =  
shaded

y1φ y1, y2 dy2dy1/P I .

For every candidate location in the region of improvement, the EI-Centroid is computed by
multiplying P I  with the smallest distance between points on the known sub-optimal PF and
the centroid of the probability distribution within the zone of improvement. The candidate
point with the highest EI-Centroid value is selected as the next measurement.

The Maximin approach [56] considers the average projected values for a candidate composi-
tion as (μ1, μ2). We define the distanceLmaximin = Maxi Min (pi1 −  μ1,pi2 −  μ2 ,

where Pi = pi1,pi2  and Pi ∈ PF. The Maximin E[I] is calculated as E I maximin =  Lmaximin × P I x ,
by multiplying P I  with the maximum value obtained from the shortest distance between the
means μ1, μ2  of a specific candidate point and the individual sub-optimal PF points pi.
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The E[I]-Centroid method evaluates the combined improvement of properties y1 and y2,
while the E[I]-Maximin method evaluates each property separately. It selects the smaller
property value from a specific sub-optimal Pareto point and then maximizes it over all sub-
optimal Pareto points. Both algorithms choose a data point that maximizes the modification
of the sub-optimal PF through its measurement. We employed both the E[I]-Centroid and
E[I]-Maximin strategies and conducted a comparative analysis against (i) random selection, (ii)
pure exploitation using solely the mean values of predictions from an ML model and finally
(iii) pure exploration, where the selection is determined by the magnitude of the variance
for candidate points in the region of improvement. The design process we use is shown in
electronic supplementary material, figure S1.

3. Results and discussion
(a) Active learning for single-objective optimization of Invar and magnetic alloys

(i) Data distribution in the latent space of Invar and magnetic alloys

WAE is used to visualize the distribution of the alloys in a latent space [26]. Figure 2a shows the
latent distribution of the Invar alloys after dimensional reduction. In the latent space, distinct
alloy systems are differentiated by varying colours, forming clusters in separated regions.
Simultaneously, diverse alloy systems exhibit a regular distribution pattern. For instance, MEAs
and HEAs appear disrupted towards the centre, while binary and ternary alloys tend to
surround them. Figure 2b,c depicts the latent distribution of alloys, with colour-coding based
on their TEC for Invar alloys and MS for magnetic alloys, respectively. Notably, dashed circles
are used to highlight local optima within the latent space. In figure 2b, local optima regions
are conspicuous for Invar alloys, notably within the Fe-Ni, Fe-Ni-Co, Fe-Co-Cr, Fe-Co-Ni-Cr,
Fe-Co-V-Ni and Fe-Co-Ni-Cr-Cu alloy systems. Conversely, in figure 2c, representing magnetic
alloys, the local optima are primarily observed within the Fe-Co-Ni and Fe-Co-Ni-Al Si systems.

We noted two key distinctions in the latent distributions of the datasets. First, the magnetic
dataset contains about half the number of alloys compared to the Invar database. Second, fewer
local optima are observed in the latent space of the magnetic dataset compared to the Invar
database. These variations are typical across different material datasets, which is why we chose
to illustrate with the Invar and magnetic datasets in this study. The variance in local optima
across different material datasets arises from the complex composition–property relationships
inherent in each material system and significantly impacts the balance between exploitation and
exploration strategies, as discussed in §3a(iii).

(ii) Illustration of pure exploitation and exploration strategies of Invar alloys

In this section, we delve into a comprehensive understanding of exploitation and exploration
strategies, focusing on insights drawn from the Invar dataset. We used the framework shown
in figure 1. Three iterations were conducted using pure exploitation and exploration strategies,
compared with random search. The outcomes are depicted in figure 2d–f and summarized in
table 1. Figure 2d visualizes the latent space of the sampled alloys based on different strategies,
denoted by distinct coloured pentagrams. The exploitation represented by red pentagrams
predominantly selects alloys near the Fe-Co-Cr local optimum, exhibiting a reluctance to
explore unknown regions. Conversely, both the exploration (green pentagrams) and random
search (blue pentagrams) demonstrate a more diverse exploration path, venturing into potential
local optima regions beyond the immediate vicinity. In figure 2e and table 1, compared to
random search (olive triangles), the exploitation tends to sample alloys with very low TEC
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(TEC ≈ 0 K−1) (red balls), which fits the requirement of low-TEC alloy discovery. In contrast,
the exploration (blue rectangles) tends to sample alloys with large uncertainties (more than two
times larger than the uncertainties in the exploitation), aiming at exploring the unknown region.
However, these alloys exhibit relatively high TEC (TEC > 5 K–1). Figure 2f shows the change
of MAPE of the testing dataset in three iterations with different strategies. The exploitation,
exploration and random search are marked with red rectangles, blue circles and olive trian-
gles, respectively. Notably, the exploration demonstrates significantly greater decreases in error
compared to the other two strategies. Moreover, the random search exhibits a slightly more
pronounced decreasing trend than exploitation.

In summary, while the exploitation efficiently identifies target alloys, it is prone to getting
trapped in local optima. Conversely, exploration and random search facilitate the exploration of
unknown regions, mitigating the risk of being stuck in local optima. Moreover, they prove most
effective in error reduction and enhancing the model’s performance.
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(iii) The exploration and exploitation strategies balance of Invar and magnetic alloys

Balancing exploration and exploitation strategies aims to minimize the number of iterations
required for discovering new materials. However, finding the optimal balance varies across
databases and materials, posing a significant challenge. While existing research has explored
this issue [34,56], there is no universally applicable strategy for all optimization problems. In
this study, with the framework shown in figure 1, we employ dependent and independent
methods alternatively to tackle this challenge, aiming to determine when to combine exploita-
tion and exploration in one iteration or in the whole process. Detailed descriptions of these
methods can be found in §2d, with corresponding results illustrated in figure 3.

Table 1. Predicted mean and uncertainty of the alloys in three iterations with exploitation, exploration and random search
strategies.

iteration strategy alloy mean TEC

(×10−6 K−1)

uncertainty

(×10−6 K−1)

1 exploitation 1 1.19 1.55

2 1.81 2.35

3 1.86 2.39

exploration 1 7.77 6.16

2 22.60 5.51

3 19.71 4.44

random search 1 7.04 6.32

2 15.28 0.91

3 12.98 0.92

2 exploitation 1 1.22 1.19

2 1.23 1.23

3 1.24 1.31

exploration 1 5.66 4.56

2 15.66 4.49

3 6.33 4.45

random search 1 21.64 5.91

2 10.71 0.90

3 12.08 0.90

3 exploitation 1 0.63 0.85

2 0.90 1.34

3 1.04 1.42

exploration 1 10.26 4.79

2 5.61 4.60

3 5.18 4.44

random search 1 14.20 5.80

2 12.88 1.03

3 12.92 1.04

11

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230242



In figure 3a, the discovery of Invar alloys using independent methods is depicted with the
increase of active learning iterations. In the brute force search, we initially conduct various
levels of exploration—0, 2, 4, 5, 6, 7 and 8 explorations—before transitioning to exploitation. The
strategy with 0 exploration serves as the baseline, denoted by the red rectangles. The baseline
curve experiences an initial plateau followed by a rapid increase phase. Around the seventh
iteration, the curve begins to plateau again, suggesting potential entrapment in local optima.
By gradually increasing the number of explorations at the outset, the curves progressively
overcome this second plateau. Notably, employing 7 or 8 explorations results in a significantly
higher number of discovered alloys after 12 iterations compared to the baseline, highlighting
the critical role of exploration in the brute force search. We also show the results of interactive
learning in figure 3a, which is indicated in blue spheres. The results achieved through interac-
tive learning surpass those of the baseline.

In figure 3b, the number of discovered compositions with high Ms (Ms > 120 Am2 kg−1)
after 12 iterations is depicted. Unlike the Invar database, all strategies in the independent
methods outperform the baseline (pure exploitation). Optimal performance is achieved with 5–6
explorations, contrasting with the Invar dataset, where 7–8 explorations yield the best results.
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Figure 3. The number of discovered Invar and high magnetization compositions after 12 iterations with different
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We speculate that database size and the number of local optima influence the most effective
methods. In datasets with fewer data and local optima (magnetic alloy dataset), independent
strategies with relatively fewer explorations prove advantageous.

In figure 3c–d, we depict the results obtained with dependent methods, including the UCB,
BS, Alpha methods and BO. Three BS results with different random seeds are shown to account
for sampling randomness, with similar outcomes observed across different seeds. Further
insights into the effect of random seeds are provided in electronic supplementary material,
figure S5. The same baseline, as shown in figure 3a, is included for comparison. In figure 3c,
illustrating results from the Invar dataset, all dependent methods exhibit superior performance
to the baseline, with BS yielding the best results. Conversely, in figure 3d, representing the
magnetic dataset results, the Alpha method demonstrates the most favourable performance. We
speculate that this discrepancy arises from BS prioritizing exploration while Alpha emphasizes
exploitation.

Overall, both independent and dependent methods have proven more effective than pure
exploitation, which serves as the baseline. However, their performance varies depending on
specific scenarios. In situations where there is a substantial amount of data and a high number
of local optima, such as in the Invar dataset, these strategies demonstrate greater advantages
when they emphasize exploration, such as brute force search with 7–8 explorations. Conversely,
in scenarios where data are relatively scarce and the number of local optima is limited, as
observed in the magnetic dataset, these strategies excel when emphasizing exploitation, such as
Alpha methods.

When comparing independent and dependent methods for the same alloy system, inter-
esting discoveries emerge. For Invar alloys, dependent methods outperformed independent
methods, while for magnetic alloys, the opposite was observed. This discrepancy is due to
the substantial amount of data and high number of local optima in the Invar alloys dataset,
necessitating more explorations. Dependent methods guarantee exploration in each iteration,
whereas independent methods may miss exploration to some extent.

Comparing different methods, such as UCB, BS, Alpha and BO, presents several challenges:
(i) the performance of each method can vary widely across datasets, making it difficult to
consistently determine which is most accurate; (ii) even within the same method, results can be
unstable due to factors like different random seeds in BS or varying kernel functions in GPR for
BO; and (iii) the number of iterations also influences outcomes, as some methods excel in fewer
iterations but may underperform with more.

However, it is important to mitigate the drawbacks of certain methods. For instance,
independent methods are prone to falling into local optima—evident in the plateaus seen in
figure 3a,b—because they focus solely on either exploitation or exploration in each iteration.
In contrast, dependent methods can better avoid local optima by combining exploitation and
exploration in each iteration.

For the UCB method, performance hinges on the model’s accuracy since the highest upper
bound guides the selection of the next composition. The BS and Alpha methods adjust
exploration and exploitation through specific parameters (ρ for BS and α for the Alpha method).
The main challenge with these methods lies in determining the optimal parameter settings.
BO, often utilizing GPR as a surrogate model, struggles with high-dimensional optimization
problems, so caution is advised when dealing with large input dimensions.

In summary, conducting a closed-loop test can offer valuable insights into the most efficient
optimization approach before integrating these surrogate models with experimental synthesis
and characterization processes.

In the supplemental material, we address three factors influencing the balance between
exploitation and exploration strategies. First, the number of newly sampled promising alloy
compositions in each iteration plays a crucial role. Exploration becomes effective when
sampling a large number of new compositions per iteration. Second, the impact of known
data, or labelled data, is significant. In active learning for diverse materials, the unknown data

13

royalsocietypublishing.org/journal/rsta 
Phil. Trans. R. Soc. A 382: 20230242



pool is often infinite, while the known data pool depends on the dataset size. Results indicate
a greater need for exploration with relatively smaller original datasets. Finally, the type of
error in surrogate models affects performance. Variations in error types across classification or
regression problems are observed, with certain choices, such as MAPE in Invar alloy design,
enhancing the active learning process. Further discussion on these factors is provided in the
supplemental material.

(b) Active learning strategies for multi-objective optimization for steel dataset
Figure 4 illustrates the performance evaluation of the surrogate RF models (details of the RF
models are provided in §2c) on both the initial testing dataset, depicted in figure 4a,b, and the
final optimized composition space, depicted in figure 4c,d. In these figures, the effectiveness
of the RF regressors in predicting yield strength and ductility is illustrated. Additionally, the
spread of uncertainties associated with the predictions is visualized in the insets. The perform-
ance of the RF regressors has notably improved after the optimization of the composition
space. This improvement is observed not only in terms of enhanced average performance but
also in the significant reduction of uncertainty distribution associated with the predictions.
Such a relatively narrow uncertainty distribution suggests that further refinement through
pure exploitation or exploration strategies may yield limited or negligible improvements. This
indicates a convergence towards an optimal solution within the current design framework.

The optimization of the composition space based on objective-driven criteria has played a
pivotal role in enhancing the performance of the RF models within the active learning frame-
work. Notably, the final test results underscore the transformative impact of this optimization,
showcasing an augmentation in both yield strength and ductility. Whereas the initial composi-
tional space constrained yield strength and ductility to 800 MPa and 40%, respectively, the
optimized space facilitated the design of new compositions with elevated properties, reaching
1000 MPa and 60% for yield strength and ductility, respectively. This compelling outcome
underscores the efficacy of optimization strategies in the discovery of novel TRIP steels
characterized by improved strength and ductility trade-offs.

Figure 5a provides a comprehensive depiction of the performance enhancement observed in
surrogate RF regressors as the size of the training dataset increases, employing the Maximin
method. The effect of the dataset has been discussed in the electronic supplementary material
section. While conventional wisdom dictates that larger training datasets generally bolster
the performance of ML models, it is noteworthy that the judicious addition of subsequent
data points via optimization strategies yields substantial performance improvements. This is
evidenced by the discernible trend of decreasing MSE values observed for both yield strength
and ductility regressors. Notably, the utilization of the Maximin method during compositional
optimization serves to expedite the selection of the next potential compositions, leveraging
insights gleaned from existing compositions within the dataset. Consequently, this approach
fosters accelerated optimization trajectories compared to conventional methods such as random
selection, exploitation or pure exploration strategies.

In figure 5b, the optimal PF of the TRIP steel dataset, characterized by seven discernible
points, is presented. This representation underscores the richness and complexity of the design
space explored, which encompasses diverse training datasets ranging in the size from 125 to
196, collated from preceding iterations of optimization. Figure 5c demonstrates that employ-
ing multi-objective optimization design strategies decreases the required number of measure-
ments to identify the optimal PF by approximately 30% compared to random selection. The
Centroid-based design method and pure exploration yield similar results. The Maximin-based
design strategy for materials discovery is more efficient than the Centroid-based strategy, pure
exploitation or exploration to identify materials on the PF in the fewest iterations feasible.
The performance also indicates that the pure exploration strategy is less efficient than random
selection. This is because, in the context of pure exploration, the material with the highest
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uncertainty level is chosen for the subsequent experiment. This indicates that pure exploration
entirely ignores the anticipated values of attributes and forces the design strategy to select a
material that differs most from the existing data. The performance of pure exploitation is equal
to that of the Centroid-based design. In Centroid-based design, the balance between exploration
and exploitation is skewed towards exploration when the Centroid is far from the mean.

To explain the different behaviour of the various approaches, it is essential to consider the
scale of the data associated with each of the properties: while the probability of improvement
(P[I]) is a dimensionless measure that remains unaffected by the magnitude of the objective
values, the EI measure quantifies the improvement and possesses dimensions. The EI prioriti-
zes the goal attribute with larger magnitudes. To mitigate this bias, the property values of
established datasets are standardized before each design iteration. Within the informatics-based
design approach, we focus on situations with insufficient data. This leads to regression models
that initially have low prediction accuracy and large levels of uncertainty, primarily because of
significant cross-validation failures. In the Maximin-based method, the exploration component
of the design process is governed by the probability of improvement P[I], while the ‘distan-
ce’ L, which is impacted by the means, introduces the notion of exploitation. The technique
demonstrated robust performance even when the initial accuracy of the RF regression model
was inadequate to be considered dependable for making predictions. Nevertheless, the most
optimal Pareto locations can be discovered within a limited number of design iterations. This
highlights a feature of the design that is increasingly apparent in different materials challenges
and datasets: the design is highly accommodating of an initial substandard surrogate model.
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Figure 4. Performance of the surrogate RF model on the test dataset for (a) yield strength, (b) ductility for the initial dataset.
Inset also shows the distribution of the uncertainties associated with the predictions. (c) and (d) show the performance of the
RF model for the yield strength and ductility for the final dataspace after optimization.
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4. Conclusions
In this article, we elucidate the active learning strategies for both single- and multi-objective
optimization. The main conclusions are: (i) we identified distinct roles of exploitation and
exploration strategies within the active learning process. The exploitation strategy is efficient
at finding the target alloys but easy to be trapped in the local optima. On the other hand, the
exploration strategy can explore unknown regions to avoid getting stuck in local optima. (ii)
For the single-objective optimization, in situations where there is a substantial amount of data
and a high number of local optima (as observed in the Invar dataset), these strategies prove
more advantageous when they emphasize exploration. Conversely, in scenarios characterized
by a smaller amount of data and fewer local optima (as evident in the magnetic dataset),
strategies become more advantageous when they lean towards relatively more exploitation. (iii)
For multi-objective optimization, the Maximin-based method excels in robustness, especially
when the initial accuracy of the RF regression model is insufficient for reliable predictions. This
underscores a notable feature of the design, one that is increasingly evident in various materials
challenges and datasets: the design is highly adaptable even when dealing with an initially
substandard surrogate model.
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