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Abstract
Background  The global incidence of hypertension, a condition of elevated blood pressure, is rising alarmingly. According 
to the World Health Organization’s Qatar Hypertension Profile for 2023, around 33% of adults are affected by hypertension. 
This is a significant public health concern that can lead to serious health complications if left untreated. Metabolic dysfunc-
tion is a primary cause of hypertension. By studying key biomarkers, we can discover new treatments to improve the lives 
of those with high blood pressure.
Aims  This study aims to use explainable artificial intelligence (XAI) to interpret novel metabolite biosignatures linked to 
hypertension in Qatari Population.
Methods  The study utilized liquid chromatography-mass spectrometry (LC/MS) method to profile metabolites from biosam-
ples of Qatari nationals diagnosed with stage 1 hypertension (n = 224) and controls (n = 554). Metabolon platform was used 
for the annotation of raw metabolite data generated during the process. A comprehensive series of analytical procedures, 
including data trimming, imputation, undersampling, feature selection, and biomarker discovery through explainable AI 
(XAI) models, were meticulously executed to ensure the accuracy and reliability of the results.
Results  Elevated Vanillylmandelic acid (VMA) levels are markedly associated with stage 1 hypertension compared to 
controls. Glycerophosphorylcholine (GPC), N-Stearoylsphingosine (d18:1/18:0)*, and glycine are critical metabolites for 
accurate hypertension prediction. The light gradient boosting model yielded superior results, underscoring the potential of 
our research in enhancing hypertension diagnosis and treatment. The model’s classification metrics: accuracy (78.13%), preci-
sion (78.13%), recall (78.13%), F1-score (78.13%), and AUROC (83.88%) affirm its efficacy. SHapley Additive exPlanations 
(SHAP) further elucidate the metabolite markers, providing a deeper understanding of the disease’s pathology.
Conclusion  This study identified novel metabolite biomarkers for precise hypertension diagnosis using XAI, enhancing early 
detection and intervention in the Qatari population.

Keywords  Biomarkers · Explainable artificial intelligence · Hypertension · Metabolomics · Qatar Precision Health 
Institute-Qatar Biobank · Shapley additive explanations · Vanillylmandelic acid

1  Introduction

Hypertension, a condition characterized by elevated blood 
pressure, is a global health concern with a rising incidence 
rate. In Qatar, 33% of adults are affected by this condition, 
which significantly increases the risk of cardiovascular dis-
eases, stroke, renal diseases, and vision impairments (Oparil, 
2018; Ventura & Lavie, 2016). The asymptomatic nature of 
hypertension often leads to delayed diagnosis, exacerbating 
its impact on public health (Gauer, 2017). Recent studies 
have highlighted the role of metabolic dysfunction in the 
pathophysiology of hypertension (Hall et al., 2024; Baker & 
Rutter, 2023; Vona et al., 2019; Shah et al., 2012). Altered 
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lipid profiles, increased amino acid levels, and dysregulated 
glucose metabolites are among the key biomarkers associ-
ated with hypertension (Onuh & Qiu, 2021; Tanaka & Itoh, 
2019). However, the specific metabolite profiles related to 
hypertension in the Qatari population remain underexplored, 
presenting a critical gap in current research.

The pathophysiological mechanisms of hypertension are 
multifactorial and can be delineated by examining crucial 
biological functions in the body that regulate blood pressure 
(Arnett & Claas, 2018). The metabolomics data is studied 
in various dimensions, methods, and protocols. Predictive 
models in clinical research are emerging and gaining wide 
attention due to higher precision and biomarker-based non-
invasive diagnosis methods (Eloranta & Boman, 2022). Sta-
tistical and machine learning models deliver greater insights 
into understanding the relationship between metabolites and 
disease conditions. Despite the data modalities, machine 
learning algorithms tend to perform better and are advan-
tageous in metabolomics studies (Mendez et al., 2019). In 
most cases, hypertension is associated with comorbidities, 
so identifying the right clinical factors is crucial to control 
the severity.

In a targeted urinary metabolomics study, the pregnancy-
specific candidate metabolites are identified as the diagnostic 
markers for hypertension using machine learning (Varghese, 
2023). The gestational age prediction model is developed 
with urinary metabolomics analysis to understand normal 
and complicated pregnancies with pre-existing hypertensive 
disorders. This study elucidates the advantage of proposing 
a non-invasive, accurate biomarker identification method 
(Yamauchi, 2021). Another targeted metabolomics study 
uses machine learning models to identify distinct patterns 
among the metabolites involved in endocrine forms of hyper-
tension (EHT) and primary hypertension (PHT). However, 
there is a higher risk of misinterpretation when determining 
metabolite markers as diagnostic tools for specific diseases. 
This is because a single metabolite can be involved in the 
pathogenesis and biological functions of multiple diseases, 
particularly hypertension. The study utilized both classical 
univariate and multivariate analyses, alongside machine 
learning models, to delineate discriminative metabolic pat-
terns for EHT and PHT (Erlic, 2021).

A data-driven study is conducted using multi-omics 
datasets for the classification of hypertension subtypes 
with machine learning algorithms. It addresses an impor-
tant objective, distinguishing primary and secondary 
hypertension for precise diagnosis. Both plasma and urine 
samples are collected and analyzed for each subtype using 
8 ML classifiers, where the best results are obtained with 
the random forest algorithm (Reel et al., 2022). Alongside 
this, the metabolite ratios are also considered an impor-
tant feature in categorizing hypertension subgroups (Reel, 
2022). The metabolite profiling of hypertension is crucial 

to characterize its impact on comorbidities such as diabetes 
(Leiherer, 2024), obesity (Dias-Audibert, 2020), hyperlipi-
demia (Fu, 2023), cardiovascular disease (Drouard, 2024), 
and pulmonary arterial hypertension (Alotaibi, 2023).

This study aims to address the gap in understanding 
hypertension by employing explainable artificial intelligence 
(XAI) to interpret novel metabolite biosignatures associated 
with hypertension in Qatar. XAI ensures accurate and trans-
parent results while enhancing the credibility of the findings 
by providing clear insights into the model’s decision-making 
process. By leveraging advanced techniques such as liquid 
chromatography-mass spectrometry and comprehensive 
data processing methods, including imputation and feature 
selection, we hypothesize that analyzing the metabolomics 
data of hypertension profiles will identify key biomarker 
metabolites contributing to the development and progres-
sion of hypertension in the Qatari population. This research 
seeks to provide new insights and promising treatment strat-
egies, ultimately improving the quality of life for individuals 
affected by hypertension.

2 � Materials and methods

2.1 � Qatari hypertension cohort (QBB)

The metabolomics data was provided by the Qatar Precision 
Health Institute - Qatar Biobank (QPHI-QBB) (Al Thani 
et al., 2019). This study dataset contains a total sample size 
of 778 samples with 554 controls and 224 stage 1 hyperten-
sion cases. The demographic information shows the male in 
the control group (296 with a mean age of 37.80) and hyper-
tension (133 with a mean age of 46.20), and the female in 
the control group (258 with a mean age of 39.22) and stage 
1 hypertension (91 with a mean age of 49.29). The system-
atic analysis of the proposed method is depicted in Fig. 1.

2.2 � Data analysis and statistical methods

The metabolomics dataset inherently contains unannotated 
metabolites, missing values, and an imbalanced sample 
size. Statistical methods were used to process the data for 
further investigation. In total, 1159 metabolites were anno-
tated by the Metabolon platform, where 222 metabolites 
were unnamed and removed. The number of samples was 
778, with 554 control and 224 stage 1 hypertension sam-
ples in each group. The 224 samples of stage 1 hypertension 
were actually grouped into three subtypes (diastolic ≥ 80 
and systolic < 130 mm Hg − 17 samples), (diastolic < 80 
and systolic ≥ 130  mm Hg − 39 samples) and (diastolic ≥ 
80 and systolic ≥ 130 mm Hg − 168 samples). According 
to the American Heart Association (AHA) guidelines, the 
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above three criteria are identified as stage 1 hypertension 
(Flack & Adekola, 2020).

A general issue with metabolomics data is the presence 
of missing values. It is suggested to remove the sample or a 
feature if the amount of missing information is at a minimum 
of < 10%. Still, the missing values are present in the dataset 
and are handled with the imputation technique. Imputomics, 
a shiny web server powered by R software, is used to per-
form missing value imputation (Chilimoniuk et al., 2024). 
Metabimpute—BPCA (Bayesian Principal Component 
Analysis) is an efficient method for imputing missing val-
ues specific to metabolomics data. Before the feature selec-
tion step, undersampling is applied to avoid class imbalance 
issues during ML model preparation. The random under-
sampling method is applied to select 224 out of 554 control 
samples balancing with 224 hypertension samples.

The optimal feature subset with the best performance 
is identified on the cleaned dataset using HSIC Lasso 
(Climente-González et al., 2019). This technique delivers 
a combined benefit of lasso regression and kernel-based 

dependency scoring. It ensures retaining the metabolite 
markers exhibiting a non-linear relationship with the target 
group. HSIC maps the data into a high-dimensional space 
using kernel transformation methods so complex relation-
ships can be easily identified. On the other hand, the Least 
Absolute Shrinkage and Selection Operator (Lasso) penal-
izes the less important features by shrinking its feature coef-
ficient value to zero, ensuring sparsity and interpretability.

Six supervised machine-learning classification algorithms 
were trained with the final dataset containing the optimal 
metabolite feature subset. Logistic regression, k-nearest 
neighbor, support vector machine, naive bayes, light gradi-
ent boosting model, and random forest classifiers are trained 
with stratified k-fold cross validation (k = 5) method. Accu-
racy, precision, recall, and F1-score metrics calculated the 
performance scores of the trained classifiers. SHAP algo-
rithm generated explanations for the model predictions out 
of the best performed ML algorithm trained with the metab-
olite dataset. It works based on cooperative game theory 
and describes the contribution of each feature influencing 

Fig. 1   Schematic workflow of the proposed system
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the predictions. The importance score is assigned for the 
features using Shapley values based on their contribution. 
Model agnostic explanations, fair attribution, and global and 
local interpretations made SHAP a powerful model-agnos-
tic method, offers explainability to understand the predic-
tions of black-box models (Lundberg et al., 2017).

The computational pipeline is implemented with the 
recent versions of scientific Python libraries for building 
statistical and machine-learning models. Data operations 
(pandas, numpy, scipy, imblearn), Feature selection (pyhsicl-
asso), ML model construction (sci-kit-learn), interpretation 
(shap), visualization (matplotlib) modules. MetaboAnalyst 
web server (version 6.0) is accessed to carry out functional 
annotation and pathway analysis (Pang et al., 2024). The 
protein-chemical interaction network is generated with the 
STITCH webserver (Szklarczyk, 2016).

3 � Results

In the initial metabolite dataset containing 1159 metabo-
lites and 778 samples, the data were reduced to 570 metabo-
lites and 448 samples, respectively, after eliminating unan-
notated features, thresholding missing value representations, 
imputation, and undersampling. The class groups—con-
trol and stage 1 hypertension are equally distributed, with 
224 samples each. HSIC Lasso feature selection method 
identified 66 candidate metabolite markers as significant 
in predicting the control and hypertension samples. Each 
metabolite is ranked based on its importance score, where 
vanillylmandelate (a.k.a.) vanillylmandelic acid stands on 
top (1.00), followed by N-stearoyl-sphingosine(d18:1/18:0)* 
(0.68), 1-stearoyl-2-docosahexaenoyl-GPC(18:0/22:6) 
(0.52), metabolonic lactone sulfate (0.49) and pantothen-
ate (0.448). The top 10 metabolites and their corresponding 
score are provided in Table 1.

The machine learning algorithms were trained with the 
66 candidate metabolites and 448 samples using the strati-
fied k-fold cross-validation (k = 5) method. The grid search 
technique identified the best parameter settings for each 
algorithm. The highest accuracy is attained by the light gra-
dient boosting model (78.13%), followed by logistic regres-
sion (77.01%), random forest (75.45%), SVM (74.78%), 
naive Bayes (68.30%) and k-nearest neighbors (69.42%). 
Table 2 represents the algorithms’ scores for precision, 
recall, F1-score, and AUROC. Figure 2 depicts the com-
bined AUROC curve of the classifiers with the best score 
of 83.87% by the LGBM classifier. The best model param-
eters of each algorithm are determined using the grid search 
method and are listed in Table 3.  

The global and local interpretation of LGBM predictions 
is generated with the SHAP Explainer algorithm. The violin 
plot, dot plot, and bar plot illustrate the global interpreta-
tion for all samples, whereas the waterfall plot and force plot 
provide local interpretation of individual randomly selected 
sample.

The bar plot in Fig. 3 visualizes the feature importance 
of the top 10 metabolites. Vanillylmandelate, N-stearoyl-
sphingosine(d18:1/18:0)*, glycerophosphorylcholine, gly-
cine, N6-methyllysine, hexanoylglutamine, mannonate*, 
N-acetylphenylalanine, glucose and 1-(1-enyl-palmitoyl)-
2-lineleoyl-GPC(P-16:0/18:2)* is reportedly ranked as the 
metabolic markers of hypertension. However, the positive 
and negative contribution of each metabolite in classifying 
the hypertension and control samples has been identified 
with violin and dot plots.

The model hypothesis delineates the metabolites—
vanillylmandelate, N-stearoyl-sphingosine(d18:1/18:0)*, 
glycerophosphorylcholine, hexanoylglutamine, mannon-
ate*, N-acetylphenylalanine, glucose influences the sam-
ple prediction as hypertension with positive SHAP value. 
Higher metabolite value (red) influences the prediction with 
a positive impact, whereas glycine, N6-methyllysine, and 
1-(1-enyl-palmitoyl)-2-lineleoyl-GPC (P-16:0/18:2)* influ-
ences negative prediction as control with negative SHAP 
value. The decreased values (blue) of these three metabo-
lites influence the prediction to be negative. Conversely, the 
reverse of the above pattern reflects on the corresponding 
predictions, and this can be briefly observed during local 
interpretation. Despite the similarity in the violin and dot 
plot results, represented in Fig. 4, the color gradient in the dot 
plot accurately showcases the contribution with colormaps.

The waterfall plot in Fig. 5 provides the interpretations, 
where the influence of metabolites on predicting the con-
trol and hypertension is transparent. In Fig. 5 waterfall 
plot (b), a random hypertension sample is explained, 
showing that higher values of the metabolites vanillyl-
mandelate (1.935), N-stearoyl-sphingosine(d18:1/18:0)* 
(1.137), glycerophosphorylcholine (1.406), mannonate* 

Table 1   HSIC Lasso ranked metabolites (Top 10)

Feature Score

vanillylmandelate (VMA) 1.000
N-stearoyl-sphingosine (d18:1/18:0)* 0.688
1-Stearoyl-2-docosahexaenoyl GPC (18:0/22:6) 0.525
Metaboloniclactonesulfate 0.497
Pantothenate 0.448
1-Stearoyl-2-arachidonoyl GPI (18:0/20:4) 0.421
2-O-methylascorbic acid 0.414
Serine 0.399
N1-Methyl-2-pyridone-5-carboxamide 0.374
Mannonate* 0.358
Hypoxanthine 0.358
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(1.743), and glucose (2.874) contributing for the pre-
diction. Notably, the decreased value of glycine (0.879) 
supports the prediction. Further, the control sample 
explanation in Fig.  5 waterfall plot (a) elucidates the 
decreased value of the metabolites vanillylmandelate 

(0.746), N-stearoyl-sphingosine(d18:1/18:0)* (0.197), 
glycerophosphorylcholine (0.84) and glucose (0.941) is 
influencing the prediction. The increased value of glycine 
(1.149) is another factor contributing to the prediction of 
the control sample. E[f(x)] represents the expected value 
of the SHAP predictions across the whole dataset and f(x) 
denote model prediction for the specific instance based on 
contributions of every feature in the dataset. The positive 
and negative Shapley values indicate the contribution level 
of each metabolite for the specific sample. The valida-
tion of the results is carried out with force plot explana-
tions. Two random samples of hypertension and control 
are selected for interpretation, and the result is visualized 
in Fig. 5. It depicts the influence of vanillylmandelate 
(0.716), glycerophosphorylcholine (0.8854), and gly-
cine (0.9032) in predicting the control (Figure 5 force 
plot (a)). Besides, vanillylmandelate (1.217), N-stearoyl-
sphingosine(d18:1/18:0)* (1.575), and glycine (1.216) 

Fig. 2   AUROC curve of the 
classification algorithms

Table 2   Classifier scores on the 
QBB metabolomics dataset

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) AU-ROC (%)

LR 77.01 78.40 74.55 76.43 82.85
RF 75.45 75.68 75.00 75.34 83.20
NB 68.30 74.40 55.80 63.78 74.41
SVM 74.78 75.34 73.66 74.49 81.50
k-NN 69.42 71.01 65.63 68.21 75.51
LGBM 78.13 78.13 78.13 78.13 83.88

Table 3   Best model parameters identified by grid search method

Classifier Best params

Logistic Regression {’clf__C’: 0.01}
Random Forest {’clf__max_depth’: 30, ’clf__n_estimators’: 

100}
Naïve Bayes { }
SVM {’clf__C’: 1, ’clf__kernel’: ’rbf’}
K-Nearest Neighbors {’clf__n_neighbors’: 9}
LightGBM {’clf__learning_rate’: 0.1, ’clf__n_estima-

tors’: }
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contribute to the sample prediction as hypertension [Fig. 5 
force plot (b)].

Statistical analysis reinforces the robustness of the 
findings and enhances pattern visibility. The boxplot 
of the top 6 contributing metabolites is visualized in 
Fig. 6. The t-statistics and p-value of the metabolites are 
vanillylmandelate(VMA): t-statistic = −7.09, p-value = 
0.00000000, N-stearoyl-sphingosine(d18:1/18:0)*: t-statistic 
= −6.72, p-value = 0.00000000 and glycerophosphorylcho-
line (GPC): t-statistic = −3.38, p-value = 0.00079321, gly-
cine: t-statistic = 5.16, p-value = 0.00000037 mannonate*: 
t-statistic = −5.08, p-value = 0.00000055, glucose: t-statistic 
= −4.97, p-value = 0.00000094. The hypertension group 
observes an increase in the metabolite value for all except 

glycine. The mean and standard deviation of the metabolite 
biomarkers are tabulated below in Table 4. The statistical 
result validates the significance of these metabolites in the 
prediction of hypertension.

3.1 � Metabolite functional annotation 
and chemical‑protein interactions

The enrichment analysis of the top 10 metabolites ranked 
by SHAP during feature importance analysis is performed 
using the MetaboAnalyst web server. The HMDB IDs of 
the metabolites are the inputs, and the over-representation 
analysis is conducted on The Small Molecule Pathway Data-
base (TSMPD). The enriched metabolites, sorted on p-value, 

Fig. 3   SHAP Feature impor-
tance plot

Fig. 4   Violin and Dot plot representing global interpretation using SHAP
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Fig. 5   Waterfall and Force plot representing local interpretation using SHAP

Fig. 6   Boxplot comparison of metabolites among control and hypertension subgroups
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are visualized as bar plots and dot plots in Fig. 7a and b, 
respectively.

Sphingolipid metabolism has the highest significance 
among other enriched metabolites. The role of sphingolip-
ids is vital in cell membrane structure and cellular sign-
aling. It involves physiological and pathological activities 
in hypertension and cardiovascular disease. Vascular tone 
regulation is an important mechanism where S1P binds to 
its receptors (S1PR1-5), affecting the endothelial cells and 
smooth muscle cells in blood vessels. Studying the complex, 
intricate S1P signaling pathways holds promising solutions 
for treating hypertension. The super and sub pathways of the 
metabolite biomarkers are represented in Table 5. The chem-
ical-protein interaction for known and predicted entities is 

represented as a network plot in Fig. 8 using the STITCH 
web server. The highest number of protein interactions is 
observed in the glycine.

4 � Discussion

This study leverages the capability of explainable artificial 
intelligence to identify potential novel metabolite biomark-
ers associated with hypertension in the Qatari population. 
By employing advanced metabolomics techniques and a rig-
orous data processing pipeline, our findings provide impor-
tant insights into the pathophysiology of hypertension, offer-
ing potential avenues for early diagnosis and intervention.

Table 4   Mean and standard deviation of the metabolite biomarkers

Group Mean S.D Group Mean S.D
Vanillylmandelate Glycine

Control 0.97 0.31 Control 1.13 0.32
Hypertension 1.198 0.36 Hypertension 0.99 0.26

N-stearoyl-sphingosine (d18:1/18:0)* Mannonate*

Control 0.95 0.36 Control 0.99 0.37
Hypertension 1.20 0.43 Hypertension 1.20 0.50

Glycerophosphorylcholine Glucose

Control 1.01 0.15 Control 1.01 0.25
Hypertension 1.07 0.19 Hypertension 1.21 0.52

Fig. 7   Enrichment plots of top metabolite markers
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The analysis identified several metabolites with signifi-
cant associations with hypertension. Spiked levels of Vanil-
lylmandelic acid, N-stearoyl-sphingosine(d18:1/18:0)*, 
and Glycerophosphorylcholine were prominently linked 
to hypertensive cases, while Glycine showed an inverse 
relationship. These metabolites play vital roles in vari-
ous biochemical pathways, underscoring their potential as 
biomarkers for hypertension.

Machine learning algorithms were crucial in identifying 
metabolite markers of hypertension, with VMA emerging 
as the top biomarker using the HSIC Lasso feature selec-
tion algorithm. A total of 66 significant features were then 
analyzed, where LGBM outperformed other models in 
every metric, with a higher accuracy of 78.12% (Table 2). 
Accuracy is an important evaluation method in class-
balanced datasets. The AU-ROC curve in Figure 2 shows 

the lucid performance of LGBM with 83.88%. The SHAP 
model is employed to delineate the underlying predic-
tions and influence of metabolites on the best-performed 
LGBM.

Abnormal VMA levels can be associated with conditions 
that involve dysregulated catecholamine metabolism, such 
as pheochromocytoma, potentially leading to hypertension 
(Yin et al., 2021), providing a potential diagnostic biomarker 
for hypertension. N-Stearoylsphingosine and Glycerophos-
phorylcholine are involved in lipid metabolism, bridging 
the role of lipid signaling in hypertension. Glycine, typi-
cally associated with reduced cardiovascular risk, further 
highlights the metabolic complexities underlying the disease 
(Rebholz et al., 2018).

VMA is identified as a key diagnostic biomarker for cer-
tain conditions involving excessive catecholamine secre-
tion, such as pheochromocytoma, causing severe secondary 
hypertension. The increased levels of VMA in these cases 
highlight the direct link between catecholamine metabolism 
and the pathophysiology of hypertension, particularly in sec-
ondary forms where overproduction of catecholamines leads 
to persistent high blood pressure. This suggests that VMA 
could be a useful biomarker in distinguishing between dif-
ferent etiologies of hypertension, However, limited experi-
mental evidence exists regarding the direct pathological role 
of VMA in hypertension, indicating the need for further 
research (Zhang, 2024).

Lipid metabolism plays a significant role in hypertension. 
N-Stearoylsphingosine, a sphingolipid metabolite, is cru-
cial for maintaining cell membrane integrity and regulating 
vascular tone through its involvement in the cellular signal-
ing pathway. The spike of this metabolite in hypertensive 
patients supports the notion that lipid signaling is integral 
to vascular health and aligns with research on lipid metabo-
lism in cardiovascular diseases. Furthermore, the connec-
tion between tyrosine metabolism, a super pathway of VMA, 
and blood pressure regulation through catecholamines and 
thyroid hormones adds complexity to the metabolic basis of 
hypertension (Deng et al., 2021). This multifactorial per-
spective highlights how disturbances in metabolic pathways, 
including both catecholamine and lipid metabolism, contrib-
ute to hypertension.

Table 5   Table of Metabolites, 
Super Pathways, and Sub 
Pathways

Metabolites Super pathway Sub pathway

Vanillylmandelate (VMA) Amino Acid Tyrosine Metabolism
N-stearoyl-sphingosine (d18:1/18:0)* Lipid Ceramides
Glycerophosphorylcholine (GPC) Lipid Phospholipid Metabolism
Mannonate* Xenobiotics Food Component/Plant
Glycine Amino Acid Glycine, Serine and Threonine Metabolism
Glucose Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism

Fig. 8   Chemical-protein interaction of top metabolites
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The role of other metabolites, such as glycine, in hyperten-
sion adds another layer of complexity to the disease. Glycine, 
typically associated with reduced cardiovascular risk, has been 
observed to interact with other metabolic pathways that influ-
ence blood pressure regulation. The intricate balance of these 
metabolic processes underscores the multifactorial nature of 
hypertension, where dysregulation in one pathway can have 
significant downstream effects on blood pressure control.

The relationship between metabolites and hypertension 
underscores the disease’s complexity. Elevated glycerophos-
phorylcholine levels, involved in phospholipid metabolism, 
are linked to hypertension, suggesting alterations in cell 
membrane composition and signaling pathways (Zhang, 
2024). Conversely, glycine, typically associated with 
reduced cardiovascular risk, shows protective effects against 
hypertension, with lower levels observed in hypertensive 
individuals indicating its potential as a therapeutic target 
(Imenshahidi & Hossenzadeh, 2022). Additionally, VMA 
is involved in sphingolipid metabolism, both correlate with 
hypertension, unraveling the multifactorial nature of the dis-
ease where disruptions in catecholamine and lipid metabo-
lism play significant roles in blood pressure regulation.

The interaction of various metabolites with their super and 
sub-pathways highlights the complex nature of hypertension. 
VMA derived from tyrosine metabolism, reflects dysregu-
lation in catecholamine pathways and its association with 
hypertension. N-Stearoyl-sphingosine (d18:1/18:0)*, a com-
ponent of ceramide synthesis, underscores the role of lipid 
signaling in vascular health, while glycerophosphorylcholine 
in phospholipid metabolism emphasizes the importance of 
membrane integrity and cellular signaling. Glycine, involved 
in glycine, serine, and threonine metabolism, is linked to 
reduced cardiovascular risk, supporting its potential as a 
therapeutic target. Mannonate, a food-derived xenobiotic, 
and glucose from glycolysis and gluconeogenesis, further 
illustrate the diverse metabolic influences on hypertension.

Enrichment analysis of top biomarkers displayed by 
SHAP global interpretation revealed the interaction of sphin-
golipid metabolism. It has the highest significance among 
other enriched metabolites, is involved in sphingolipids 
is vital in cell membrane structure and cellular signaling. 
Despite the lesser statistical significance, these findings 
stand as current evidence for future investigations. The high-
est number of chemical-protein interactions is observed in 
the glycine metabolite, illustrated in Fig. 8.

Our integrated AI-driven approach to metabolite interac-
tions enhances our understanding of hypertension’s complex 
etiology and offers potential pathways for novel diagnos-
tic and therapeutic approaches. Collectively, these findings 
underscore the need for continued research into metabolic 
profiling as a tool for identifying and managing hyperten-
sion, paving the way for more effective precision medicine 
approaches.

5 � Limitations and future perspectives

The focus on a specific population may limit the gener-
alizability of our findings. Future research should aim 
to validate these biomarkers in diverse cohorts to ensure 
broader applicability. While LC/MS is a powerful tool for 
metabolite identification, its limitations in sensitivity and 
specificity must be considered. Exploring complementary 
techniques and expanding the metabolite panel could pro-
vide a more comprehensive understanding of hypertension 
metabolic underpinnings.

Further research should also investigate the mechanistic 
roles of the identified metabolites in hypertension. Lon-
gitudinal studies assessing changes in these biomarkers 
over time and in response to treatment could offer valuable 
insights into their potential as therapeutic targets. Addi-
tionally, integrating other omics data, such as genomics 
and proteomics, could enhance the robustness of bio-
marker discovery and provide a holistic view of hyperten-
sion pathophysiology.

6 � Conclusion

This study provides significant advancements in hyperten-
sion research by integrating explainable artificial intelli-
gence (XAI) to uncover novel biomarker metabolites within 
the Qatari population. Increased levels of Vanillylmandelic 
acid, N-stearoyl-sphingosine(d18:1/18:0)*, and Glycer-
ophosphorylcholine emerged as robust indicators of hyper-
tension, while Glycine was inversely associated. By employ-
ing advanced liquid chromatography-mass spectrometry and 
the HSIC Lasso feature selection method, we rigorously 
identified 66 key metabolites, with the light gradient boost-
ing model (LGBM) demonstrating exceptional predictive 
accuracy. The use of SHapley Additive exPlanations offered 
transparent insights into metabolite contributions, enhanc-
ing the reliability of the model’s predictions. These findings 
not only provide ethnic-specific insights but also align with 
global cardiovascular research, underscoring the critical role 
of lipid metabolism in hypertension. Our research positions 
these metabolites as promising diagnostic and therapeutic 
biomarkers, paving the way for early, more effective inter-
vention strategies that could significantly reduce hyperten-
sion-related comorbidities and improve patient outcomes.
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