Table 2.
Logistic regression models predicting choices in beauty judgment and approach-avoidance tasks.
Estimate [95% CI] | Z value | P value | OR [95% CI] | |
---|---|---|---|---|
Approach-avoidance | ||||
Perceived curvature | − 0.05 [− 0.11, 0.01] | − 1.78 | 0.076 | 1 [0.95, 1.05] |
Computational curvature | − 0.09 [− 0.21, 0.04] | − 1.35 | 0.176 | 0.94 [0.83, 1.06] |
Perceived angularity | − 0.10 [− 0.17, 0.04] | − 3.07 | 0.002** | 0.93 [0.88, 0.99] |
Beauty | ||||
Perceived curvature | − 0.17 [− 0.25, − 0.08] | − 3.88 | 0.0009** | 0.89 [0.83, 0.95] |
Computational curvature | 0.11 [− 0.07, 0.29] | 1.23 | 0.22 | 1.14 [0.96, 1.36] |
Perceived angularity | − 0.10 [− 0.20, − 0.01] | − 2.08 | 0.037* | 1 [0.92, 1.08] |
OR odds ratio; logistic regression predicting choices: “not beautiful” vs. “beautiful” (beauty judgments), “exit” vs. “enter” (approach-avoidance decisions). **p < 0.01; *p < 0.05. The Nagelkerke pseudo R-squared value was computed for each model as a global effect size measure (approach avoidance = 0.002, beauty = 0.011).