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Key Points

• Long-lasting cytopenia
after BCMA CAR-T
therapy correlates with
baseline cytopenia and
peak inflammatory
markers.

• Supernatants from
activated BCMA CAR-
Ts induced a rewiring
of transcriptional
programs associated
with hematopoietic
differentiation.
Hematologic toxicity is a common side effect of chimeric antigen receptor T-cell (CAR-T)

therapies, being particularly severe among patients with relapsed or refractory multiple

myeloma (MM). In this study, we characterized 48 patients treated with B-cell maturation

antigen (BCMA) CAR-T cells to understand kinetics of cytopenia, identify predictive factors,

and determine potential mechanisms underlying these toxicities. We observed that overall

incidence of cytopenia was 95.7%, and grade >3 thrombocytopenia and neutropenia,

1 month after infusion, was observed in 57% and 53% of the patients, respectively, being

still present after 1 year in 4 and 3 patients, respectively. Baseline cytopenia and high peak

inflammatory markers were highly correlated with cytopenia that persisted up to 3 months.

To determine potential mechanisms underlying cytopenias, we evaluated the paracrine

effect of BCMA CAR-T cells on hematopoietic stem and progenitor cell (HSPC) differentiation

using an ex vivo myeloid differentiation model. Phenotypic analysis showed that

supernatants from activated CAR-T cells (spCAR) halted HSPC differentiation, promoting

more immature phenotypes, which could be prevented with a combination of interferon γ,
tumor necrosis factor α/β, transforming growth factor β, interleukin-6 (IL-6) and IL-17

inhibitors. Single-cell RNA sequencing demonstrated upregulation of transcription factors

associated with early stages of hematopoietic differentiation in the presence of spCAR

(GATA2, RUNX1, CEBPA) and a decrease in the activity of key regulons involved in

neutrophil and monocytic maturation (ID2 and MAFB). These results suggest that CAR-T

activation induces HSPC maturation arrest through paracrine effects and provides potential

treatments to mitigate the severity of this toxicity.
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Introduction

Chimeric antigen receptor T-cell (CAR-T) therapy has changed the
treatment landscape for relapsed/refractory (R/R) B-cell hemato-
logic malignancies.1-3 To date, triple-class exposed patients with R/
R multiple myeloma (MM) present poor outcomes with a median
progression-free survival (PFS) of 3 to 4 months and a median
overall survival of 8 to 9 months.4,5 Pivotal trials with B-cell matu-
ration antigen (BCMA)–directed CAR-T cells have shown
remarkable efficacy, achieving durable remissions ranging from 8 to
35 months of PFS in this subgroup of patients.6,7 Consequently,
the US Food and Drug administration has approved 2 BCMA CAR-
T products for the treatment of R/R MM, namely idecabtagene
vicleucel (Ide-Cel)8 and ciltacabtagene autoleucel (Cilta-Cel).9

Given the promising results observed with these treatments,
other BCMA CAR-T products and CAR-T therapies against other
myeloma antigens (CD19, CD38, CD138, and SLAMF7) are
currently under evaluation10 with a focus on evaluating the use of
CAR-T therapies in early management of the disease.

Adverse events associated with CAR-T therapy for R/R B-cell hema-
tologic malignancies are common, and more than 80% of the patients
develop toxicities.11,12 Acute toxicities, such as cytokine release syn-
drome (CRS) and immune effector–cell-associated neurotoxicity
syndrome (ICANS), have been characterized extensively from a
physio-pathologic and clinical standpoint13-15 and are thus well
understood and managed.16,17 However, mechanisms underpinning
other toxicities such as hematologic toxicity and particularly long-term
cytopenias, a frequent side effect of BCMA CAR-T therapy, are still
poorly understood.18,19 Initially attributed to lymphodepleting chemo-
therapy regimens, long-lasting cytopenias that are present for more
than 30 days after infusion have been described across all CAR-T
products, independent of their target antigen, thereby pointing
toward a class effect that is independent of chemotherapy.20,21

Recent studies that focused on CD19-directed CAR-T cells sug-
gested that there is a relationship between CRS and elevated
inflammatory markers at baseline, as well as the development of long-
lasting hematologic toxicity.22 Data on BCMA CAR-T–derived cyto-
penia comes from a few single-center retrospective descriptive
analyses and points toward a similar relationship.23-25

In this study, we characterized the kinetics of cytopenia in a cohort
of patients with R/R MM who received BCMA CAR-T therapy and
evaluated the correlation of cytopenia with clinical and laboratory
parameters. To delve into the molecular mechanisms underlying
these cytopenias, we studied the effect of supernatants of acti-
vated CAR-T cells (spCAR) on ex vivo hematopoietic differentia-
tion. Using phenotypic and single-cell transcriptional studies, our
results provide molecular mechanistic insights on what drives
prolonged cytopenia, demonstrating the detrimental consequences
of cytokine secretion by activated CAR-T cells on hematopoiesis.
Moreover, our results demonstrate how the use of specific cytokine
inhibitors could prevent or decrease prolonged cytopenias.

Materials and methods

Clinical metadata

Clinical metadata from 48 adult patients with R/R MM who
received BCMA CAR-T therapy were retrospectively analyzed. The
study was approved by the ethics committee of the University of
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Navarra. Clinical data were collected after informed consent was
obtained. We defined baseline values as those obtained before
lymphodepletion with a leniency period of up to 3 days for labo-
ratory values and 1 month for bone marrow infiltration that was
determined before apheresis and before the administration of any
bridging therapy. Lymphodepletion was given according to each
manufacturer’s instructions and was based on fludarabine and
cyclophosphamide, followed by product infusion. The median
follow-up was 10.5 months. Follow-up was continued until disease
progression or death. Toxicity was graded according to the Com-
mon Terminology Criteria for Adverse Events v5.0. For hematologic
toxicity, based on the criteria recently described by Rejeski et al,26

long-lasting or prolonged cytopenia was defined as grade 3 or
higher (based on the Common Terminology Criteria for Adverse
Events v5.0 definition), present at 30 days or more after infusion of
CAR-T cells.

Generation of activated BCMA and CD19 CAR-T

supernatants

Second-generation BCMA and CD19 CAR constructs were
used.27 Lentiviral vectors were produced in human embryonic
kidney 293-T cells following standard procedures.27 CAR-T cells
were generated from healthy donors as described.27 Untrans-
duced T cells (UTD) and CAR-T cells were co-cultured with U266
or Nalm6 cells (BCMA and CD19 expressing cell line, respectively)
at a 1:1 ratio. Supernatant UTD (spUTD) and spCAR were
collected after 48 hours, cell debris were removed by centrifuga-
tion, and clean supernatants were stored at −80◦C until use.

Cytokine quantification

The cytokine levels in spCAR and spUTD were quantified using a
customized ProcartaPlex assay and included quantification of
interleukin-1β (IL-1β), IL-2, IL-4, IL-6, CD137, IL-8, IL-10, IL-17A,
interferon gamma (IFN-γ), granulocyte-macrophage colony-
stimulating factor, tumor necrosis factor α (TNF-α), perforin, IL-
15, granzyme B, and CD40L according to the manufacturer’s
instructions. Data were acquired in a Luminex 200 Instrument
System (Thermo Fisher Scientific).

Ex vivo myeloerythroid differentiation model

Mononuclear cells were obtained using Ficoll-Paque (GE Health-
care) density gradient centrifugation of bone marrow aspirates
from healthy donors (n = 5; range, 18-22 years). All patients pro-
vided written informed consent. Hematopoietic stem and progeni-
tor cells (HSPCs) were stained using CD34-APC (clone 581;
Beckman Coulter) and CD45-PerCPCy5.5 (clone HI30; Bio-
lLgend) and sorted in a BD FACSAria II (BD Biosciences). An
ex vivo liquid culture differentiation assay was performed as previ-
ously described.28 To evaluate the effect of spCAR (generated
from different donors), between 0.5 and 1.5 mL of spCAR, spUTD,
or control media were added to the differentiation process. OP9
cells, media, cytokines, and supernatants were renewed every 3 to
4 days. The following cytokine inhibitors were added to spCAR:
IL-6 inhibitor LMT-28 (Selleckchem, E115301) at 0.1 mM; trans-
forming growth factor-β (TGF-β) inhibitor galunisertib (Sell-
eckchem, S2230) at 1 mM; IFN-γ inhibitor emapalumab
(Selleckchem, A2041) at 1 mg/mL; IL-17a inhibitor secukinumab
(Medchemexpress HY-P9927) at 1 mM; and TNF-α and TNF-β
inhibitor etanercept (Medchemexpress, HY-108847) at 0.1 mg/mL.
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21



Flow cytometry analysis

Phenotypic characterization of neutrophilic, monocytic, and
erythroid lineages was performed after 24 days of differentiation.
Antibodies were purchased from BD Biosciences unless otherwise
stated (supplemental Table 1). Data were acquired on a BD
FACSCanto II (BD Biosciences) and were analyzed using FlowJo
Software version 10 (Tree Star).

scRNA-seq

Single-cell RNA sequencing (scRNA-seq) was performed on cells
cultured under spCAR and spUTD conditions after 24 days of
differentiation using the Chromium Single-Cell 3′ Reagent Kit (10x
Genomics) according to the manufacturer’s instructions. For
spUTD samples, 12 463 cells were analyzed (average of 26 678
reads per cell). For the spCAR sample, 6945 cells were analyzed
(average of 54 999 reads per cell). scRNA-seq data were demul-
tiplexed, aligned to the human reference (GRCh38), and quantified
using Cell Ranger (v6.0.1). Further computational analysis was
performed using Seurat (v3.1.5). Cells were filtered based on the
number of genes, unique molecular identifiers, and proportion of
unique molecular identifiers mapped to mitochondrial and ribo-
somal genes. Using unsupervised clustering analysis (0.6resolu-
tion), 15 clusters were identified. Cell types were annotated using
canonical markers. Cytokine families and receptors gene sets are
included in supplemental Table 2.

Gene regulatory networks (GRN) analysis

Using the 300 most variable transcription factors (TFs) and 3000
genes, SimiC29 was run with the default parameters. For each
regulon, defined as a TF and its associated target genes, the
activity score per cell was computed as the area under the curve
generated by the cumulative sum of the ordered weights corre-
sponding to the target genes connected to the TF. The distribution
for each cell phenotype was then represented in a histogram plot,
and the regulatory dissimilarity of each regulon was calculated by
computing the distance between the distribution of the cells
belonging to each phenotype.

Statistical analysis

Univariate analyses were performed by using simple linear regres-
sions for variables on a continuous scale and by using logarithmic
regression for binary variables and using Spearman correlation.
Mann-Whitney U tests and Kruskall-Wallis tests were used to
evaluate the significance of categorical nonparametric variables.
Statistical tests were 2 sided and P values < .05 were considered
significant. Statistical analyses were performed using IBM SPSS
(v26.0) and GraphPad Prism (v9.3.1).

Results

BCMA CAR-T therapy in patients with R/R myeloma was associ-
ated with long-lasting severe hematologic toxicity

This study included 48 patients with a diagnosis of R/R MM treated
with BCMA CAR-T therapy at our institution (Table 1). Patients
were heavily pretreated with a median of 3 previous lines of
treatment before apheresis (range, 2-8), and 96% of patients had a
previous autologous stem cell transplantation and 21% had 2
autologous stem cell transplantations. No patient previously
underwent an allogeneic transplant. Of the cohort, 79% of patients
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21
were refractory to proteasome inhibitors, immunomodulatory
agents, and anti-CD38 monoclonal antibodies (triple-class refrac-
tory), and 31% were penta-drug refractory (refractory to 2
proteasome-inhibitors, 2 immunomodulatory agents, and anti-
CD38 monoclonal antibodies). Only 1 patient previously received
BCMA-directed treatment (supplemental Table 3). Of note, 29% of
patients had extramedullary disease, and 33% had high-risk
cytogenetics.

The main adverse event observed after CAR-T therapy was CRS,
which was reported in 89.5% of patients (Table 2). Severe CRS
events (grade ≥3) were seen in 12.5% of patients, and any grade
ICANS was seen in 20.8% of patients, with grade ≥3 being
reported in 4.1% of patients. These complications occurred mostly
in the first month after CAR-T treatment, and the median duration
of these complications was 5.5 days (95% confidence interval, 3.5-
7.6) for CRS and 2.5 days (95% confidence interval, 1.4-3.5) for
ICANS. One patient in our cohort developed a delayed treatment-
related grade 3 parkinsonism syndrome.30 The overall incidence of
any grade cytopenia was 95.7%, and anemia, neutropenia, and
thrombocytopenia of any grade were reported in 97.9%, 97.9%,
and 77% of the patients, respectively (Table 2). Cytopenia was
seen in all patients who were treated with any BCMA CAR-T
product, regardless of the number of previous lines of therapy
received. The median time to neutrophil (absolute neutrophil count
>103/μL), platelet (>5x104/μL), and hemoglobin (>8 g/dL) recov-
ery was 45, 90, and 30 days, respectively. Of note, 6 patients
presented with grade ≥3 cytopenia before infusion that affected
only 1 cell lineage. These patients had a longer time to recovery,
particularly of neutrophils, although these differences were not
statistically significant, probably because of the limited number of
patients. Regarding the severity of cytopenia, 1 month after infu-
sion, grade ≥3 anemia persisted in 16.8% of the patients, and
more than half of the patients had grade ≥3 neutropenia (53.1%)
and thrombocytopenia (57.4%) (Figure 1). The hemoglobin levels
were the first to recover with median hemoglobin levels above 10
g/dL at 2 months, and every patient had a hemoglobin level above
8 g/dL at 4 months after treatment with CAR-T cells. However, a
higher proportion of patients presented with grade ≥3 neutropenia
and thrombocytopenia after 2 (30.95% and 40.5% respectively), 3
(28% and 33.3%), and 6 months (21% and 21.4%) after infusion.
Febrile neutropenia was reported in 38% of patients, and grade ≥3
infections in the first month after treatment were seen in only
10.4% of the patients (Table 2). One year after CAR-T infusion, 4
patients still had platelet counts <50 000/mm3 and 3 patients had
neutrophil counts <1000/mm3. One patient presented with a
severe bleeding event in the central nervous system (grade ≥3).
The PFS for the whole cohort was 9.56 months. Patients who
relapsed in the first 6 months after CAR-T infusion (12.5%) did not
have recovered platelet and neutrophil counts at the time of dis-
ease progression. In contrast, patients who relapsed (14.6%) after
month 6 had recovered blood counts before progression.

A total of 68% of patients received supportive therapy in the form
of transfusion of packed red blood cells in the first month after
CAR-T infusion and 52% received pooled platelet transfusions;
12% and 16.3% of those patients, respectively, required trans-
fusion in the subsequent 3 months. Granulocyte colonies-
stimulating factor (G-CSF) was administered in 89% of patients,
mainly in the first month after treatment. In 17% of the patients, a
recovery of neutrophil counts associated with G-CSF treatment
PARACRINE-MEDIATED CYTOPENIA AFTER CAR-T THERAPY 5481



Table 1. Patient characteristics

Characteristics Value

Median age (range), y 57.5 (41-79)

Median number of previous lines of treatment (range) 3 (2-8)

Previous ASCT, n (%) 46 (95.83)

>1 ASCT, n (%) 10 (20.83)

Disease characteristics

High-risk cytogenetics*, n (%) 16 (33.33)

Extramedullary disease, n (%) 14 (29.17)

Number of focal lesions, n (%)

None 4 (8.33)

1-3 14 (29.17)

4-10 6 (12.50)

>10 24 (50.00)

Number of lytic lesions, n (%)

None 5 (10.42)

1-3 8 (16.67)

4-10 13 (27.08)

>10 22 (45.83)

Triple-drug refractory, n (%) 38 (79.17)

Penta-drug refractory, n (%) 15 (31.25)

Product infused

Ide-Cel, n (%) 37 (77.08)

Ciltacabtagene autoleucel, n (%) 5 (10.42)

ARI0002h, n (%) 3 (6.25)

Other, n (%) 3 (6.25)

Baseline blood count

Median hemoglobin, g/dL (range) 11.2 (7.9-14.5)

Median platelet count per μL (range) 139 500 (34 000-387 000)

Median ANC per μL (range) 2355 (2010-285)

Hemoglobin <8 g/dL, n (%) 1 (2.08)

Platelets <50 000/μL, n (%) 2 (4.17)

ANC <1000 cells per μL, n (%) 3 (6.25)

Median markers of inflammation at baseline

Lactate dehydrogenase, U/L (range) 237 (213-275)

Ferritin, ng/mL (range) 368 (279-642.8)

D dimer, U/L (range) 605 (410-740)

Fibrinogen, mg/dL (range) 432 (364-506)

HEMATOTOX score

Low (0 or 1 point), n (%) 29 (60.42)

0 points 12

1 point 17

High (≥2 points), n (%) 19 (39.58)

2 points 9

3 points 5

4 points 1

5 points 3

Table 1 (continued)

Characteristics Value

6 points 0

7 points 1

Patient baseline characteristics before CAR-T infusion.
ANC, absolute neutrophil count; ASCT, autologous stem cell transplantation; IMiD,

immunomodulatory drug; PI, proteasome inhibitor.
*High-risk cytogenetics include t(4;14), t(14;16), t(14;20), and/or del(17p). Triple-drug

refractory disease indicates refractory to an IMiD, PI, and daratumumab; penta-drug
refractory indicates refractory to lenalidomide, pomalidomide, bortezomib, carfilzomib, and
daratumumab.
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was observed before day 28 and a subsequent decrease was
observed after G-CSF discontinuation. In 15% of the patients, G-
CSF administration was required in the first 3 months after CAR-T
therapy. Erythropoietin and thrombopoietin analogues were used
in 16.6% and 8.3% of patients, respectively, and these treatments
were started more than 1 month after CAR-T treatment in all cases
(Table 2). These results indicate that hematologic toxicity is a com-
mon and long-lasting toxicity associated with BCMA CAR-T cells.

Baseline cytopenia, inflammatory markers, and high-

risk cytogenetics correlate with prolonged cytopenia

To define potential factors associated with hematologic toxicity, we
analyzed the relation between cytopenia and clinical and laboratory
findings. Baseline hemoglobin level and thrombocytopenia were the
best predictive biomarkers of long-lasting cytopenia (supplemental
Figure 1). Thus, lower baseline hemoglobin levels correlated with
lower hemoglobin levels and platelet and neutrophil counts at 1, 3,
and 6 months after infusion (supplemental Table 4). Similarly,
baseline thrombocytopenia correlated with lower hemoglobin levels
and platelet and neutrophil counts 3 months after infusion. Baseline
neutropenia was associated with neutropenia at months 3 and 6
after infusion. Moreover, patients with high-risk cytogenetics had a
significant correlation with lower hemoglobin levels and platelet and
neutrophil counts 1 and 2 months after infusion. It should be noted
that baseline bone marrow infiltration before CAR-T treatment
correlated with lower hemoglobin levels at month 3 and 6 after
treatment but not with other cytopenias. Other disease-related
factors (number of previous treatments, use of chemotherapy, tri-
ple or penta-drug exposure, extramedullary disease, number of focal
and lytic lesions, response to bridging therapy, use of alkylator
agents in bridging therapy) and patient related factors (age, Eastern
Cooperative Oncology Group performance status, baseline renal
function, and D dimer) were also not associated with cytopenia
(supplemental Table 5). Of interest, patients who received tocilizu-
mab had significantly lower neutrophil counts at month 1 (P = .008)
than those who did not receive this treatment. This association was
not found in later periods or with other cytopenias.

Regarding inflammatory markers, high baseline ferritin levels
correlated with lower hemoglobin levels up to 6 months after
infusion and with lower platelet counts up to 5 months after infu-
sion but not with neutropenia (supplemental Table 4). Similarly,
peak ferritin levels 3 days after infusion of CAR-T products
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21



Table 2. Main toxicities and management

Toxicity Value

Hematologic toxicity up to 1 mo after infusion,

n (%)

Anemia

Any grade 47 (97.92)

≥Grade 3 30 (62.50)

Thrombocytopenia

Any grade 37 (77.08)

≥Grade 3 30 (62.50)

Neutropenia

Any grade 47 (97.92)

≥Grade 3 47 (97.92)

Profound (ANC < 100 cells per μL) 12 (25.00)

Supportive therapy for cytopenia, n (%)

G-CSF 39 (81.25)

TPO 4 (8.33)

EPO 8 (16.67)

CD34+ boost 1 (2.08)

pRBC transfusion <30 d after infusion 33 (68.75)

pRBC transfusion >30 d after infusion 6 (12.50)

Platelet transfusion <30 d after infusion 25 (52.08)

Platelet transfusion >30 d after infusion. 8 (16.67)

ICANS grade, n (%)

0 38 (79.17)

1 7 (14.58)

2 1 (2.08)

3 2 (4.17)

4 0 (0.00)

CRS grade, n (%)

0 5 (10.42)

1 22 (45.83)

2 15 (31.25)

3 4 (8.33)

4 2 (4.17)

Treatment for ICANS/CRS, n (%)

Steroids 17 (35.42)

Tocilizumab 34 (70.83)

Anakinra 3 (6.25)

Infection, n (%)

Any grade 18 (37.50)

Grade ≥3 5 (10.42)

Main toxicities and management after CAR-T therapy.
ANC, absolute neutrophil count; EPO, erythropoietin; pRBC packed red blood cells; TPO,

thrombopoietin analogues.
correlated with lower blood counts at 1 month (supplemental
Table 4). Interestingly, persistent high ferritin levels 1 month after
infusion correlated with lower hemoglobin levels and platelet
counts 2 and 3 months after infusion, indicating that high ferritin
levels, a marker of sustained inflammation, are associated with
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21
long-lasting cytopenia. This might suggest that CAR-T–driven
inflammation could be responsible for the hematopoietic toxicity
observed after BCMA CAR-T therapy.

Delayed ex vivo HSPC differentiation is mediated by

the paracrine effect of CAR-T cells

Except for B-cell progenitors and plasma cells,31 HSPCs do not
express the BCMA antigen and therefore it is unlikely that CAR-T
cells have a direct effect on hematopoiesis. Thus, to evaluate the
putative CAR-T–driven paracrine effect, we used a previously
described ex vivo liquid culture differentiation assay24 in which
differentiation of CD34+ HSPCs was induced in the presence of
supernatants from activated BCMA CAR-T cells (spCAR) or
spUTD as control (Figure 2A). The presence of 15 cytokines
related to T-cell activation and effector function, such as IFN-γ,
TNF-α, IL-2, and IL-6, and T-cell polarization (Th response) were
measured in the supernatants. Significantly higher cytokine levels
were detected in spCAR when compared with spUTD (Figure 2B;
supplemental Figure 2). At 12 days of cell culture, no differences
were detected in the 3 main differentiation lineages (neutrophilic,
monocytic, and erythroid) in terms of number of cells (Figure 2C;
supplemental Figure 3). However, after 24 days, the number of
CD10− neutrophil precursors was significantly reduced in spUTD
when compared with spCAR condition. Moreover, cells cultured in
the presence of spCAR showed a significant decrease in the
numbers of more differentiated cells when compared with treat-
ment with spUTD in all 3 lineages, namely neutrophilic
(CD10+CD16+), monocytic (CD14+CD35+), and erythroid
(CD71+CD36+) lineages (Figure 2C-D; supplemental Figure 3).
Similar results were obtained when activated CD19 CAR-T cells
were used (supplemental Figure 4A). These data suggest that
the strong proinflammatory conditions produced by activation of
CAR-T cells affect hematopoiesis significantly and potentially
contribute to long-term cytopenia. To better determine which
cytokine was mediating this effect, 5 cytokine blocking drugs were
added to spCAR during ex vivo differentiation. Interestingly,
HSPCs exposed to spCAR with a mix of IFN-γ, TNF-α/β, TGF-β, IL-
6, and IL-17 inhibitors presented more mature phenotypes, similar
to the control groups, at the end of the differentiation (Figure 2E;
supplemental Figure 4B). Individual analysis of the inhibitors
showed that TNF-α/β blockade partially recovered the differentia-
tion of the 3 cell linages, and the IFN-γ inhibitor also contributed to
more differentiated monocytes (supplemental Figure 4). Taken
together, these data suggest that the paracrine effect of CAR-T
cells could be reversed by a combination of suitable cytokine
blockers, thereby providing a potential treatment to promote HSPC
differentiation in proinflammatory environments.

Single-cell transcriptional characterization of

abnormal hematopoietic differentiation

To further understand the effect of supernatants from activated
BCMA CAR-T cells on hematopoiesis, we performed scRNA-seq
on CD34+ HSPCs cultured for 24 days in the presence of
spCAR or spUTD. A total of 14 248 cells were integrated (4639
from spCAR and 9609 from spUTD-treated cells), and 15 clusters
were defined (supplemental Figure 5A-B). Clusters containing high
levels of ribosomal genes and those in phase G2M/S of the cell
cycle were removed (supplemental Figure 5C), and the remaining
clusters were annotated based on the expression of canonical
PARACRINE-MEDIATED CYTOPENIA AFTER CAR-T THERAPY 5483
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Figure 1. Long-lasting severe cytopenia developed in patients treated with BCMA CAR-T therapy. (A) Prevalence of grade ≥3 anemia, thrombocytopenia, and

neutropenia at baseline (0) and at 1, 2, 3, and 6 months after infusion of CAR-T treatment. Evolution of aggregate hemoglobin (B), neutrophil (C), and platelet (D) counts from

CAR-T infusion up to 1 year of follow-up.
markers.32-36 Clusters 1 and 14 could not be properly identified
based on canonical markers (supplemental Table 6) and were
eliminated from further analyses. Although clusters 0, 5, 10, and 13
were composed mainly of cells treated with spCAR, clusters 1, 3, 4,
11, and 12 included cells treated with spUTD (supplemental
Figure 5D). Clusters enriched in spUTD-treated cells showed tran-
scriptional profiles of mature granulocytes, monocytes, or macro-
phages. In contrast, clusters mainly composed of cells treated with
spCAR corresponded to cell populations with immature tran-
scriptomic profiles with enrichment in TFs and genes involved in
early hematopoietic homeostasis (Figure 3A-B). To gain further
insights into the potential transcriptional mechanisms involved in the
abnormal hematopoietic differentiation, we examined the main 3
trajectories. Consistent with immunophenotypic results, the tran-
scriptional profile of cells cultured with spUTD was enriched in
signatures of mature neutrophils with expression of PRTN3, ELANE,
MPO, LTF, and MMP8, which are described as canonical neutro-
phils markers37-41 (Figure 3C). In contrast, cells cultured with
spCAR were enriched in RUNX142,43 and GATA2,44-46 which
encode TFs present in early hematopoietic precursors. These cells
also presented with higher expression levels of CXCR4, which has
high relevance in HSPCs and early neutrophil trafficking from the
bone marrow,41,47,48 and CEBPA, which is mainly involved in
neutrophil differentiation and plays an important role in myeloid
priming49 (Figure 3C). Moreover, mature monocytes within cells
exposed to spUTD expressed CD14, a marker of monocyte/
5484 PALACIOS-BERRAQUERO et al
macrophage lineage, and CXCL16, IL18, and CD74.33,34,50 In
contrast, cells exposed to spCAR expressed VSTM1, CLU, PADI4,
and CCL23,33,35,51 which are markers associated with immature
monocytes (Figure 3D).Wealso observed erythroid precursorswithin
cells cultured with spCAR that presented with differential expression
of RHEX, TPSAB1, and KIT52-54 (Figure 3E). Other mature pop-
ulations, such as antigen-presenting cells that are characterized by
the expression ofHLA genes andCD1 family genes (CD1A, CD1D),
were only observed in HSPCs cultured with spUTD (Figure 3B).

In line with these results, gene ontology analysis revealed that
HSPCs exposed to spUTD presented with enrichment in pathways
related to granulocyte chemotaxis, neutrophil chemotaxis, migra-
tion, and degranulation and with a transcriptomic profile that is
associated with macrophage features, highlighting the mature
phenotype of those populations (Figure 3F; supplemental
Figure 5E). In contrast, HSPCs exposed to spCAR were
enriched in pathways involved in the regulation of HSPC differen-
tiation processes (Figure 3F; supplemental Figure 5F). Moreover,
neutrophil, monocyte, and erythroid precursors presented with
increased apoptotic-related genes (supplemental Figure 5G), and
erythroid progenitors also showed negative regulation of G2/M and
mitotic cell cycle phase transition, suggesting a decreased prolif-
eration rate (Figure 3F). In addition, neutrophil, monocyte, and
erythroid precursors (exposed to spCAR) presented with higher
expression levels of receptors from the TNF, TGF-β, and IL-1
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21
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Figure 2. HSPCs differentiated in the presence of the supernatant of activated CAR-T cells presented less mature phenotypes. (A) Schematic representation of the

ex vivo myeloerythroid differentiation model employed. CD34+ HSPCs were harvested and subjected to differentiation under 3 conditions, namely the addition of supernatant

produced by the coculture of untransduced lymphocytes (spUTD), BCMA CAR-T cells (spCAR) to the MM tumoral cell line U266 for 48 hours, and control condition without the

addition of supernatant. Cytokine production was measured in the supernatant. The phenotype obtained after 12 and 24 days of ex vivo differentiation of the HSPCs was studied

using next generation flow cytometry. scRNA-seq was performed after 24 days of ex vivo differentiation. (B) Concentration of IFN-γ, TNF-α, IL-2, and IL-6 cytokines in the spUTD

(blue) and activated BCMA CAR-T cells (red) after 48 hours of coculture with the MM cell line U266 at a 1:1 effector-to-target ratio (n = 3). (C) Proportion of HSPCs differentiated

(n = 3) in the control (green), spUTD (blue), and spCAR (red) conditions. Analysis of less differentiated (upper panel) and more differentiated (lower panel) cells is shown for the 3

lineages, namely neutrophilic (CD10−; CD10+CD16+), monocytic (CD14−CD64+; CD14+CD35+), and erythroid (CD71+CD36−; CD71+CD36+) lineages. The proportion of

cells that achieved mature myeloerythroid phenotypes was significantly lower in the spCAR group. (D) FACS gating results of HSPCs that were differentiated in the presence of

spUTD (blue) or spCAR (red) at day 24 of differentiation. Gates of more differentiated cells are shown for neutrophilic (CD10+CD16+), monocytic (CD14+CD35+), and erythroid

(CD71+CD36+) lineages, respectively. (E) The proportion of HSPCs after differentiated for 24 days (n = 2) in the control (green), spUTD (blue), spCAR (red), and spCAR with
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and TNF-α-TNF-β inhibitor at 0.1 mg/mL. Welch tests for panel B and unpaired t tests for panel C were used. *P < .05; **P > .01.
families (Figure 3G; supplemental Figure 6A) with TGFBR1 and
IL1RL1 being 2 of the most expressed genes in neutrophil and
monocyte precursors (supplemental Figure 6B). Collectively, these
data suggest that activated CAR-T cells have a paracrine effect not
only through the production of a strong proinflammatory scenario,
but also through promoting signaling of specific cytokine programs
that lead to maturation arrest and more immature phenotypes of
differentiated HSPCs. Moreover, spCAR may promote increased
apoptotic rates and decreased proliferation, potentially explaining
the long-term cytopenias observed in these patients.
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21
Differential GRNs are seen in neutrophil and

monocyte lineages exposed to activated CAR-T

supernatants

To elucidate how supernatants from activated CAR-T cells alter
GRNs, we applied SimiC29 and observed the regulons that were
differentially activated in HSPCs cultured in the presence of spCAR
(supplemental Figure 7A). Cells exposed to spCAR presented with
increased activity of JUND, JUNB, or FOS55 regulons, which were
increased in immature progenitors (supplemental Figure 7B). We
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next compared the GRN activity of precursors from each lineage
and identified high dissimilarity scores in neutrophilic and monocytic
lineages (Figure 4A). In particular, increased activity of regulons ID2
and CEBPD in neutrophils corresponded with their mature
phenotype, because these are key TFs in terminally differentiated
neutrophils56,57 (supplemental Figure 7C). In contrast, the
increased activity in neutrophil precursors of regulons KFL6 and
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CEBPB, which are key TFs for neutrophil differentiation in myeloid
precursors,58,59 explained the immature phenotype of these cells
(Figure 4B). Similarly, in the monocytic lineage, increased activity in
the regulons involved in myeloid differentiation, together with
decreased activity of MEF2C or MAFB60,61 observed in the pres-
ence of spCAR, explained their less differentiated phenotype
(Figure 4B).
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A detailed analysis of the TFs and their associated genes
revealed genes related to proinflammatory cytokines, such as
IL18, cytokine receptors, such as IL17RA, and members of TNF
superfamily, including KFL6, CEBPB, and IKZFI regulons,
thereby highlighting the importance an inflammatory environment,
caused by supernatants from activated CAR-T cells, may have on
HSPCs (Figure 4C-D). Moreover, the MEF2C and MAFB reg-
ulons were also associated with genes related to cytokines,
chemokines, or their receptors. Because IL-13 regulates mono-
cytic function,62 the presence of its receptor among genes
related to the MEF2C regulon suggests that this cytokine plays a
role in the maturation of these cells when cultured with spUTD
(Figure 4C-D). Overall, our GRN analysis provides mechanistic
insights into the regulatory networks that underlie the phenotypic
differences observed in HSPC differentiation in the presence of
supernatants from activated CAR-T cells. All these data support
our hypothesis that activation of CAR-T induces a paracrine
effect that affects HSPC differentiation, which leads to long-term
cytopenia in patients who undergo BCMA CAR-T therapy.

Discussion

Hematologic toxicity is one of the most frequent adverse events of
CAR-T therapies and, not surprisingly, in this study, cytopenia
emerged as the most frequent toxicity associated with BCMA
CAR-T treatment. Previous clinical studies that led to the approval
of Ide-Cel2,8 and ciltacabtagene autoleucel3,9 showed a high inci-
dence of grade 3 and 4 cytopenia (neutropenia 89%, thrombocy-
topenia 52%, and anemia 60%),1-3,9 a frequency similar to that
found in our study. A recent report on a small cohort of patients
who received BCMA and CD19 CAR-T therapy for R/R MM that
was focused on hematologic toxicity25 reported prolonged cyto-
penia (defined as grade 3 or higher after day 28) in 58% of the
patients. In our study, the proportion of patients with long-lasting
and clinically relevant cytopenias was significantly higher, and
more than half of the patients exhibited grade ≥3 neutropenia
(53%) and thrombopenia (57%) 1 month after infusion. It should be
noted that one-fifth of patients presented with persistent severe
thrombocytopenia and neutropenia 6 months after infusion (20%
and 21%, respectively). The incidence of other CAR-T–derived
toxicities, CRS, and ICANS was similar to that seen in the KarMMa
and CARTITUDE studies, although the duration of symptoms was
shorter probably because of the more frequent use of tocilizumab
(79%) and steroids (35%) in our series. In this sense, we found an
association between tocilizumab administration and neutropenia at
1 month after infusion, which is in line with its reported role in the
induction of neutropenia and thus it could be an initiating factor.
Similar observations were recently described by Logue et al23 with
real-life use of Ide-Cel. The incidence of infection was lower in our
series, because the incidence of severe infection was reported in
this study, in contrast with other published series.23,63

Our results are consistent with previous observations in patients
with MM who were treated with CAR-T cells25 and with the CAR-
HEMATOTOX model developed by Rejeski et al26 for predicting
hematologic toxicity in patients with R/R large B-cell lymphoma in
that baseline cytopenia and inflammatory markers were correlated
with the duration of cytopenia. This could be associated with poor
bone marrow reserve caused by previous treatments, although, to
date, no association between the number of treatments and
5488 PALACIOS-BERRAQUERO et al
cytopenia has been found.18,19,22,23,25 Interestingly, no association
between CRS and ICAN severity and cytopenia was found in
Rejeski’s work,26 nor in our study. In contrast, Juluri et al22 recently
showed that severe CRS is associated with hematologic toxicity
following CD19 CAR-T therapy. In their study, the severity of
cytopenia was comparable with that seen in our patients, but its
duration was substantially shorter with a median time to absolute
neutrophil count and platelet recovery of 8.7 days and 36.5 days,
respectively. Furthermore, the evaluation of serum cytokines related
to CRS revealed that higher peak IL-6 levels were associated with
cytopenia at day 28, whereas high serum concentrations of TGF-β
were associated with improved hematopoietic recovery in their
work.22 Additional biomarkers of inflammation, such as ferritin, were
also associated with the frequency and severity of hematologic
toxicity in our study. Therefore, although acute inflammation after
CAR-T infusion and CRS development, along with lymphodeple-
tion, partially account for initial cytopenia, sustained inflammation
might play an important role in the delayed hematopoietic recovery
observed in some patients.

The relationship between inflammation and HSPC differentiation is
well-known and has been analyzed in the context of acute syn-
dromes, such as sepsis and hemophagocytic lymphohistiocytosis,
which has also been observed as a toxicity of CAR-T treatment and
is the paradigm of how inflammation halts hematopoiesis.14,15

Moreover, chronic inflammation has been shown to produce
HSPC exhaustion and functional damage.64,65 Similarly, sustained
inflammation caused by cytokines that are released by activated
CAR-T cells in the bone marrow in patients with MM could
contribute to impaired hematopoietic recovery. These results sug-
gest that cytokines released by activated CAR-T cells and the
inflammatory environment created are at least partially responsible
for the delayed hematopoietic recovery observed. Despite the long-
lasting hematologic toxicity that has been described in patients
who were treated with CD19 and BCMA CAR-T cells, CD19 CAR-
T activity occurs mainly in peripheral blood and lymph nodes, and,
in this case, the levels of cytokines released would be much lower
in bone marrow, thereby reducing the incidence and severity of
long-term cytopenias.

To date, there is limited knowledge regarding the underlying
mechanisms of inflammation-mediated hematologic toxicity after
CAR-T therapy. Our ex vivo studies point toward a cytokine-
mediated molecular rewiring of hematopoietic differentiation as a
mechanism that contributes to halting myeloid differentiation. As
expected, characterization of supernatants from activated CAR-T
cells revealed high levels of CRS-related cytokines, which could
be implicated in the differentiation delay, because these play well-
known roles in regulating inflammatory reactions (IL-6 and IL-10),
HSPCs (IL-6 and granulocyte-macrophage colony-stimulating fac-
tor), and proliferation and differentiation of B- and T-cell lympho-
cytes (IL-2, IL-4, and IL-15).66 High IFN-γ levels are also deleterious
for HSPCs and downstream differentiation, and sustained levels of
this cytokine have been shown to lead to anemia and bone marrow
failure. TNF-α affects myeloid precursors in a similar manner.

The scRNA-seq studies also provide a molecular explanation for
the role of inflammation in the regulation of cell differentiation. The
immature phenotype seen with spCAR can be explained by the
expression of TFs involved in the initial stages of hematopoiesis
and HSPC development and lineage commitment, such as
12 NOVEMBER 2024 • VOLUME 8, NUMBER 21



GATA2.66,67 This suggests that substances present in activated
CAR-T supernatants create an environment that is not favorable for
hematopoietic differentiation. Therefore, cells would remain in an
immature quiescent state through overexpression of these TFs, as
observed for neutrophil progenitors that persist in high numbers.
However, because monocytic and erythroid progenitors have
reduced numbers, we could not discard other mechanisms, such
as apoptosis or cell death caused by maturation delay that have
been described for hematologic malignancies such as myelodys-
plastic syndromes. Furthermore, we observed that activated CAR-T
cells do not only produce a strong proinflammatory milieu by pro-
ducing TNF-α, TGF-β, or IFN-γ, among other cytokines, but also
induce the expression of their receptors, thereby promoting
increased signaling of specific cytokine programs that lead to
maturation arrest. Consistent with these findings, our ex vivo
studies showed that the use of a combination of cytokine inhibitors
was able to induce HSPC differentiation, partially reverting the halt
in differentiation induced by supernatants from activated CAR-T
cells. This finding supports that the upregulation of inflammatory
pathways is key for the induction of cytopenia. From a clinical
standpoint, our results suggest that early and effective control of
the inflammatory cascade produced by CAR-T activation may be
important to reduce hematologic toxicity. Currently, tocilizumab is
the frontline treatment for CRS, but blocking IL-6 receptors leads
to higher circulating IL-6 levels; this might explain why higher
tocilizumab use correlated with long-lasting cytopenia, both in our
work and that of others.68 Further studies are needed to assess
whether other approaches based on cytokine blockage might
control CRS without negatively impacting hematopoietic recovery
(anakinra, steroids, and anti-TNF).69

Overall, our clinical findings add to the growing body of data that
highlight that persistent cytopenia is a frequent and long-lasting
toxicity that follows BCMA CAR-T therapy. It corroborates the
finding that the duration of cytopenia is correlated with baseline
cytopenia and high peak inflammatory markers, as was already
shown for CD19-directed CAR-T cells. Despite its limitations, our
study is, to our knowledge, one of the first proof-of-concept reports
that provide mechanistic insights into what drives prolonged
cytopenia. In addition, the ex vivo findings indicate that activated
CAR-T cells secrete proinflammatory substances that impair
hematopoietic differentiation and reshape transcriptional programs,
which could help to explain the persistence of the hematopoietic
toxicity observed because damage seems to happen early in the
hematopoietic hierarchy. Our findings strongly suggest that
inflammation plays a crucial role in CAR-T–associated cytopenias
and that inhibition of specific factors could prevent or decrease its
severity. These findings should be confirmed by further studies and
constitute the first mechanistic explanation for cytopenia observed
in patients treated with BCMA CAR-T cells.
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