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A B S T R A C T

Congenital heart disease (CHD) remains a significant global health concern, affecting approxi
mately 1 % of newborns worldwide. While its accurate causes often remain elusive, a combination 
of genetic and environmental factors is implicated. In this cross-sectional study, we propose a 
comprehensive prediction framework leveraging Machine Learning (ML) and Multi-Attribute 
Decision Making (MADM) techniques to enhance CHD diagnostics and forecasting. Our frame
work integrates supervised and unsupervised learning methodologies to remove data noise and 
address imbalanced datasets effectively. Through the utilization of imbalance ensemble methods 
and clustering algorithms such as K-means, we enhance predictive accuracy, particularly in non- 
clinical datasets where imbalances are prevalent. Our results demonstrate an improvement of 8 % 
in recall compared to existing literature, showcasing the efficacy of our approach. Moreover, our 
framework identifies clusters of patients at the highest risk using MADM techniques, providing 
insights into susceptibility to CHD. Fuzzy clustering techniques further assess the degree of risk 
for individuals within each cluster, enabling personalized risk evaluation. Importantly, our 
analysis reveals that unhealthy lifestyle factors, annual per capita income, nutrition, and folic acid 
supplementation emerge as crucial predictors of CHD occurrences. Additionally, environmental 
risk factors and maternal illnesses significantly contribute to the predictive model. These findings 
underscore the multifactorial nature of CHD development, emphasizing the importance of 
considering socioeconomic and lifestyle factors alongside medical variables in CHD risk assess
ment and prevention strategies. Our proposed framework offers a promising avenue for early 
identification and intervention, potentially mitigating the burden of CHD on affected individuals 
and healthcare systems globally.

1. Introduction

Congenital heart disease (CHD) is the most common type of congenital defect worldwide, affecting approximately 1 % of newborns, 
making it a prevalent condition that accounts for 28 % of all congenital defects [1,2]. Due to substantial advancements in medical, 
transcatheter, and surgical treatments for CHD over time, over 95 % of infants born with CHD now survive into adulthood, with over 
90 % reaching the age of 40 years or older [3]. The exact causes of CHD in most infants remain unknown. Some infants develop heart 
defects due to genetic or chromosomal alterations, while others may be influenced by a combination of genetic and environmental 
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factors such as maternal diet, health conditions, or medication use during pregnancy [4,5]. Certain CHDs can be identified before birth 
through a fetal echocardiogram, a specialized ultrasound that produces images of the developing baby’s heart. Early detection of an 
illness, even before the expected time, can be life-saving [6]. However, some defects may not be detected until after birth or later in life, 
during childhood or adulthood [7]. CHDs include a wide range of heart abnormalities that differ in seriousness. The particular defect 
type can greatly impact the disease’s development, outlook, and patients’ ability to participate in daily tasks [8]. Unrecognized CHDs 
in infants present a substantial danger of avoidable mortality, sickness, and impairment. Prompt identification of heart issues in infants 
provides important advantages by allowing for timely assessment and treatment, resulting in quicker evaluations and better clinical 
conditions [9]. Machine learning (ML) is transforming the healthcare industry by allowing for predictive diagnostics and customized 
treatment strategies [10]. Supervised learning algorithms use labeled data to make predictions about outcomes, like disease pro
gression or treatment response. Unsupervised learning methods reveal concealed patterns in data without labels, assisting in grouping 
patients or detecting abnormalities for early detection of diseases. Together, these techniques improve the process of making medical 
decisions and caring for patients [11,12]. The scientists have investigated the use of ML to forecast prenatal CHD by examining 
morphological and hemodynamic characteristics from prenatal ultrasound images. Although there has been significant research into 
this method, building models using ultrasound images presents difficulties [13,14]. Creating a forecasting tool to identify congenital 
heart disease in babies before birth by analyzing non-clinical information from pregnant women could effectively tackle this problem. 
Using non-clinical information for forecasting includes lifestyle elements, environmental impacts, and genetic tendencies, enhancing 
predictive models. Moreover, it enables early identification and custom interventions for improved healthcare results. The primary 
challenge with non-clinical data in health datasets is imbalanced data distribution, where certain classes or outcomes are significantly 
underrepresented compared to others. This can lead to biased predictions and hinder the effectiveness of ML models in healthcare 
applications [15].

The rest of the paper is structured as follows: Section 2 reviews the related works in the field of CHD prediction and management. 
Section 3 provides a detailed description of the proposed framework. Section 4 presents the results of the research. Section 5 discusses 
the findings and offers perspectives. Finally, Section 6 provides the concluding remarks and outlines the possible paths for future study.

2. Related works

In recent years, the application of ML and data analysis in healthcare has significantly improved, particularly in the domain of CHD. 
Numerous studies have explored various approaches to enhance the prediction, diagnosis, and management of CHD, leveraging both 
clinical and non-clinical data. Kaur and Ahmad [13] proposed a data analysis model to forecast CHD risk and create expectant mother 
cohorts based on lifestyle similarities. Employing DBSCAN for unsupervised clustering and random forest for prediction, the method 
achieved 99 % accuracy and outperformed existing approaches, demonstrating the potential of unsupervised learning in refining 
disease prediction models. Griffeth et al. [16] investigated the impact of preoperative heart failure on outcomes in adult CHD surgeries 
and developed a 7-feature risk model for postoperative complications using ML, where ejection fraction emerged as the most influ
ential factor. Shi et al. [17] pointed to the development and validation of ML models to predict malnutrition in children with CHD 
post-surgery, utilizing explainable ML methods for insight. The study enrolled 536 children, with XGBoost showing superior predictive 
performance, highlighting crucial features like postoperative weight scores for early intervention strategies. Junior et al. [18] sug
gested an ML model to forecast ICU stays post-surgery for CHD patients, aiming to improve care planning. Analyzing data from 2240 
patients in a Brazilian hospital, the Light Gradient Boosting Machine achieved a low error rate, while the CatBoost Classifier showed 
promising accuracy. Xu et al. [19] proposed an ML system for classifying 17 categories of CHD types, achieving human-expert-level 
performance. This system, trained on a large dataset from various CT machines, offers high accuracy (86.03 %) and sensitivity (82.91 
%), enhancing CHD diagnosis globally, particularly in regions with limited expert radiologists. Luo et al. [20] recommended examining 
the characteristics of pre-closure and their impact on post-closure outcomes in patients with uncorrected isolated simple shunts and 
pulmonary arterial hypertension. Using unsupervised and supervised ML, they analyzed patient data, identifying key features and 
clustering patterns. While certain characteristics correlated with better post-closure outcomes, supervised learning models did not 
effectively predict these outcomes. He et al. [21] proposed a predictive model for prolonged mechanical ventilation (PMV) in 
congenital heart disease (CHD) patients with airway stenosis (AS) managed conservatively. The model identified key risk factors, 
including low weight, complex CHD, and tracheobronchomalacia, with strong predictive accuracy. Early identification and routine 
surveillance of high-risk patients are essential for improving the outcomes. Reddy et al. [22] suggested that there have been significant 
advancements in prenatal diagnosis and management of CHD, with fetal echocardiography achieving an 85 % accuracy rate in 
detecting cardiac anomalies. Although prenatal CHD diagnosis improves risk assessment and patient outcomes, there is a need to 
enhance identification rates through increased training and the integration of artificial intelligence (AI) to optimize image acquisition, 
measurements, diagnosis, and outcome prediction, despite existing barriers to widespread adoption. The summary of key studies in the 
literature, highlighting the objectives, methodologies, and findings, is presented in Table 1.

While the existing literature offers several approaches for predicting the cases of CHD, there remain notable gaps within these 
methodologies. 

• Most studies concentrate on using clinical and accurate data to predict cases of CHD, overlooking the potential of non-clinical data 
in forecasting CHD incidences prior to childbirth. This discrepancy highlights the necessity for effective models that can integrate 
various data sources to improve predictive accuracy and detect CHD cases early.
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Table 1 
Summary of key studies on CHD prediction and management.

Study Purpose Methodology Dataset 
Type

Individual Risk 
Assessment

Outcomes

Kaur and 
Ahmad 
[13]

Predict CHD risk in expectant mothers and 
create cohorts based on lifestyle using 
population-based cross-sectional data

DBSCAN for clustering, Random Forest for 
prediction; k-NN for imputation; SMOTE for 
balancing data

non- 
clinical 
data

No Achieved 99 % accuracy and 0.91 AUC. Clustering revealed 
complex factors affecting prediction.

Griffeth 
et al. 
[16]

Evaluate the impact of preoperative heart failure 
on reoperative cardiac surgery outcomes in adult 
CHD patients

Retrospective cohort study, Multivariable 
logistic regression, Gradient Boosting, SHAP 
for feature importance

Clinical 
data

No Developed a 7-feature risk model with an AUC of 0.76; identified 
ejection fraction as the most influential factor.

Shi et al. 
[17]

Predict malnutrition in children with CHD post- 
surgery

Prospective cohort study, XGBoost, and other 
ML models, SHAP for feature importance

Clinical 
data

No XGBoost showed superior predictive performance with early 
intervention potential. Key features identified using SHAP.

Junior et al. 
[18]

Develop a predictive model for ICU length of stay 
(LOS) after CHD surgery

Light Gradient Boosting Machine for 
regression, CatBoost Classifier for clustering

Clinical 
data

No LightGBM achieved a low Mean Squared Error, while the CatBoost 
Classifier showed high accuracy and AUC. Key predictors included 
mechanical ventilation duration and weight.

Xu et al. 
[19]

Classify 17 categories of CHD types using AI AI system combining deep learning and ML 
for feature extraction and classification

Clinical CT 
images

No Achieved 86.03 % accuracy comparable to junior radiologists; high 
sensitivity (82.91 %) and potential for clinical integration.

Luo et al. 
[20]

Investigate preclosure characteristics and 
postclosure outcomes in CHD patients with 
simple shunts associated with PAH

Unsupervised and supervised ML for 
clustering and model construction

Clinical 
data

No Identified clusters with significantly different postclosure 
outcomes; supervised models underperformed.

He et al. 
[21]

Predict prolonged mechanical ventilation in 
CHD patients with airway stenosis

Retrospective study, Predictive modeling 
using ROC curve analysis

Clinical 
data

No AUC of 0.847; identified weight, CPB duration, and complex CHD 
as key risk factors. Divided patients into high and low-risk groups.

Reddy et al. 
[22]

Enhance prenatal diagnosis and management of 
CHD using fetal echocardiography

Review and proposal for AI integration in 
fetal echocardiography

Clinical 
data

No Fetal echocardiography achieved 85 % accuracy; AI proposed to 
improve detection and diagnosis accuracy, with potential 
integration into clinical practice.

A
. Salehi and M

. Khedm
ati                                                                                                                                                                                          

Heliyon 10 (2024) e39609 

3 



• Another significant gap lies in the lack of comprehensive categorization of patients based on their susceptibility to CHD, utilizing 
key features extracted from CHD datasets. By establishing distinct categories and defining the significance of each category in 
relation to CHD risk, healthcare practitioners can better tailor preventive measures and interventions for at-risk individuals.

• Additionally, there is a significant gap in the available studies regarding the measurement of CHD risk and the development of a 
plan to reduce these risks.

Addressing these gaps holds the potential to greatly enhance our understanding of early CHD prediction and risk mitigation for 
individuals even before birth. Consequently, this paper’s key contributions can be summarized as follows. 

i. A comprehensive prediction framework is presented, designed to not only enhance accuracy but also effectively determine cases 
of CHD in forecasting. This framework demonstrates proficiency in navigating noise and addressing imbalanced data by 
integrating supervised and unsupervised learning methodologies.

ii. By leveraging feature importance metrics and employing Multi-Attribute Decision-Making (MADM) techniques, the framework 
identifies clusters of patients at the highest risk, prioritizing those most in danger within the population.

iii. Utilizing fuzzy clustering techniques, the framework assesses the degree of risk within each identified cluster, offering insights 
into susceptibility to CHD. Moreover, it identifies crucial features instrumental in mitigating these risks, thus facilitating tar
geted interventions for risk reduction.

Table 2 
Summary of dataset features.

Feature Description Range

Maternal delivery age Maternal delivery age ≥30 0–1
Annual per capita income less than 1000(¥) 1–5

1000–2000¥
2000–4000¥
4000–8000¥ more than 8000¥

Family history Parental consanguinity 0–2
Birth defects in immediate family members
Birth defects in previous infants

Maternal previous illness history Hepatitis 0–6
Epilepsy
Anemia
Diabetes
Heart disease Spontaneous abortion
Thyroid disease
Other

Nutrition and folic acid supplementation Vegetable deficiency 0–5
Meat deficiency
Folic acid deficiency

Maternal illness Cold 0–6
Fever
Threatened abortion
Reproductive tract infections
Hyperemesis gravidarum
Rash and fever
Other

Medication use Cold medicines 0–7
Antiemetic
Antibiotic
Antiepileptic
Sedative
Contraceptive
Abortion prevention agent
Other

Environmental exposures of risk factors Pesticides 0–6
Chemical fertilizers
X-rays
Computer use
Pets
Pollution source in the area of residence

Unhealthy lifestyle Periconceptional smoking 0–8
Family member smoking
Periconceptional drinking
Family member drinking
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3. Requirements and framework

In this section, we introduce the requirements methods, laying the groundwork for the proposed framework. We begin by providing 
a comprehensive description of the dataset utilized in this study, offering insights into its structure and key characteristics. Following 
this, we provide an overview of the approaches employed, setting the stage for a detailed discussion on preprocessing methods. Finally, 
we delve into an in-depth examination of the framework, ending with a comprehensive understanding of its design and imple
mentation. All data preprocessing, clustering, and classifier evaluations were conducted using Python.

3.1. Dataset description

This study utilized data from a large-scale, retrospective epidemiological survey conducted by the Population and Family Planning 
Commission (PFPC) of Shanxi Province, China, between 2006 and 2008. The survey covered six counties—Pingding, Dai, Fenyang, 
Huairen, Zhongyang, and Jiaokou—selected through stratified random cluster sampling. The data were collected for 36,300 live 
infants and their mothers, with 78 cases of CHD identified, making the dataset highly unbalanced. The ethical approval was obtained 
from the Human Research Ethics Committee of Shanxi PFPC. The data included comprehensive maternal demographic and health 
information gathered via questionnaires. For this study, nine key risk factors are selected based on prior research, resulting in a final 
dataset of 10 variables including 9 predictors and 1 binary outcome variable (CHD presence) [23]. Table 2 provides a concise overview 
of these features. For a comprehensive understanding of the dataset and to grasp the significance of each feature item, readers are 
encouraged to refer to the detailed description provided by Luo et al. [24].

3.2. Clustering

Clustering serves as a powerful technique for grouping similar data points based on specific features, aiming to uncover the un
derlying patterns or structures within the dataset. In this paper, two distinct clustering methods are employed. The first method, K- 
means, is utilized within a predictive model, where the optimal number of clusters is determined using the silhouette and Davies- 
Bouldin Index (DBI) methods. K-means is selected for its simplicity, speed, efficiency, and widespread adoption, facilitating the 
categorization of data into cohesive groups. While other clustering methods could be employed, K-means is preferred due to its 
practical advantages. The second clustering method utilized is fuzzy c-means clustering, employed for individual risk evaluation. This 
method assigns probabilities to each instance, indicating their likelihood of belonging to each cluster. These probabilities serve as 
crucial tools in defining the risk of CHD, offering insights into individual risk factors, and facilitating more personalized risk 
assessment.

3.2.1. K-means clustering
The K-means algorithm, developed by MacQueen in 1967 [25], is a popular clustering method that provides a systematic way to 

classify data points according to their similarity. The process starts by selecting a fixed number of clusters, denoted as K. Then, K cluster 
centroids are randomly placed throughout the dataset. After that, every data point is allocated to the closest centroid based on distance 
measurements. Centroids are recalculated throughout the assignment by averaging the positions of the data points in each cluster. This 
repetitive procedure goes on until convergence, with the objective of reducing the total squared distances between data points and 
their corresponding centroids. This technique, known for its straightforwardness and success, continues to be a foundational element 
in many clustering scenarios [26].

3.2.2. Fuzzy C-means (FCM)
Fuzzy clustering represents an efficient approach in unsupervised data analysis and model development, offering a departure from 

rigid class assignments by allowing objects to exhibit partial memberships ranging from 0 to 1 rather than enforcing strict categori
zation. Among the most prominent methods in this domain is the FCM algorithm, pioneered by Bezdek et al., in 1984 [27]. FCM assigns 
each data point a membership grade for each cluster center, indicating its degree of association on a continuum between 0 and 1, based 
on proximity measures. The closer a data point lies to a cluster center, the higher its membership value for that cluster, with the sum of 
memberships for each point equating to one. Following each iteration, memberships and cluster centers undergo updates according to 
a defined formula [28]. This iterative process enables FCM to effectively delineate complex data patterns while accommodating 
varying degrees of data point association with different clusters.

3.2.3. DBI technique
DBI was created by Davies and Bouldin in 1979 [29] as a means to assess the effectiveness of clustering. The evaluation of cluster 

effectiveness involves examining the similarity within each cluster as well as the spread across clusters. DBI stands out from other 
metrics because lower values signify clearer distinctions between clusters, making it easier to interpret. DBI takes into consideration 
both the density of clusters and the distance between clusters without assuming anything about their shapes or densities [30]. 
Therefore, DBI is identified as a flexible and trustworthy tool for evaluating clustering performance on different datasets.

3.2.4. Silhouette technique
The silhouette method [31] is a useful tool for finding the best number of clusters when using the K-means algorithm. Initially, it 

computes the average distance between a data point and all others in the same cluster, known as the intra-cluster distance. Afterward, 
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the inter-cluster distance is calculated as the average distance between the data point and the other points in the nearest neighboring 
cluster. The silhouette coefficient is obtained by calculating the ratio of the difference between these two distances, divided by the 
higher of the two distances. This scale, which goes from − 1 to 1, indicates how closely a data point matches others in its cluster. A score 
of 1 indicates significant similarity within the cluster and clear dissimilarity from other clusters, whereas a score of − 1 represents the 
opposite, indicating low similarity within its designated cluster and significant similarity to points in other clusters [32].

3.3. MADM techniques

In this study, the MADM technique known as Combined Compromise Solution (CoCoSo) is employed to discern the distinctions 
between clusters. CoCoSo integrates a simple additive weighting and exponentially weighted product model, offering a comprehensive 
set of compromise solutions. This technique is utilized to facilitate decision-making by considering multiple attributes simultaneously. 
The weights assigned in CoCoSo are derived from the importance of the features of the predictive model. This approach prioritizes 
important features, assigning them higher weights in ranking the clusters, thereby enhancing the differentiation between them. A 
detailed explanation of the CoCoSo technique can be found in reference [33].

3.4. Preprocessing

Preprocessing is crucial for ensuring the data quality and reliability, as it addresses the missing values and standardizes the features 
for accurate analysis. Table 3 provides an overview of the number of missing values in each feature, guiding the necessary pre
processing steps.

In the preprocessing phase, the first step involves filtering out instances with more than 50 % missing values, as these may skew the 
analysis. The remaining missing values are then imputed using the mode of their respective columns. Given the integer nature of the 
data, where each value represents the number of factors associated with each instance, utilizing the mode for imputation is logical and 
maintains the integrity of the dataset. While the mode imputation can disproportionately represent the majority class, potentially 
skewing the data and affecting the model’s performance, the low percentage of missing values in this dataset—ranging between 0 % 
and 2.7%—mitigates this concern, making mode imputation an acceptable approach in this context. Additionally, standardization is 
performed before employing the data in prediction and clustering tasks. This ensures that all variables are on a comparable scale, 
preventing any single feature from dominating the analysis due to differences in magnitude.

3.5. Proposed framework

The proposed framework is structured into two phases, following preprocessing. Phase 1 is dedicated to accurately predicting cases 
of CHD, while phase 2 emphasizes assessing individual CHD risk levels. The framework commences with preprocessing steps 1 to 3, 
followed by acquiring an appropriate cluster number using silhouette and DBI methods in step 4. Subsequently, K-means clustering is 
employed to segment the data into multiple clusters. The motivation behind utilizing clustering techniques in this classification task 
stems from the dataset’s high degree of imbalance and the necessity for more effective oversampling. While the data is labeled, 
clustering helps to group similar instances together, thereby allowing the generation of more meaningful and contextually relevant 
synthetic instances during the oversampling process. By working within clusters, we ensure that the newly generated instances are 
more representative of the underlying data distribution, which improves the classifier’s ability to differentiate between classes. In step 
6, the clusters are evaluated to ensure an adequate representation of the minority class. If any cluster lacks sufficient minority class 
instances, their data are randomly duplicated to augment their numbers. Following this, step 7 involves removing outliers from the 
majority class by eliminating a percentage of the farthest instances from each cluster center. Given the data’s pronounced imbalance, 
in step 8, traditional classifiers may not yield optimal results. Hence, ensemble models integrated with imbalance correction tech
niques such as EasyEnsembleClassifier [34], BalancedRandomForestClassifier [35], BalancedBaggingClassifier [36], and RUSBoost
Classifier [37] are employed. Step 9 involves identifying the best classifier, while step 10 focuses on deriving feature importance from 
this classifier to further enhance the model’s performance.

In the second phase, utilizing the preprocessed data from step 11, fuzzy clustering is conducted using the c-means method. Sub

Table 3 
Number of missing values across features in the CHD dataset.

Feature Missing value

Annual per capita income 796
Congenital Heart Defects 0
Maternal delivery age 241
Family history 996
Maternal previous illness history 229
Nutrition and folic acid supplementation acid supplementation 172
Maternal illness 241
Medication use 201
Environmental exposures of risk factors factors 29
Unhealthy lifestyle 56
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sequently, in step 12, the centers of these clusters are utilized as alternatives for MADM ranking. The objective is to rank the clusters 
based on the risk they pose for individuals. In step 13, positive and negative criteria are determined, followed by MADM ranking using 
the CoCoSo method in step 14. This process incorporates both the criteria and the feature importance derived from the classifier as 

Fig. 1. The proposed framework.
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weights. After ranking the clusters and calculating scores for each cluster in step 16, the probability of each instance belonging to each 
cluster from fuzzy clustering is determined in step 17. This information enables the computation of Individual Risk, as outlined in 
Equation (1). Fig. 1 illustrates the structure and steps of the proposed framework. 

Individual Risk=
∑n

i=1
pisi (1) 

where pi represents the probability of assigning each instance to cluster i, si denotes the score of cluster i, and n signifies the number of 
clusters.

4. Results

In this section, we delve into the outcomes of the proposed framework. Initially, we explore the results pertaining to phase 1, 
focusing on its predictive capabilities regarding CHD. Subsequently, we scrutinize the phase-2 results to assess the framework’s ef
ficacy in evaluating individual CHD risk levels.

4.1. Phase-1

After obtaining the preprocessed dataset suitable for analysis, we employ two optimal cluster-finding methods, namely silhouette 
and DBI, to determine the appropriate number of clusters. These methods investigate the clusters within the range of 3–15. The average 
silhouette and DBI results suggest that 7 clusters are appropriate for the dataset. Clinically, the identification of 7 distinct clusters holds 
significant relevance as it allows for the stratification of patients based on varying levels of CHD risk. Each cluster represents a group 
with unique characteristics and risk profiles. After clustering, it is important to ensure that each cluster has enough minority instances 
(CHD cases) for the effective use of imbalance ensemble methods. To achieve this, the clusters with fewer than 20 minority instances 
are duplicated randomly until they reach at least 20 instances. The threshold of 20 is chosen based on empirical testing to ensure that 
the ensemble models perform optimally; it is not aimed at balancing the clusters, as the number of majority instances in each cluster 
ranges from 227 to 12,966. This duplication step is considered to ensure that the ensemble models operate effectively within each 
cluster, rather than to achieve balance between majority and minority classes. Identifying and eliminating outliers from the dataset can 
help the model become more robust and enhance its performance. In this scenario, outliers are eliminated from the majority class (non- 
CHD cases) because of the dataset’s high-class imbalance. The distance of each instance from the center of the cluster is computed, and 
a percentage of the farthest instances is subsequently eliminated for every cluster. In this dataset, a 20 % elimination rate is employed. 
Table 4 presents the performance of four classifiers evaluated using four metrics: accuracy, F1 score, recall, and precision.

This table displays the performance metrics of four classifiers: BalancedBaggingClassifier, BalancedRandomForestClassifier, 
EasyEnsembleClassifier, and RUSBoostClassifier. Notably, in the healthcare dataset with a high degree of class imbalance, it is crucial 
to enhance the Recall score to achieve satisfactory results on positive cases. In comparison to a previous study [13] which attained a 
recall of 0.8, our models demonstrate varying degrees of success. Particularly, the EasyEnsembleClassifier and Balance
dRandomForestClassifier exhibit notable recall scores of 0.897 and 0.886, respectively. For a detailed breakdown of results on each 
cluster, please refer to Appendix A.

Utilizing the BalancedRandomForestClassifier as the best-performing classifier, the importance of each feature is derived from the 
model. These feature importances serve as weights for the MADM ranking method. Although the EasyEnsembleClassifier demonstrates 
slightly better recall performance compared to the BalancedRandomForestClassifier, the superior performance of the Balance
dRandomForestClassifier across other metrics justifies its selection as the best-performing classifier.

Fig. 2 displays the importance of features that predict cases of CHD. Unhealthy lifestyle and annual per capita income are the most 
important predictors of CHD occurrences, with nutrition and folic acid supplementation also playing significant roles. Environmental 
risk factors and maternal illnesses are also significantly important in the predictive model. These results highlight the multiple factors 
involved in the development of CHD, stressing the need to consider socioeconomic and lifestyle factors, in addition to medical issues, 
when assessing and preventing CHD risks.

4.2. Phase-2

In phase 2, the fuzzy clustering method, specifically c-means clustering, is employed. This clustering method allows us to obtain the 
probability of each individual belonging to each cluster. Following clustering, the cluster centers are utilized as alternatives and are 

Table 4 
Evaluation of ensemble classifiers’ performance across accuracy, F1 score, recall, and precision.

Classifier Accuracy F1 Score Recall Precision

BalancedBaggingClassifier 0.857 0.227 0.839 0.167
BalancedRandomForestClassifier 0.830 0.228 0.886 0.159
EasyEnsembleClassifier 0.794 0.168 0.897 0.116
RUSBoostClassifier 0.830 0.126 0.592 0.093
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presented in Table 6.
To categorize the criteria into positive and negative, we defined positive criteria as those where a higher value correlates with a 

worse outcome, thereby increasing the risk of CHD. Conversely, negative criteria are those where higher values may mitigate CHD risk. 
In this context, all criteria except “Annual per capita income” are considered positive, as their higher values are associated with 
increased CHD risk. The “Annual per capita income” is deemed a negative criterion because higher income levels are generally 
associated with better access to healthcare, improved living conditions, and healthier lifestyles, all of which can contribute to reducing 
the risk of CHD. This categorization is based on existing literature and socioeconomic research, which consistently shows that in
dividuals with higher income levels tend to have lower health risks, including CHD. Thus, this criterion is defined negatively in this 
paper, as higher income is expected to mitigate the risk rather than exacerbate it. The impact of this categorization on the results is 
significant, as it influences the weights and rankings derived from the CoCoSo method, which incorporates the feature importances in 
evaluating each cluster. Table 5 presents the scores of each cluster.

The MADM scores presented in Table 5 represent the risk of CHD for each cluster. A higher score indicates a greater risk of CHD 
within the respective cluster. Cluster 2 and Cluster 6 exhibit the highest scores, suggesting they are associated with elevated CHD risk 
levels. Conversely, Cluster 0 has the lowest score, indicating a relatively lower risk of CHD within this cluster. These scores offer 
valuable insights into the varying degrees of CHD risk across different clusters, aiding in targeted interventions and risk management 
strategies.

For each individual, the evaluation of individual risk involves leveraging both the cluster scores and the probability of belonging to 
each cluster. By considering these factors, the individual risk of CHD can be efficiently computed. A higher individual risk signifies an 
elevated likelihood of CHD and indicates the need for intensified interventions and a reassessment of the individual’s situation. This 
holistic approach incorporates both the individual’s cluster memberships and the associated risk levels, providing a comprehensive 
assessment of CHD risk.

5. Discussion

CHD is the predominant congenital defect globally, with the specific origins in most babies still unidentified. Quickly identifying 
heart problems in infants is crucial for timely treatment, leading to faster evaluations and improved clinical outcomes. This study 
introduces a two-phase approach to predict non-clinical congenital heart disease data efficiently. The first phase utilizes a combination 
of clustering and ensemble classifiers to predict imbalanced CHD data. In the second phase, fuzzy clustering and MADM are used 
together to enhance the framework for assessing individual risk. A key aspect of this study is the emphasis on recall, which measures 
the ability of a model to correctly identify positive cases. In the context of CHD and other critical diseases, recall is arguably more 
important than accuracy because it ensures that high-risk cases are not overlooked. An existing study mentioned in the literature 
survey reported a 99 % accuracy but only 80 % recall. Although our approach does not achieve the same level of accuracy, it does 
attain a higher recall of approximately 90 %. This improvement in recall indicates that our model is better at identifying true positive 

Fig. 2. Feature importance of the BalancedRandomForestClassifier.

Table 5 
The cluster scores obtained from the CoCoSo 
MADM method.

Cluster Score

0 1.314866
1 1.552812
2 3.161115
3 2.564732
4 2.576163
5 2.772779
6 3.237092
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Table 6 
Cluster centers derived from C-Mean clustering.

Cluster Annual per 
capita income

Environmental exposures of 
risk factors

Family 
history

Maternal 
delivery age

Maternal 
illness

Maternal previous 
illness history

Medication 
use

Nutrition and folic acid 
supplementation

Unhealthy 
lifestyle

0 3.533 0.206 0.006 0.000 0.119 0.028 0.032 2.346 1.504
1 2.918 0.152 0.009 0.000 0.133 0.029 0.027 3.956 0.244
2 2.600 2.616 0.010 0.184 0.256 0.059 0.154 3.087 2.023
3 1.647 0.279 0.009 0.000 0.156 0.034 0.036 2.695 1.757
4 2.863 0.267 0.008 1.000 0.155 0.065 0.043 3.046 1.507
5 3.458 0.330 0.005 0.023 0.265 0.047 0.043 4.146 2.547
6 2.722 0.873 0.012 0.166 1.370 0.131 1.579 3.182 1.797
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cases, which is crucial in medical diagnostics where missing a positive case can have serious consequences. The discrepancy between 
high accuracy and lower recall in the existing study could be due to a model’s potential bias towards the majority class, which is often 
the case in imbalanced datasets. High accuracy might indicate that the model correctly identifies the majority of non-risk cases but fails 
to adequately detect high-risk cases, which is where recall becomes critical.

In the second phase of the study, the focus shifts to calculating the individual risk, which is derived from two key components; the 
fuzzy cluster memberships and the associated cluster scores. The significance of the MADM technique, specifically the CoCoSo 
technique, lies in its ability to calculate a comprehensive risk score for each cluster based on its features. This approach ensures that the 
risk assessment for each cluster is calculated according to the most critical factors influencing CHD. In addition, by integrating the 
fuzzy probability of an individual belonging to each cluster, the MADM technique facilitates the calculation of a personalized, 
weighted risk score for each person. This dual-layered approach enhances the precision of individual risk assessments, enabling more 
targeted and effective intervention strategies.

This framework highlights the significance of non-clinical data and the impact of socioeconomic and lifestyle elements. Focusing 
more on this area and incorporating additional features and details into the data could lead to more precise predictions and prevent 
CHD from occurring. With the individual risk outlined in this document, one can assess the level of danger for each individual and 
advise them on how to improve these factors to reduce the risk of CHD.

6. Conclusions

CHD is a major public health issue, impacting many infants worldwide and creating significant challenges for healthcare systems 
and affected families. Despite significant progress in medical research, the causes of CHD are still numerous and complex, requiring 
comprehensive strategies for forecasting and avoiding it. In this research, we introduced a comprehensive predictive framework that 
utilizes ML to detect CHD cases in unborn babies through the analysis of non-clinical information from pregnant women. Our approach 
combines supervised and unsupervised learning methods by incorporating MADM and fuzzy clustering techniques to handle imbal
anced datasets and noisy non-clinical data effectively. By conducting thorough experiments, we have proven that ensemble methods, 
especially when paired with clustering algorithms, are successful in enhancing predictive precision and detecting subtle patterns in the 
data. Significantly, the combination of K-means clustering with BalancedRandomForestClassifier exhibited superior performance 
compared to other ensembles, yielding an 8 % improvement in recall over existing literature. Additionally, Examination of the 
importance of features has given important perspectives on the factors influencing the occurrence of CHD, where socioeconomic 
determinants, maternal health indicators, and environmental exposures have been identified as significant predictors. Understanding 
the complex relationship between lifestyle factors like diet and financial status, as well as genetic tendencies, highlights the intricate 
nature of CHD development and emphasizes the significance of comprehensive risk assessment methods.

Nevertheless, our research has some limitations and numerous opportunities for more investigation and improvement. Relying on 
non-clinical data presents inherent difficulties since these datasets might not encompass all the variables that influence CHD risk. 
Incorporating clinical data, which may contain in-depth medical backgrounds and diagnostic details, can improve the predictive 
abilities of our model and offer a more complete insight into the causes of CHD. The future research should focus on collecting data 
from a diverse range of demographic groups to ensure that predictive models can be effectively used across various contexts. This is 
important because cultural differences, dietary habits, genetic factors, and socio-economic conditions can all influence the CHD risk in 
different populations. By including a broader spectrum of non-clinical data, one can develop more accurate and universally applicable 
predictive models that account for the unique characteristics of each population. Comparing different geographic areas could help 
explain differences in CHD risk factors and guide the development of interventions tailored to each region which is suggested for future 
research. Moreover, improvements in data augmentation methods and ensemble learning strategies provide hopeful solutions for 
tackling data imbalance and improving the predictive power of models.
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Appendix A 

The comprehensive results of the four classifiers on each cluster are elaborated in Table A1.

Table A1 
Evaluation of ensemble classifiers’ performance across clusters

Cluster Classifier Accuracy F1 Score Recall Precision

1 EasyEnsembleClassifier 0.815 0.009 1.000 0.005
1 RUSBoostClassifier 0.869 0.013 1.000 0.007
1 BalancedBaggingClassifier 0.799 0.009 1.000 0.004
1 BalancedRandomForestClassifier 0.861 0.013 1.000 0.006
4 EasyEnsembleClassifier 0.926 0.154 1.000 0.083
4 RUSBoostClassifier 0.937 0.176 1.000 0.097
4 BalancedBaggingClassifier 0.955 0.231 1.000 0.130
4 BalancedRandomForestClassifier 0.944 0.194 1.000 0.107
0 EasyEnsembleClassifier 0.452 0.003 0.667 0.002
0 RUSBoostClassifier 0.605 0.000 0.000 0.000
0 BalancedBaggingClassifier 0.827 0.011 0.667 0.006
0 BalancedRandomForestClassifier 0.750 0.008 0.667 0.004
6 EasyEnsembleClassifier 0.978 0.308 1.000 0.182
6 RUSBoostClassifier 0.973 0.267 1.000 0.154
6 BalancedBaggingClassifier 0.995 0.667 1.000 0.500
6 BalancedRandomForestClassifier 0.995 0.667 1.000 0.500
5 EasyEnsembleClassifier 0.872 0.150 1.000 0.081
5 RUSBoostClassifier 0.917 0.154 0.667 0.087
5 BalancedBaggingClassifier 0.929 0.174 0.667 0.100
5 BalancedRandomForestClassifier 0.947 0.300 1.000 0.176
3 EasyEnsembleClassifier 0.839 0.033 1.000 0.017
3 RUSBoostClassifier 0.875 0.011 0.250 0.006
3 BalancedBaggingClassifier 0.840 0.033 1.000 0.017
3 BalancedRandomForestClassifier 0.789 0.025 1.000 0.013
2 EasyEnsembleClassifier 0.674 0.516 0.615 0.444
2 RUSBoostClassifier 0.630 0.261 0.231 0.300
2 BalancedBaggingClassifier 0.652 0.467 0.538 0.412
2 BalancedRandomForestClassifier 0.522 0.389 0.538 0.304

References

[1] P.-L. Han, L. Jiang, J.-L. Cheng, K. Shi, S. Huang, Y. Jiang, L. Jiang, Q. Xia, Y.-Y. Li, M. Zhu, Artificial intelligence-assisted diagnosis of congenital heart disease 
and associated pulmonary arterial hypertension from chest radiographs: a multi-reader multi-case study, Eur. J. Radiol. 171 (2024) 111277.

[2] R.S. Boneva, L.D. Botto, C.A. Moore, Q. Yang, A. Correa, J.D. Erickson, Mortality associated with congenital heart defects in the United States: trends and racial 
disparities, 1979–1997, Circulation 103 (19) (2001) 2376–2381.

[3] A.C. Egbe, W.R. Miranda, M. Ahmed, S. Karnakoti, S. Kandlakunta, M. Eltony, M. Meshreky, L.J. Burchill, H.M. Connolly, Incidence and correlates of mortality 
in adults with congenital heart disease of different age groups, International Journal of Cardiology Congenital Heart Disease (2024) 100499.

[4] S.S. Patel, T.L. Burns, Nongenetic risk factors and congenital heart defects, Pediatr. Cardiol. 34 (2013) 1535–1555.

A. Salehi and M. Khedmati                                                                                                                                                                                          Heliyon 10 (2024) e39609 

12 

http://refhub.elsevier.com/S2405-8440(24)15640-X/sref1
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref1
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref2
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref2
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref3
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref3
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref4


[5] K.J. Jenkins, A. Correa, J.A. Feinstein, L. Botto, A.E. Britt, S.R. Daniels, M. Elixson, C.A. Warnes, C.L. Webb, Noninherited risk factors and congenital 
cardiovascular defects: current knowledge: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young: 
endorsed by the American Academy of Pediatrics, Circulation 115 (23) (2007) 2995–3014.

[6] M. Diwakar, A. Tripathi, K. Joshi, M. Memoria, P. Singh, Latest trends on heart disease prediction using machine learning and image fusion, Mater. Today: Proc. 
37 (2021) 3213–3218.

[7] Prevention, C. f. D. C. a., What are CHDs, 2023. https://www.cdc.gov/ncbddd/heartdefects/facts.html#:~:text=CHDs%20are%20present%20at%20birth, 
formed%20parts%20of%20the%20heart.

[8] P. Moons, K. Van Deyk, S. De Geest, M. Gewillig, W. Budts, Is the severity of congenital heart disease associated with the quality of life and perceived health of 
adult patients? Heart 91 (9) (2005) 1193–1198.

[9] S. Richmond, C. Wren, Early diagnosis of congenital heart disease, Semin. Neonatol. 6 (1) (2001) 27–35.
[10] I. Kaur, T. Ahmad, M. Doja, A systematic review of medical expert systems for cardiac arrest prediction, Curr. Bioinf. 19 (6) (2024) 551–570.
[11] R.J. Miller, B.P. Bednarski, K. Pieszko, J. Kwiecinski, M.C. Williams, A. Shanbhag, J.X. Liang, C. Huang, T. Sharir, M.T. Hauser, Clinical phenotypes among 

patients with normal cardiac perfusion using unsupervised learning: a retrospective observational study, EBioMedicine 99 (2024) 104930.
[12] M.P. Behera, A. Sarangi, D. Mishra, S.K. Sarangi, A hybrid machine learning algorithm for heart and liver disease prediction using modified particle swarm 

optimization with support vector machine, Procedia Comput. Sci. 218 (2023) 818–827.
[13] I. Kaur, T. Ahmad, A cluster-based ensemble approach for congenital heart disease prediction, Comput. Methods Progr. Biomed. 243 (2024) 107922.
[14] S. Sutarno, S. Nurmaini, R.U. Partan, A.I. Sapitri, B. Tutuko, M.N. Rachmatullah, A. Darmawahyuni, F. Firdaus, N. Bernolian, D. Sulistiyo, FetalNet: low-light 

fetal echocardiography enhancement and dense convolutional network classifier for improving heart defect prediction, Inform. Med. Unlocked 35 (2022) 
101136.

[15] M.M. Chowdhury, R.S. Ayon, M.S. Hossain, An investigation of machine learning algorithms and data augmentation techniques for diabetes diagnosis using 
class imbalanced BRFSS dataset, Healthcare Analytics 5 (2024) 100297.

[16] E.M. Griffeth, E.H. Stephens, J.A. Dearani, J.T. Shreve, D. O’Sullivan, A.C. Egbe, H.M. Connolly, A. Todd, L.J. Burchill, Impact of heart failure on reoperation in 
adult congenital heart disease: an innovative machine learning model, J. Thorac. Cardiovasc. Surg. 167 (6) (2023) 2215–2225.

[17] H. Shi, D. Yang, K. Tang, C. Hu, L. Li, L. Zhang, T. Gong, Y. Cui, Explainable machine learning model for predicting the occurrence of postoperative malnutrition 
in children with congenital heart disease, Clin. Nutr. 41 (1) (2022) 202–210.

[18] J.C. Junior, L.F. Caneo, A.L.R. Turquetto, L.P. Amato, E.C.T.C. Arita, A.M. da Silva Fernandes, E.M. Trindade, F.B. Jatene, P.-E. Dossou, M.B. Jatene, Predictors 
of in-ICU length of stay among congenital heart defect patients using artificial intelligence model: a pilot study, Heliyon 10 (4) (2024) e25406.

[19] X. Xu, Q. Jia, H. Yuan, H. Qiu, Y. Dong, W. Xie, Z. Yao, J. Zhang, Z. Nie, X. Li, A clinically applicable AI system for diagnosis of congenital heart diseases based 
on computed tomography images, Med. Image Anal. 90 (2023) 102953.

[20] D. Luo, X. Zheng, Z. Yang, H. Li, H. Fei, C. Zhang, Machine learning for clustering and postclosure outcome of adult CHD-PAH patients with borderline 
hemodynamics, J. Heart Lung Transplant. 42 (9) (2023) 1286–1297.

[21] Q. He, Y. Liu, Z. Dou, K. Ma, S. Li, Congenital heart diseases with airway stenosis: a predictive nomogram to risk-stratify patients without airway intervention, 
BMC Pediatr. 23 (1) (2023) 351.

[22] C.D. Reddy, J. Van den Eynde, S. Kutty, Artificial intelligence in perinatal diagnosis and management of congenital heart disease, Semin. Perinatol. 46 (4) 
(2022) 151588.

[23] H. Cao, X. Wei, X. Guo, C. Song, Y. Luo, Y. Cui, X. Hu, Y. Zhang, Screening high-risk clusters for developing birth defects in mothers in Shanxi Province, China: 
application of latent class cluster analysis, BMC Pregnancy Childbirth 15 (2015) 1–8.

[24] Y. Luo, Z. Li, H. Guo, H. Cao, C. Song, X. Guo, Y. Zhang, Predicting congenital heart defects: a comparison of three data mining methods, PLoS One 12 (5) (2017) 
e0177811.

[25] J. MacQueen, Classification and analysis of multivariate observations, 5th Berkeley Symp. Math. Statist. Probability (1967) 281–297.
[26] F.S. Alsubaei, A.Y. Hamed, M.R. Hassan, M. Mohery, M.K. Elnahary, Machine learning approach to optimal task scheduling in cloud communication, Alex. Eng. 

J. 89 (2024) 1–30.
[27] J.C. Bezdek, R. Ehrlich, W. Full, FCM: the fuzzy c-means clustering algorithm, Comput. Geosci. 10 (2–3) (1984) 191–203.
[28] S. Hussein, Automatic layer segmentation in H&E images of mice skin based on colour deconvolution and fuzzy C-mean clustering, Inform. Med. Unlocked 25 

(2021) 100692.
[29] D.L. Davies, D.W. Bouldin, A cluster separation measure, IEEE Trans. Pattern Anal. Mach. Intell. (2) (1979) 224–227.
[30] Y. Song, W. Song, X. Yu, M.S. Afgan, J. Liu, W. Gu, Z. Hou, Z. Wang, Z. Li, G. Yan, Improvement of sample discrimination using laser-induced breakdown 

spectroscopy with multiple-setting spectra, Anal. Chim. Acta 1184 (2021) 339053.
[31] P.J. Rousseeuw, Silhouettes: a graphical aid to the interpretation and validation of cluster analysis, J. Comput. Appl. Math. 20 (1987) 53–65.
[32] C. Subbalakshmi, G.R. Krishna, S.K.M. Rao, P.V. Rao, A method to find optimum number of clusters based on fuzzy silhouette on dynamic data set, Procedia 

Comput. Sci. 46 (2015) 346–353.
[33] M. Yazdani, P. Zarate, E. Kazimieras Zavadskas, Z. Turskis, A combined compromise solution (CoCoSo) method for multi-criteria decision-making problems, 

Manag. Decis. 57 (9) (2019) 2501–2519.
[34] X.-Y. Liu, J. Wu, Z.-H. Zhou, Exploratory undersampling for class-imbalance learning, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics) 

39 (2) (2008) 539–550.
[35] C. Chen, A. Liaw, L. Breiman, Using random forest to learn imbalanced data, University of California 110 (1–12) (2004) 24. Berkeley.
[36] S. Hido, H. Kashima, Y. Takahashi, Roughly balanced bagging for imbalanced data, Stat. Anal. Data Min.: The ASA Data Science Journal 2 (5-6) (2009) 412–426.
[37] C. Seiffert, T.M. Khoshgoftaar, J. Van Hulse, A. Napolitano, RUSBoost: a hybrid approach to alleviating class imbalance, IEEE Trans. Syst. Man Cybern. Syst. 

Hum. 40 (1) (2009) 185–197.

A. Salehi and M. Khedmati                                                                                                                                                                                          Heliyon 10 (2024) e39609 

13 

http://refhub.elsevier.com/S2405-8440(24)15640-X/sref5
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref5
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref5
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref6
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref6
https://www.cdc.gov/ncbddd/heartdefects/facts.html#:%7E:text=CHDs%20are%20present%20at%20birth,formed%20parts%20of%20the%20heart
https://www.cdc.gov/ncbddd/heartdefects/facts.html#:%7E:text=CHDs%20are%20present%20at%20birth,formed%20parts%20of%20the%20heart
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref8
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref8
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref9
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref10
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref11
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref11
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref12
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref12
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref13
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref14
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref14
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref14
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref15
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref15
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref16
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref16
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref17
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref17
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref18
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref18
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref19
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref19
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref20
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref20
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref21
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref21
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref22
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref22
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref23
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref23
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref24
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref24
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref25
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref26
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref26
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref27
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref28
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref28
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref29
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref30
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref30
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref31
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref32
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref32
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref33
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref33
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref34
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref34
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref35
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref36
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref37
http://refhub.elsevier.com/S2405-8440(24)15640-X/sref37

	Identifying at-risk patients for congenital heart disease using integrated predictive models and fuzzy clustering analysis: ...
	1 Introduction
	2 Related works
	3 Requirements and framework
	3.1 Dataset description
	3.2 Clustering
	3.2.1 K-means clustering
	3.2.2 Fuzzy C-means (FCM)
	3.2.3 DBI technique
	3.2.4 Silhouette technique

	3.3 MADM techniques
	3.4 Preprocessing
	3.5 Proposed framework

	4 Results
	4.1 Phase-1
	4.2 Phase-2

	5 Discussion
	6 Conclusions
	CRediT authorship contribution statement
	Ethical and informed consent for data used
	Data availability and access
	Declaration of competing interest
	Appendix A Declaration of competing interest
	References


