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Abstract

Immunotherapy has brought significant advancements in the treatment of lung ade-

nocarcinoma (LUAD), but identifying suitable candidates remains challenging. In this

study, we investigated tumour cell heterogeneity using extensive single-cell data and

explored the impact of different tumour cell cluster abundances on immunotherapy

in the POPLAR and OAK immunotherapy cohorts. Notably, we found a significant

correlation between CKS1B+ tumour cell abundance and treatment response, as well

as stemness potential. Leveraging marker genes from the CKS1B+ tumour cell clus-

ter, we employed machine learning algorithms to establish a prognostic and immuno-

therapeutic signature (PIS) for LUAD. In multiple cohorts, PIS outperformed

144 previously published signatures in predicting LUAD prognosis. Importantly, PIS

reliably predicted genomic alterations, chemotherapy sensitivity and immunotherapy

responses. Immunohistochemistry validated lower expression of immune markers in

the low-PIS group, while in vitro experiments underscored the role of the key gene

PSMB7 in LUAD progression. In conclusion, PIS represents a novel biomarker facili-

tating the selection of suitable LUAD patients for immunotherapy, ultimately improv-

ing prognosis and guiding clinical decisions.

1 | INTRODUCTION

Lung cancer (LC), a major global health issue.1,2 predominantly occurs

as non-small cell lung cancer (NSCLC), with lung adenocarcinoma

(LUAD) being its primary subtype.3,4 Despite advancements in treat-

ments, cure rates for advanced LUAD remain low, driving ongoing

efforts to find more effective therapies and early detection methods.5

Immunotherapy has revolutionized cancer treatment, garnering con-

siderable attention within the medical community. Its advantages

encompass prolonged therapeutic efficacy, reduced adverse effects

and applicability across a broader spectrum of malignancies.6 How-

ever, not all patients exhibit favourable responses to immunotherapy,

posing a pivotal challenge of identifying specific cohorts amenable to

its benefits. This stratification remains a paramount concern within

the realm of contemporary oncology.7

With the continual evolution of medical technology, the land-

scape of LUAD research has become increasingly diversified. The

advancements in single-cell technology and bioinformatics have

opened novel vistas and possibilities in comprehending the genesis,

progression and therapeutic avenues concerning LUAD.8 Single-cell

sequencing techniques have empowered researchers to delve into
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LUAD investigations at cellular and molecular strata, unravelling the

intricacies and heterogeneity residing within LC cells.9 Simultaneously,

this technology enables precise identification and discrimination of

diverse cellular subpopulations, unveiling specific subsets pivotal in

the inception and progression of LUAD. This revelation offers pivotal

clues for precise therapeutic interventions and prognostic predictions

in LUAD management.10

In recent years, the development and application of biomarkers in

LUAD research have become a focal point. Despite the identification

of numerous genes and molecular markers related to the prognosis of

LUAD, their effectiveness and predictive value in clinical applications

remain challenging. For instance, Zhang et al. delved into the role of

the basal membrane (BM) in LUAD, identifying 31 BM-associated

genes related to the prognosis of LUAD and establishing a prognostic

model based on 17 key genes, accurately predicting patient out-

comes.11 However, while these findings provide new perspectives for

the prognostic prediction of LUAD, current research mainly focuses

on prognostic markers, with a relative scarcity of markers for predict-

ing the efficacy of immunotherapy. Therefore, developing markers

capable of predicting the prognosis of LUAD patients and their

response to immunotherapy is of significant value for selecting suit-

able patient groups for immunotherapy in clinical practice. This can

not only assist doctors in making more accurate treatment decisions

but also offer more personalized treatment options for LUAD

patients, thereby improving treatment efficacy and patient quality

of life.

This study endeavours to extract and meticulously analyse all

LUAD cells from the NSCLC single-cell data set curated by Salcher

et al. The aim is to unravel novel cellular subpopulations within LUAD

that wield significant influence on therapeutic interventions and prog-

nostic outcomes. By scrutinizing these distinct cellular subsets, the

investigation seeks to elucidate the intricate biological mechanisms

underpinning their role in the treatment response and prognosis

of LUAD.

2 | METHOD

2.1 | Data set source

The integration of 29 scRNA data sets for the analysis of the tumour

microenvironment (TME) in NSCLC was undertaken by Stefan et al.12

Samples from primary LUAD were extracted, with a specific focus on

tumour cells, to perform subclustering and further explore the hetero-

geneity of tumour cells. The LUAD transcriptome data and clinical

data were successfully obtained from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov), encompassing RNA

sequencing data, methylation data, copy number variation data, muta-

tion data and survival information. In addition, six data sets were

obtained from the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/geo) for model validation. These data sets

include GSE1321313 (n = 119), GSE2693914 (n = 115), GSE2901615

(n = 39), GSE3021916 (n = 86), GSE3121017 (n = 227) and

GSE4212718 (n = 134). Five hundred seventy-seven cases of LUAD

were extracted from OAK19 and POPLAR,20 2 large clinical random-

ized controlled trials focusing on chemotherapy and immunotherapy

for NSCLC, for the analysis in this study. The clinical information for

all cohorts is comprehensively summarized in Table S1.

For the sake of ensuring uniformity and comparability of data,

gene expression data underwent conversion into transcripts per mil-

lion format. To mitigate potential batch effects, the ‘combat’ function
within the ‘sva’ R package was applied. Furthermore, log transforma-

tion was performed on all data sets obtained from both the TCGA and

GEO databases, establishing a standardized data format at the outset

of the analysis.

2.2 | The detailed steps of the single-cell analysis
process

The initial gene expression matrix underwent preprocessing utilizing

the Seurat R package (version 4.2.0).21 Genes were required to exhibit

expression in a minimum of 10 cells within each sample for inclusion.

Following this, inferior cells were excluded based on specific criteria,

including those with more than 5000 or fewer than 200 expressed

genes, or cells with over 10% of unique molecular identifiers (UMIs)

originating from the mitochondrial genome. The resultant high-quality

single-cell transcriptome expression matrix was integrated using the

harmony R package. Subsequently, a set of highly variable genes was

chosen for principal component analysis (PCA), and the top 30 signifi-

cant principal components were selected for Uniform Manifold

Approximation and Projection dimension reduction to visualize gene

expression patterns. Differentially expressed genes within each cell

subpopulation were identified using the ‘FindAllMarker’ function.

2.3 | Trajectory, CytoTRACE analysis and
metabolic pathway assessment

The Monocle2 algorithm was applied to conduct developmental tra-

jectory analysis using inferred tumour cells. The input consisted of a

gene–cell matrix derived from UMI counts, scaled within the Seurat

subset. A new ‘cell data set’ function was utilized to generate an

object, setting the expression family parameter to negative binomial

size. After dimension reduction and unit ordering, cell trajectories

were inferred using default parameters. Using the CytoTRACE pack-

age22 to assess the stemness and differentiation potential of distinct

tumour cell subpopulations. The ‘scMetabolism’ package23 is

employed to quantify the metabolic pathway activity of distinct

tumour epithelial cell subtypes.

2.4 | Building the most valuable prognostic and
immunotherapeutic signature

BisqueRNA24 and gene set variation analysis (GSVA)25 packages were

used to assess the abundance of specific epithelial clusters in LUAD

samples. Univariate Cox regression analysis was employed to assess
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the impact of key genes within specific epithelial clusters on the

survival status of LUAD. Subsequently, utilizing a 10-fold cross-

validation, we applied 101 combinations of 10 machine learning algo-

rithms, including stepwise Cox, Lasso, Ridge, partial least squares

regression for Cox (plsRcox), CoxBoost, random survival forest, gener-

alized boosted regression modelling, elastic network, supervised prin-

cipal components (SuperPC) and survival support vector machine. The

aim was to identify the most valuable prognostic and immunothera-

peutic signature (PIS), characterized by the highest concordance index

(C-index).

2.5 | Mutation landscape

Genomic alterations, including recurrently amplified and deleted

regions, were discerned through GISTIC 2.0 analysis. Utilizing the R

package ‘maftools’,26 we computed the tumour mutation bur-

den (TMB).

2.6 | Differences in the TME

The TIMER2.0 (http://timer.comp-genomics.org/timer/) database

integrates the results of multiple algorithms and summarizes the abun-

dance of immune cell infiltration in TCGA. We used this database to

observe the differences in immune cell infiltration between high and

low PIS groups. In addition, we judiciously utilized the specific fea-

tures of the ‘estimate’ R package27 to quantify immune scores, stro-

mal scores and ESTIMATE scores for TCGA-LUAD patients, enabling

a comprehensive evaluation of the TME.

2.7 | Clinical specimen collection and RNA
sequencing

The collection of tissue samples has received ethical approval from

the Medical Ethics Committee of the First Affiliated Hospital of Nan-

jing Medical University. These samples, categorized as AIS, MIA, or

IAC by pathology experts, are obtained on the day of the surgery and

are then sent to Oncocare Inc. (Suzhou, China) for RNA sequencing.

2.8 | Immunohistochemistry

Paraffin-embedded tissue sections were incubated for 120 min at

37�C with the primary antibodies anti-CD8A (1:2000 dilution; Cat#

ab217344; Abcam, USA), anti-CD4 (1:500 dilution; Cat# ab133616,

Abcam), PD-L1 (1:5000 dilution; Cat# 66248-1-Ig; Proteintech,

Wuhan, China). Following this, horseradish peroxidase-conjugated

secondary antibodies were applied and incubated for 30 minutes at

the same temperature. The sections were then stained with DAB

(3,30-diaminobenzidine) and counterstained with haematoxylin for

visualization.

2.9 | Cell lines culture

A549 LUAD cell lines were obtained from the Institute of Biochemis-

try and Cell Biology at the Chinese Academy of Sciences in Shanghai,

China. The culture medium, containing RPMI 1640, was supplemented

with 10% foetal bovine serum (FBS) and 1% antibiotics (100 U/mL

penicillin and 100 mg/mL streptomycin).

2.10 | Transfection of plasmid DNA and
small-interfering RNA

The incorporation of PSMB7 cDNA into the expression vector

pcDNA3.1 was executed. Plasmid transfection was facilitated using

the X-tremeGEN™ HP DNA transfection reagent (Roche, Basel,

Switzerland), whereas small-interfering RNA (siRNA) transfection was

carried out with the Lipo2000 reagent (Invitrogen, Shanghai, China),

strictly following the prescribed protocols of the manufacturer. Gener-

ally, coverslips within six-well plates were utilized for the deposition

of A549 cells, and the transfection of plasmid or siRNA was per-

formed on the subsequent day.

2.11 | Colony formation

A quantity of 5000 cells was introduced into each well of a 6-well plate

as part of the colony formation experiment, and conventional growth

medium was introduced, later substituted after 1 week. Methanol was

utilized for a period of 15 min after the colonies had reached maturity

within a 2-week span, followed by staining with 0.1% crystal violet

(Sigma) for 30 min. Following this procedure, the resultant clones were

quantified to determine the colony-forming capability of the clones.

2.12 | Ethynyl deoxyuridine

Ethynyl deoxyuridine (EdU) labelling and staining processes were con-

ducted by utilizing an EdU cell proliferation detection kit obtained

from RiboBio, Guangzhou, China. After cells were introduced into

96-well plates at a concentration of 5 � 103 cells per well, a 50 μM

EdU labelling medium was administered 48 h post-transfection. The

cells were subjected to a 2-h incubation in a controlled setting at

37�C with 5% CO2. Subsequently, a treatment was applied to the cells

using 4% paraformaldehyde and 0.5% Triton X-100 for anti-EdU

working solution staining. Nuclei were labelled through the utilization

of diamidino-2-phenylindole. The determination of the percentage of

EdU-positive cells was carried out via fluorescence microscopy.

2.13 | Wound-healing assay

Cells were placed onto a six-well plate and cultivated until achieving a

confluence range of 90%–100%. Utilizing a delicate pipette tip, cells
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at confluence were subjected to incision, followed by dual rinses with

phosphate-buffered saline. Microscopic images of equivalent posi-

tions in each well were recorded at 0 and 16 h utilizing a microscope

(Olympus, Tokyo, Japan). The measurement of wound closure extent

was assessed as a percentage of wound confluence, employing ImageJ

software.

2.14 | Invasion and migration assays

Invasion and migration assays were executed utilizing the Transwell

system by Corning, which featured 24 wells with an 8 mm pore size,

situated in New York, NY, USA. In the context of migration assays, a

population of 5 � 104 cells post-transfection were introduced into

the upper chambers of the plates, comprising 350 μL of serum-free

medium, while 700 μL of medium enriched with 10% FBS was intro-

duced into the lower chambers. Matrigel invasion assays entailed the

application of Transwell membranes pre-coated with Matrigel

(Sigma-Aldrich). Following a 16-h incubation, the cells residing on the

upper surface were eliminated, and those that traversed the mem-

brane to the lower surface underwent staining with methanol and

0.1% crystal violet. Photographic records were captured utilizing an

inverted microscope manufactured by Olympus in Tokyo, Japan.

2.15 | Statistical analysis

The manipulation of data, the conduct of statistical analyses and the

visualization processes were carried out using the R 4.2.0 software.

The estimation and comparison of subtype-specific overall survival

(OS) were performed employing the Kaplan–Meier methodology and

log-rank test. Discrepancies in continuous variables between the two

groups underwent scrutiny through the implementation of the Wil-

coxon test or t-test. The evaluation of categorical variables included

the application of the chi-squared test or Fisher's exact test. The cor-

rection of p-values was achieved by applying the false discovery rate

(FDR) method. Relationships among variables were explored through

the utilization of Pearson correlation analysis. All p-values were com-

puted using a two-tailed approach, with statistical significance indi-

cated as p < 0.05.

3 | RESULTS

3.1 | The heterogeneity of tumour cells

Figure 1 shows the flow chart. Stefan et al. summarized a comprehen-

sive analysis of scRNA-seq data from numerous LC, extracting and

clustering LUAD scRNA-seq data into 24 primary cell types

(Figure S1). Focusing on tumour cells, we further subdivided them into

nine distinct groups (Figure 2A). The cell cycle states of each group

are represented in pie charts. CKS1B+ cells are exclusively in the S

and G2M phases, indicating high proliferative potential. Different

tumour cell types exhibit diverse markers and cell cycle states

(Figure 2B). CKS1B+ neoplasm, CST6+ neoplasm and MTND2P13+

neoplasm are more prevalent in advanced LUAD, while DLX5+ neo-

plasm is more common in early-stage LUAD (Figure 2C). GSVA

revealed variations in hallmark pathway activities among different

tumour cells. Notably, CKS1B+ neoplasm significantly enriches path-

ways related to cell proliferation, while S100A2+ neoplasm is mark-

edly enriched in angiogenesis and epithelial–mesenchymal transition

pathways (Figure 2D).

3.2 | Pseudo-time and tumour stemness
assessment

Pseudo-time analysis elucidated the developmental trajectories of

tumour cells (Figure 3A,B), identifying five distinct branches with vary-

ing proportions of different tumour cell types. CKS1B+ neoplasm is at

the initial stage of development, gradually decreasing over time,

whereas MIF+ neoplasm is at the terminal stage, increasing as time

progresses. As pseudo-time advances, the genome is divided into

three clusters (C1, C2, C3), with C1 highly expressed at the start,

C2 at the terminal phase and C3 in an intermediate state (Figure 3C).

Enrichment analysis of genes in these three clusters (Figure 3D) indi-

cated that Cluster 1 is primarily involved in the organization and bio-

genesis of intracellular structures, development of multicellular

organisms, response to environmental stress, regulation of metabolic

processes, chromatin structure organization and interactions between

various biomolecules. CKS1B+ neoplasm, C16orf89+ neoplasm,

CST6+ neoplasm, H2AC6+ neoplasm and MTND2P13+ neoplasm all

demonstrate heightened tumour stemness (Figure 3E,F).

3.3 | Immunotherapy correlation

Data from 577 LUAD patients undergoing chemotherapy or immuno-

therapy in the OAK and POPLAR trials were analysed (Figure 4A). To

integrate the data more effectively, we mitigated potential batch

effects between the two cohorts (Figure 4B). Both BisqueRNA and

GSVA algorithms indicated a progressive increase in the abundance of

CKS1B+ tumour cell populations from partial response/complete

response (PR/CR) to SD and then to PD (Figure 4C–F). There was a

clear correlation between CKS1B+ neoplasm and the efficacy of

immunotherapy, leading us to reasonably hypothesize that CKS1B+

neoplasm could be a potential target for LUAD immunotherapy.

3.4 | Prognosis and metabolic heterogeneity

Using the ssGSEA algorithm, we assessed the abundance of tumour

cell subpopulations in samples, and univariate Cox regression analysis

was employed to compare prognostic significance. Regarding OS, the

abundance of CKS1B+ neoplasm demonstrated strong prognostic

value in both immunotherapy and chemotherapy cohorts (HR >1,
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p < 0.05, Figure 5A,B). However, its predictive capability for PFS in

immunotherapy was not as pronounced. The abundance of MIF+

neoplasm showed potential predictive value for OS in the chemother-

apy cohort (HR >1, p < 0.05). Utilizing the scMetabolism R package to

analyse metabolic heterogeneity within tumour cell subgroups, we

observed significant metabolic reprogramming in CKS1B+ neoplasm.

This reprogramming is characterized by augmented activity in pyrimi-

dine and purine metabolic pathways. Prior knowledge indicates that

F IGURE 1 Flowchart of the analysis.
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F IGURE 2 Elucidation of tumour cell heterogeneity. (A) Stratification of tumour cells into nine distinct subpopulations. (B) Identification of
unique marker genes representative of each cellular subpopulation. (C) Distribution ratios of diverse tumour subgroups in the early (Stages I and
II) versus late (Stages III and IV) phases of lung adenocarcinoma (LUAD), with statistical significance assessed via the Wilcoxon rank-sum test.
(D) Differential pathway enrichment across the tumour subgroups, determined through standardized analysis of hallmark gene set enrichment

scores using single-sample gene set enrichment analysis (ssGSEA).
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F IGURE 3 Pseudo-time analysis and tumour stemness score assessment. (A, B) Pseudo-time trajectory delineating the differentiation
pathways of distinct tumour subgroups, with CKS1B+ tumour cells marking the initiation of development. (C) Heatmap depicting the temporal
expression patterns of 50 specific genes along the pseudo-time, categorized into three clusters (C1–C3). (D) Gene ontology (GO) enrichment
analysis conducted for genes within different clusters; pathways predominantly enriched in genes from C1 are highlighted in red, whereas
pathways enriched in genes from C2 and C3 are indicated in green. (E) CytoTRACE analysis employed to evaluate stemness in various tumour
subgroups, with higher CytoTRACE scores indicating increased stemness; statistical significance assessed via Kruskal–Wallis test. (F) Mapping of
CytoTRACE scores onto individual cells for a more intuitive representation of stemness variations across different tumour subgroups.

ZHANG ET AL. 7 of 19



F IGURE 4 Impact of different tumour cell subgroup abundances on chemotherapy and immunotherapy efficacy. (A) Analysis includes 577 lung
adenocarcinoma (LUAD) patients from OAK and POPLAR, two randomized clinical trials, receiving either chemotherapy or immunotherapy. (B) Principal
component analysis (PCA) graph post-removal of batch effects between the two cohorts. (C–F) Evaluation of the influence of varying tumour subgroup

abundances on chemotherapy and immunotherapy outcomes using BisqueRNA and gene set variation analysis (GSVA) methods. Notably, the CKS1B+
tumour subgroup demonstrates significant impact in both chemotherapy and immunotherapy settings (p < 0.001). *p < 0.05; **p < 0.01; ***p < 0.001.
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F IGURE 5 Impact of diverse tumour subgroup abundances on prognosis, and their metabolic heterogeneity and spatial localization.
(A) Assessment of hazard ratios (HRs) for different tumour subgroups in chemotherapy and immunotherapy cohorts, with the CKS1B+ subgroup

exhibiting HR >1, p < 0.05. (B) Survival differences corresponding to high and low abundances of CKS1B+ subgroup in chemotherapy and
immunotherapy cohorts, with potential impact of MIF+ tumour subgroup on survival in chemotherapy cohort also observed. (D, E) Spatial
localization of different tumour subgroups, highlighting the positioning of CKS1B+ tumour cells at the core of the tumour nests.
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tumour cells can sometimes evade chemotherapeutic agents by mod-

ulating these nucleotide metabolism pathways, leading to chemother-

apy resistance. This is corroborated by our preceding findings: the

abundance of CKS1B+ neoplasm is inversely correlated with

the degree of pathological remission in chemotherapy patients. This

suggests that the increased nucleotide biosynthesis associated with

CKS1B+ neoplasm may bolster rapid tumour cell proliferation and

foster resistance to chemotherapeutic regimens. (Figure 5C), indicat-

ing its proliferative potential and possible impact on tumour progres-

sion. Focusing on CKS1B+ neoplasm, we explored its spatial

localization, finding that these cells primarily concentrated in the core

areas of the tumour cells (Figure 5D,E).

3.5 | Model construction

Using marker genes of CKS1B+ neoplasm, we developed a prognostic

and immunotherapy-related signature (PIS) through a machine learn-

ing combinatorial algorithm. The TCGA data set served as the training

cohort, with six GEO data sets used for validation. The C-index aver-

age across the six validation cohorts was the criterion for model selec-

tion. Ultimately, the Lasso + SuperPC algorithm emerged as the

optimal PIS (Figure 6A). The PIS distinguished patient prognosis across

all seven cohorts (Figure 6B–I). Patients in the high-PIS group exhib-

ited worse outcomes compared with the low-PIS group. Furthermore,

we extrapolated the PIS for the immunotherapy cohort using the

model's formula and found that the PIS still effectively differentiated

prognosis (Figure 6J). In addition, PIS progressively increased from

PR/CR to SD, then to PD (Figure 6K), indicating its potential in pre-

dicting immunotherapy outcomes.

3.6 | Model evaluation

To assess the predictive efficacy of the PIS, we integrated clinical fea-

tures from seven data sets. PIS demonstrated higher C-index values

than any other clinical feature (such as age, gender, stage, EGFR sta-

tus, etc.) (Figure 7A). Subsequently, we compared PIS against 144 pre-

viously published LUAD signatures and found that PIS consistently

outperformed others across 6 data sets, achieving the highest C-index

values (Figure 7B). This clearly underscores the value of PIS in predict-

ing patient prognosis.

3.7 | Genomic alterations

Figure 8A vividly shows distinct chromosomal alterations between

high- and low-PIS groups. The heatmap in Figure 8B highlights a mark-

edly elevated TMB in the high-PIS group. Analyses in Figure 8C reveal

more frequent chromosomal deletions or amplifications within high-PIS

group. The high-PIS group had a higher TMB load, and PIS was posi-

tively correlated with TMB (Figure 8D,E). Furthermore, Figure 8F indi-

cates the worst prognosis in the L-TMB+ high-PIS subgroup.

3.8 | Immune infiltration

To gain a deeper understanding of the immune-related characteris-

tics in high- and low-PIS groups, we conducted a thorough investi-

gation into their potential biological mechanisms. Results from

seven algorithms indicated a higher degree of immune infiltration in

the low-PIS group, including increased infiltration of CD4 and CD8

T cells (Figure 9A). The levels of immune regulatory factors were

elevated in the low-PIS group, such as co-stimulatory molecules

CD28, CD80, ICOSLG and several antigen-presenting related mole-

cules like HLA-A, HLA-B, HLA-C, and so forth (Figure 9B). This sug-

gests that a lower PIS potentially facilitates immune cells' entry into

the TME, enhancing their anti-tumour activities, which might yield

benefits in immunotherapy. The immune infiltration level assessed

by the ESTIMATE algorithm showed that PIS negatively correlates

with stromal score, immune score, ESTIMATE score and positively

correlates with tumour purity (Figure 9C). The findings underscore

that the low-PIS group, with its heightened immune infiltration and

regulatory factor activation, creates a TME more conducive to effec-

tive immune surveillance and response. This enhanced immune

activity potentially explains the better prognosis observed in the

low-PIS group, as a robust immune presence within the tumour is

often associated with improved responses to treatment and longer

patient survival.

3.9 | Pathway enrichment

The primary pathways enriched in the high-PIS group include cell

cycle regulation, DNA replication and repair, chromosomal structure

alterations and protein localization and function, all of which are

closely associated with tumour progression (Figure 10A,B). The aber-

rant activation or suppression of these pathways leads to uncon-

trolled cell cycle progression, increased DNA replication stress,

accumulation of genetic variations and significant chromosomal

structural changes. These collectively promote limitless proliferation

of tumour cells, genetic instability and enhanced invasiveness and

metastatic potential. Such complex molecular and cellular mecha-

nism alterations drive rapid tumour progression and deterioration,

indicating higher disease risk and poorer prognosis. PIS shows signif-

icant positive correlations with various signalling pathways and the

cancer-immunity cycle (Figure 10C). The low-PIS group, in contrast,

exhibits a favourable prognosis, likely due to a less aggressive

tumour biology. This group is characterized by a lower degree of

enrichment in pathways associated with uncontrolled proliferation

and genetic instability. Furthermore, the enhanced immune infiltra-

tion in the low-PIS group suggests a more active immune surveil-

lance and response within the TME. This heightened immune

presence may lead to better control over tumour growth and spread,

translating to improved responses to treatments and longer patient

survival. The low-PIS group's TME, therefore, may be less conducive

to tumour progression and more responsive to therapeutic interven-

tions, contributing to the observed better prognosis.
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F IGURE 6 Model construction and validation. (A) Development of the prognostic immune score (PIS) using 10 machine learning methods,
with the concordance index (C-index) as the evaluation metric; Lasso + SuperPC identified as the optimal model. (B–I) Survival curves for patients
with high versus low PIS across seven cohorts, with p-values assessed using the log-rank method. (J) Calculation of PIS scores in the
immunotherapy cohort using the model formula, followed by evaluation of their prognostic significance. (K) Gradual increase in PIS scores across
partial response/complete response (PR/CR), stable disease (SD), and progressive disease (PD) groups, indicating the score's capability to predict
the efficacy of immunotherapy; p-values evaluated using the Wilcoxon test.
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F IGURE 7 Evaluation of model performance. (A) Comparison of prognostic immune score (PIS) with other clinical features across seven
cohorts, using the concordance index (C-index) as the metric for prognostic significance assessment. (B) Comparative analysis with 144 published
signatures, demonstrating PIS achieving the highest C-index in 6 of the cohorts, underscoring its superior prognostic ability.
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F IGURE 8 Multi-omics characterization of prognostic immune score (PIS) in the TCGA data set. (A) Chromosomal amplifications and

deletions in two PIS groups, analysed using GISTIC 2.0. (B) Genomic alterations in the high- and low-PIS groups. (C) Proportions of genomic
alterations in both PIS groups. (D, E) Differences in tumour mutational burden (TMB) between the two PIS groups and its correlation with PIS.
(F) Survival comparison between groups classified based on median values of TMB and PIS scores, illustrating the prognostic implications of
combined TMB and PIS stratification.
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F IGURE 9 Immune infiltration assessment. (A) Comparative analysis of immune cell infiltration in groups with high versus low prognostic
immune score (PIS) across seven distinct computational methods. (B) Investigation of the association between PIS scores and immune modulators.
(C) Exploration of the connections among stromal scores, immune scores, ESTIMATE scores, tumour purity, as determined by the ESTIMATE
package, and PIS.
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F IGURE 10 Biological characteristics of prognostic immune score (PIS) in the TCGA data set. (A) Gene set variation analysis (GSVA) based on
the Molecular Signatures Database (MsigDB) delineating the biological attributes of the two PIS groups. (B) T-distributed stochastic neighbour
embedding (T-SNE) plots of gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathways, highlighting the differences
in pathway activities between the high- and low-PIS groups. (C) Evaluation of the correlation between cancer immune cycle, immunotherapy
pathways, and PIS using GSVA.
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3.10 | Experimental validation

Previous studies have shown that CD8A and CD4 are associated with

the presence of CD8+ T cells and CD4+ T cells, respectively, both of

which can exert anti-tumour effects and indicate a better immune

therapy response. Meanwhile, PD-L1, an immune checkpoint protein,

when highly expressed, may predict better efficacy of immunother-

apy. We collected 14 LUAD samples for transcriptome sequencing

and calculated their PIS scores. The top two samples with the highest

PIS scores were categorized into the high-PIS group and the two sam-

ples with the lowest scores into the low-PIS group. Immunohisto-

chemistry confirmed higher expression of CD8A, CD4 and PD-L1 in

the low-PIS group compared to the high-PIS group (Figure 11A). PIS is

constituted by multiple model genes, among which PSMB7 showed a

significant positive correlation with PIS (correlation = 0.69,

Figure S2A). To explore the functional role of PSMB7 in LUAD tumor-

igenesis, we manipulated the expression of PSMB7 in A549 cells using

specific siRNA and an overexpression plasmid (Figure S2B). Colony

formation and EdU assays were conducted to determine the role of

PSMB7 in cell proliferation. Colony formation assays indicated that

PSMB7 expression impacted clonogenic ability (Figure 11B), and EdU

assays revealed a significant effect of PSMB7 on LUAD cell prolifera-

tion (Figure 11C). Next, we tested the potential impact of PSMB7 on

cell migration and invasion. Wound healing assays showed that the

knockdown of PSMB7 significantly impeded wound closure

(Figure 11D). Transwell assays also demonstrated that PSMB7 knock-

down inhibited tumour migration. Conversely, the overexpression of

PSMB7 significantly promoted cell migration (Figure 11E). Further-

more, the knockdown of PSMB7 restrained LUAD cells from invading

through matrices, whereas the overexpression of PSMB7 facilitated

their invasion (Figure 11E).

4 | DISCUSSION

As a groundbreaking approach in cancer therapy, immunotherapy func-

tions by activating or bolstering the patient's immune system to identify

and eradicate cancer cells while mitigating severe damage to normal

cells.28 Immunotherapy has found extensive application in treating vari-

ous cancers such as renal cell carcinoma, endometrial carcinoma, LC,

nasopharyngeal carcinoma, among others, yielding notable efficacy and

generally presenting fewer side effects.29–32 However, clinical observa-

tions indicate that only a subset of patients exhibit a response to immu-

notherapy. Presently, scientists speculate this phenomenon may relate

to tumour type, the immune status of the patient and other factors, yet

the precise biological mechanisms remain elusive.33,34 Single-cell

sequencing technology holds unique advantages in unravelling tumour

cell heterogeneity, identifying therapeutic targets and advancing per-

sonalized treatments, as corroborated by numerous past studies.35,36

In our investigation, we meticulously analysed 29,255 tumour

cells from LUAD, drawing on single-cell data compiled by Stefan et al.

We pinpointed a distinct cell subpopulation (characterized by CKS1B

+ neoplasm) that demonstrates a significant correlation with the

response to chemotherapy and immunotherapy in LUAD. Notably,

this subgroup is distinguished by an enhanced stemness characteristic

and is positioned at an early stage of pseudo-time development, sug-

gesting a foundational role in tumour genesis and evolution. The

development and progression of malignant tumours are closely linked

to dysregulation within the cell cycle and deviant cellular differentia-

tion processes. The CKS1B gene, in this context, encodes a critical

regulatory subunit that plays a pivotal role in modulating the cell cycle,

underscoring its potential significance in cancer biology and therapy.37

Studies suggest that heightened expression of CKS1B may be corre-

lated with abnormal proliferation, malignant transformation, invasive-

ness and prognosis of tumour cells.38–40

Li et al. found that CKS1B is overexpressed in pancreatic

tumours, correlating with increased immune infiltration and cancer cell

invasiveness.41 Subsequently, utilizing machine learning techniques,

we constructed the PIS model, comprising marker genes of CKS1B+

tumours (RHOV, ANLN, DEAR, PSMB7, KRT8, LDHA). This model

was validated across seven independent cohorts, consistently demon-

strating exceptional predictive accuracy. Further analysis of TMB,

immune infiltration and drug sensitivity underscored the robust dis-

criminatory power of PIS. Ultimately, immunohistochemistry was

employed to validate the differential immune microenvironments

between high- and low-PIS groups. The low-PIS group appeared more

capable of recruiting CD4 or CD8 T cells into the TME to kill tumour

cells.

In addition, we conducted in vitro experiments to validate one of

the characteristic genes, PSMB7. The results revealed a marked

reduction in the invasiveness and migratory potential of LUAD cells

upon the knockdown of the PSMB7 gene. Literature review indicates

that the protein encoded by the PSMB7 gene serves as a subunit of

the proteasome, engaging in intracellular protein degradation pro-

cesses, including the regulation of cell cycle, protein homeostasis and

antigen presentation.42 Studies suggest that the overexpression of

PSMB7 in certain tumours might be associated with tumour prolifera-

tion, invasion and metastasis. Research links PSMB7 overexpression

to tumour progression, drug resistance in multiple myeloma and

shorter survival in breast cancer, underscoring its potential as a

marker for cancer severity and treatment response.43,44 In our study,

we found a notable positive correlation between PSMB7 and PIS

scores, in vitro experiments also confirmed the critical role of the key

gene PSMB7 in enhancing the invasive and migratory potential

of LUAD.

Certainly, this study has some limitations. First, it is a retrospec-

tive study based on public databases. Second, the sample size in the

validation data set is limited, necessitating further independent valida-

tion. Third, the immunotherapy cohorts used in this study, OAK and

POPLAR, have limitations in their original clinical characteristic data;

histological types are only categorized as non-squamous and squa-

mous. Consequently, we were compelled to treat the non-squamous

data as indicative of LUAD for the purposes of our analysis. Lastly,

due to experimental constraints, knockdown experiments were not

performed on the other five genes, and additional in vitro evidence is

lacking.
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F IGURE 11 The influence of PSMB7 on clonogenicity, proliferation, and migration in lung adenocarcinoma (LUAD) cells. (A) Tissue section analysis
to validate the expression differences of CD8A, CD4, and PD-L1 between high- and low-prognostic immune score (PIS) groups. (B) Colony formation
assay to assess the clonogenic capability of A549 cells. (C) Ethynyl deoxyuridine (EdU) incorporation assay to analyse the proliferation of A549 cells post-

transfection. (D) Wound healing assay to evaluate the impact of si-PSMB7 and pcDNA-PSMB7 transfection on the migratory ability of A549 cells.
(E) Transwell assay to examine the migration and invasion capacities of transfected A549 cells. **p < 0.01;***p < 0.001;****p < 0.0001.
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In summary, we have developed a novel PIS capable of accurately

identifying subgroups of LUAD patients suitable for immunotherapy,

providing a valuable tool for the precision treatment of LUAD. Fur-

thermore, our findings confirm that PSMB7 may be a potential thera-

peutic target for the progression of LUAD.
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