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1 | INTRODUCTION

Pengpeng Zhang?

Abstract

Immunotherapy has brought significant advancements in the treatment of lung ade-
nocarcinoma (LUAD), but identifying suitable candidates remains challenging. In this
study, we investigated tumour cell heterogeneity using extensive single-cell data and
explored the impact of different tumour cell cluster abundances on immunotherapy
in the POPLAR and OAK immunotherapy cohorts. Notably, we found a significant
correlation between CKS1B+ tumour cell abundance and treatment response, as well
as stemness potential. Leveraging marker genes from the CKS1B+ tumour cell clus-
ter, we employed machine learning algorithms to establish a prognostic and immuno-
therapeutic signature (PIS) for LUAD. In multiple cohorts, PIS outperformed
144 previously published signatures in predicting LUAD prognosis. Importantly, PIS
reliably predicted genomic alterations, chemotherapy sensitivity and immunotherapy
responses. Immunohistochemistry validated lower expression of immune markers in
the low-PIS group, while in vitro experiments underscored the role of the key gene
PSMB7 in LUAD progression. In conclusion, PIS represents a novel biomarker facili-
tating the selection of suitable LUAD patients for immunotherapy, ultimately improv-

ing prognosis and guiding clinical decisions.

encompass prolonged therapeutic efficacy, reduced adverse effects

and applicability across a broader spectrum of malignancies.® How-

Lung cancer (LC), a major global health issue.? predominantly occurs
as non-small cell lung cancer (NSCLC), with lung adenocarcinoma
(LUAD) being its primary subtype.>* Despite advancements in treat-
ments, cure rates for advanced LUAD remain low, driving ongoing
efforts to find more effective therapies and early detection methods.®
Immunotherapy has revolutionized cancer treatment, garnering con-

siderable attention within the medical community. Its advantages
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ever, not all patients exhibit favourable responses to immunotherapy,
posing a pivotal challenge of identifying specific cohorts amenable to
its benefits. This stratification remains a paramount concern within
the realm of contemporary oncology.”

With the continual evolution of medical technology, the land-
scape of LUAD research has become increasingly diversified. The
advancements in single-cell technology and bioinformatics have
opened novel vistas and possibilities in comprehending the genesis,
progression and therapeutic avenues concerning LUAD.2 Single-cell

sequencing techniques have empowered researchers to delve into
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LUAD investigations at cellular and molecular strata, unravelling the
intricacies and heterogeneity residing within LC cells.” Simultaneously,
this technology enables precise identification and discrimination of
diverse cellular subpopulations, unveiling specific subsets pivotal in
the inception and progression of LUAD. This revelation offers pivotal
clues for precise therapeutic interventions and prognostic predictions
in LUAD management.1©

In recent years, the development and application of biomarkers in
LUAD research have become a focal point. Despite the identification
of numerous genes and molecular markers related to the prognosis of
LUAD, their effectiveness and predictive value in clinical applications
remain challenging. For instance, Zhang et al. delved into the role of
the basal membrane (BM) in LUAD, identifying 31 BM-associated
genes related to the prognosis of LUAD and establishing a prognostic
model based on 17 key genes, accurately predicting patient out-
comes.** However, while these findings provide new perspectives for
the prognostic prediction of LUAD, current research mainly focuses
on prognostic markers, with a relative scarcity of markers for predict-
ing the efficacy of immunotherapy. Therefore, developing markers
capable of predicting the prognosis of LUAD patients and their
response to immunotherapy is of significant value for selecting suit-
able patient groups for immunotherapy in clinical practice. This can
not only assist doctors in making more accurate treatment decisions
but also offer more personalized treatment options for LUAD
patients, thereby improving treatment efficacy and patient quality
of life.

This study endeavours to extract and meticulously analyse all
LUAD cells from the NSCLC single-cell data set curated by Salcher
et al. The aim is to unravel novel cellular subpopulations within LUAD
that wield significant influence on therapeutic interventions and prog-
nostic outcomes. By scrutinizing these distinct cellular subsets, the
investigation seeks to elucidate the intricate biological mechanisms
underpinning their role in the treatment response and prognosis
of LUAD.

2 | METHOD

21 | Datasetsource

The integration of 29 scRNA data sets for the analysis of the tumour
microenvironment (TME) in NSCLC was undertaken by Stefan et al.'?
Samples from primary LUAD were extracted, with a specific focus on
tumour cells, to perform subclustering and further explore the hetero-
geneity of tumour cells. The LUAD transcriptome data and clinical
data were successfully obtained from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov), encompassing RNA
sequencing data, methylation data, copy number variation data, muta-
tion data and survival information. In addition, six data sets were
obtained from the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo) for model validation. These data sets
include GSE13213"% (n = 119), GSE26939* (n = 115), GSE29016"°
(h=239), GSE30219' (n=86), GSE31210' (n=227) and
GSE42127*® (n = 134). Five hundred seventy-seven cases of LUAD

were extracted from OAK'? and POPLAR,?° 2 large clinical random-
ized controlled trials focusing on chemotherapy and immunotherapy
for NSCLC, for the analysis in this study. The clinical information for
all cohorts is comprehensively summarized in Table S1.

For the sake of ensuring uniformity and comparability of data,
gene expression data underwent conversion into transcripts per mil-
lion format. To mitigate potential batch effects, the ‘combat’ function
within the ‘sva’ R package was applied. Furthermore, log transforma-
tion was performed on all data sets obtained from both the TCGA and
GEO databases, establishing a standardized data format at the outset
of the analysis.

22 |
process

The detailed steps of the single-cell analysis

The initial gene expression matrix underwent preprocessing utilizing
the Seurat R package (version 4.2.0).2! Genes were required to exhibit
expression in a minimum of 10 cells within each sample for inclusion.
Following this, inferior cells were excluded based on specific criteria,
including those with more than 5000 or fewer than 200 expressed
genes, or cells with over 10% of unique molecular identifiers (UMls)
originating from the mitochondrial genome. The resultant high-quality
single-cell transcriptome expression matrix was integrated using the
harmony R package. Subsequently, a set of highly variable genes was
chosen for principal component analysis (PCA), and the top 30 signifi-
cant principal components were selected for Uniform Manifold
Approximation and Projection dimension reduction to visualize gene
expression patterns. Differentially expressed genes within each cell

subpopulation were identified using the ‘FindAllMarker’ function.

23 | Trajectory, CytoTRACE analysis and
metabolic pathway assessment

The Monocle2 algorithm was applied to conduct developmental tra-
jectory analysis using inferred tumour cells. The input consisted of a
gene-cell matrix derived from UMI counts, scaled within the Seurat
subset. A new ‘cell data set’ function was utilized to generate an
object, setting the expression family parameter to negative binomial
size. After dimension reduction and unit ordering, cell trajectories
were inferred using default parameters. Using the CytoTRACE pack-
age?? to assess the stemness and differentiation potential of distinct
tumour cell subpopulations. The ‘scMetabolism’ package?® is
employed to quantify the metabolic pathway activity of distinct
tumour epithelial cell subtypes.

2.4 | Building the most valuable prognostic and
immunotherapeutic signature

BisqueRNA?* and gene set variation analysis (GSVA)?° packages were
used to assess the abundance of specific epithelial clusters in LUAD

samples. Univariate Cox regression analysis was employed to assess
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the impact of key genes within specific epithelial clusters on the
survival status of LUAD. Subsequently, utilizing a 10-fold cross-
validation, we applied 101 combinations of 10 machine learning algo-
rithms, including stepwise Cox, Lasso, Ridge, partial least squares
regression for Cox (plsRcox), CoxBoost, random survival forest, gener-
alized boosted regression modelling, elastic network, supervised prin-
cipal components (SuperPC) and survival support vector machine. The
aim was to identify the most valuable prognostic and immunothera-
peutic signature (PIS), characterized by the highest concordance index
(C-index).

2.5 | Mutation landscape

Genomic alterations, including recurrently amplified and deleted

regions, were discerned through GISTIC 2.0 analysis. Utilizing the R

package ‘maftools’,?® we computed the tumour mutation bur-
den (TMB).
2.6 | Differencesin the TME

The TIMER2.0 (http://timer.comp-genomics.org/timer/) database
integrates the results of multiple algorithms and summarizes the abun-
dance of immune cell infiltration in TCGA. We used this database to
observe the differences in immune cell infiltration between high and
low PIS groups. In addition, we judiciously utilized the specific fea-
tures of the ‘estimate’ R package?’ to quantify immune scores, stro-
mal scores and ESTIMATE scores for TCGA-LUAD patients, enabling
a comprehensive evaluation of the TME.

2.7 | Clinical specimen collection and RNA
sequencing

The collection of tissue samples has received ethical approval from
the Medical Ethics Committee of the First Affiliated Hospital of Nan-
jing Medical University. These samples, categorized as AlS, MIA, or
IAC by pathology experts, are obtained on the day of the surgery and

are then sent to Oncocare Inc. (Suzhou, China) for RNA sequencing.

2.8 | Immunohistochemistry

Paraffin-embedded tissue sections were incubated for 120 min at
37°C with the primary antibodies anti-CD8A (1:2000 dilution; Cat#
ab217344; Abcam, USA), anti-CD4 (1:500 dilution; Cat# ab133616,
Abcam), PD-L1 (1:5000 dilution; Cat# 66248-1-lg; Proteintech,
Wuhan, China). Following this, horseradish peroxidase-conjugated
secondary antibodies were applied and incubated for 30 minutes at
the same temperature. The sections were then stained with DAB
(3,3'-diaminobenzidine) and counterstained with haematoxylin for

visualization.

29 | Celllines culture

A549 LUAD cell lines were obtained from the Institute of Biochemis-
try and Cell Biology at the Chinese Academy of Sciences in Shanghai,
China. The culture medium, containing RPMI 1640, was supplemented
with 10% foetal bovine serum (FBS) and 1% antibiotics (100 U/mL
penicillin and 100 mg/mL streptomycin).

210 | Transfection of plasmid DNA and
small-interfering RNA

The incorporation of PSMB7 cDNA into the expression vector
pcDNA3.1 was executed. Plasmid transfection was facilitated using
the X-tremeGEN™ HP DNA transfection reagent (Roche, Basel,
Switzerland), whereas small-interfering RNA (siRNA) transfection was
carried out with the Lipo2000 reagent (Invitrogen, Shanghai, China),
strictly following the prescribed protocols of the manufacturer. Gener-
ally, coverslips within six-well plates were utilized for the deposition
of A549 cells, and the transfection of plasmid or siRNA was per-

formed on the subsequent day.

211 | Colony formation

A quantity of 5000 cells was introduced into each well of a 6-well plate
as part of the colony formation experiment, and conventional growth
medium was introduced, later substituted after 1 week. Methanol was
utilized for a period of 15 min after the colonies had reached maturity
within a 2-week span, followed by staining with 0.1% crystal violet
(Sigma) for 30 min. Following this procedure, the resultant clones were

quantified to determine the colony-forming capability of the clones.

212 | Ethynyl deoxyuridine

Ethynyl deoxyuridine (EdU) labelling and staining processes were con-
ducted by utilizing an EdU cell proliferation detection kit obtained
from RiboBio, Guangzhou, China. After cells were introduced into
96-well plates at a concentration of 5 x 10° cells per well, a 50 pM
EdU labelling medium was administered 48 h post-transfection. The
cells were subjected to a 2-h incubation in a controlled setting at
37°C with 5% CO,. Subsequently, a treatment was applied to the cells
using 4% paraformaldehyde and 0.5% Triton X-100 for anti-EdU
working solution staining. Nuclei were labelled through the utilization
of diamidino-2-phenylindole. The determination of the percentage of

EdU-positive cells was carried out via fluorescence microscopy.

213 | Wound-healing assay

Cells were placed onto a six-well plate and cultivated until achieving a

confluence range of 90%-100%. Utilizing a delicate pipette tip, cells
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at confluence were subjected to incision, followed by dual rinses with
phosphate-buffered saline. Microscopic images of equivalent posi-
tions in each well were recorded at O and 16 h utilizing a microscope
(Olympus, Tokyo, Japan). The measurement of wound closure extent
was assessed as a percentage of wound confluence, employing Image)

software.

214 | Invasion and migration assays

Invasion and migration assays were executed utilizing the Transwell
system by Corning, which featured 24 wells with an 8 mm pore size,
situated in New York, NY, USA. In the context of migration assays, a
population of 5 x 10* cells post-transfection were introduced into
the upper chambers of the plates, comprising 350 uL of serum-free
medium, while 700 uL of medium enriched with 10% FBS was intro-
duced into the lower chambers. Matrigel invasion assays entailed the
application of Transwell membranes pre-coated with Matrigel
(Sigma-Aldrich). Following a 16-h incubation, the cells residing on the
upper surface were eliminated, and those that traversed the mem-
brane to the lower surface underwent staining with methanol and
0.1% crystal violet. Photographic records were captured utilizing an

inverted microscope manufactured by Olympus in Tokyo, Japan.

215 | Statistical analysis

The manipulation of data, the conduct of statistical analyses and the
visualization processes were carried out using the R 4.2.0 software.
The estimation and comparison of subtype-specific overall survival
(OS) were performed employing the Kaplan-Meier methodology and
log-rank test. Discrepancies in continuous variables between the two
groups underwent scrutiny through the implementation of the Wil-
coxon test or t-test. The evaluation of categorical variables included
the application of the chi-squared test or Fisher's exact test. The cor-
rection of p-values was achieved by applying the false discovery rate
(FDR) method. Relationships among variables were explored through
the utilization of Pearson correlation analysis. All p-values were com-
puted using a two-tailed approach, with statistical significance indi-
cated as p < 0.05.

3 | RESULTS

3.1 | The heterogeneity of tumour cells

Figure 1 shows the flow chart. Stefan et al. summarized a comprehen-
sive analysis of scRNA-seq data from numerous LC, extracting and
clustering LUAD scRNA-seq data into 24 primary cell types
(Figure S1). Focusing on tumour cells, we further subdivided them into
nine distinct groups (Figure 2A). The cell cycle states of each group
are represented in pie charts. CKS1B+ cells are exclusively in the S

and G2M phases, indicating high proliferative potential. Different

tumour cell types exhibit diverse markers and cell cycle states
(Figure 2B). CKS1B-+ neoplasm, CST6+ neoplasm and MTND2P13+
neoplasm are more prevalent in advanced LUAD, while DLX5+ neo-
plasm is more common in early-stage LUAD (Figure 2C). GSVA
revealed variations in hallmark pathway activities among different
tumour cells. Notably, CKS1B+ neoplasm significantly enriches path-
ways related to cell proliferation, while S100A2+4 neoplasm is mark-
edly enriched in angiogenesis and epithelial-mesenchymal transition
pathways (Figure 2D).

3.2 | Pseudo-time and tumour stemness
assessment

Pseudo-time analysis elucidated the developmental trajectories of
tumour cells (Figure 3A,B), identifying five distinct branches with vary-
ing proportions of different tumour cell types. CKS1B+ neoplasm is at
the initial stage of development, gradually decreasing over time,
whereas MIF+ neoplasm is at the terminal stage, increasing as time
progresses. As pseudo-time advances, the genome is divided into
three clusters (C1, C2, C3), with C1 highly expressed at the start,
C2 at the terminal phase and C3 in an intermediate state (Figure 3C).
Enrichment analysis of genes in these three clusters (Figure 3D) indi-
cated that Cluster 1 is primarily involved in the organization and bio-
genesis of intracellular structures, development of multicellular
organisms, response to environmental stress, regulation of metabolic
processes, chromatin structure organization and interactions between
various biomolecules. CKS1B+ neoplasm, C160rf89+ neoplasm,
CSTé6+ neoplasm, H2AC6-+ neoplasm and MTND2P13+ neoplasm all
demonstrate heightened tumour stemness (Figure 3E,F).

3.3 | Immunotherapy correlation

Data from 577 LUAD patients undergoing chemotherapy or immuno-
therapy in the OAK and POPLAR trials were analysed (Figure 4A). To
integrate the data more effectively, we mitigated potential batch
effects between the two cohorts (Figure 4B). Both BisqueRNA and
GSVA algorithms indicated a progressive increase in the abundance of
CKS1B+ tumour cell populations from partial response/complete
response (PR/CR) to SD and then to PD (Figure 4C-F). There was a
clear correlation between CKS1B+ neoplasm and the efficacy of
immunotherapy, leading us to reasonably hypothesize that CKS1B+

neoplasm could be a potential target for LUAD immunotherapy.

3.4 | Prognosis and metabolic heterogeneity

Using the ssGSEA algorithm, we assessed the abundance of tumour
cell subpopulations in samples, and univariate Cox regression analysis
was employed to compare prognostic significance. Regarding OS, the
abundance of CKS1B+ neoplasm demonstrated strong prognostic

value in both immunotherapy and chemotherapy cohorts (HR >1,
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FIGURE 1 Flowchart of the analysis.

p < 0.05, Figure 5AB). However, its predictive capability for PFS in
immunotherapy was not as pronounced. The abundance of MIF+
neoplasm showed potential predictive value for OS in the chemother-
apy cohort (HR >1, p < 0.05). Utilizing the scMetabolism R package to

analyse metabolic heterogeneity within tumour cell subgroups, we
observed significant metabolic reprogramming in CKS1B+ neoplasm.
This reprogramming is characterized by augmented activity in pyrimi-
dine and purine metabolic pathways. Prior knowledge indicates that
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FIGURE 4 Impact of different tumour cell subgroup abundances on chemotherapy and immunotherapy efficacy. (A) Analysis includes 577 lung
adenocarcinoma (LUAD) patients from OAK and POPLAR, two randomized clinical trials, receiving either chemotherapy or immunotherapy. (B) Principal
component analysis (PCA) graph post-removal of batch effects between the two cohorts. (C-F) Evaluation of the influence of varying tumour subgroup
abundances on chemotherapy and immunotherapy outcomes using BisqueRNA and gene set variation analysis (GSVA) methods. Notably, the CKS1B+
tumour subgroup demonstrates significant impact in both chemotherapy and immunotherapy settings (p < 0.001). *p < 0.05; **p < 0.01; ***p < 0.001.
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exhibiting HR >1, p < 0.05. (B) Survival differences corresponding to high and low abundances of CKS1B+- subgroup in chemotherapy and
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localization of different tumour subgroups, highlighting the positioning of CKS1B+ tumour cells at the core of the tumour nests.
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tumour cells can sometimes evade chemotherapeutic agents by mod-
ulating these nucleotide metabolism pathways, leading to chemother-
apy resistance. This is corroborated by our preceding findings: the
abundance of CKS1B+ neoplasm is inversely correlated with
the degree of pathological remission in chemotherapy patients. This
suggests that the increased nucleotide biosynthesis associated with
CKS1B+ neoplasm may bolster rapid tumour cell proliferation and
foster resistance to chemotherapeutic regimens. (Figure 5C), indicat-
ing its proliferative potential and possible impact on tumour progres-
sion. Focusing on CKS1B-+ neoplasm, we explored its spatial
localization, finding that these cells primarily concentrated in the core
areas of the tumour cells (Figure 5D,E).

3.5 | Model construction

Using marker genes of CKS1B+ neoplasm, we developed a prognostic
and immunotherapy-related signature (PIS) through a machine learn-
ing combinatorial algorithm. The TCGA data set served as the training
cohort, with six GEO data sets used for validation. The C-index aver-
age across the six validation cohorts was the criterion for model selec-
tion. Ultimately, the Lasso + SuperPC algorithm emerged as the
optimal PIS (Figure 6A). The PIS distinguished patient prognosis across
all seven cohorts (Figure 6B-I). Patients in the high-PIS group exhib-
ited worse outcomes compared with the low-PIS group. Furthermore,
we extrapolated the PIS for the immunotherapy cohort using the
model's formula and found that the PIS still effectively differentiated
prognosis (Figure 6J). In addition, PIS progressively increased from
PR/CR to SD, then to PD (Figure 6K), indicating its potential in pre-
dicting immunotherapy outcomes.

3.6 | Model evaluation

To assess the predictive efficacy of the PIS, we integrated clinical fea-
tures from seven data sets. PIS demonstrated higher C-index values
than any other clinical feature (such as age, gender, stage, EGFR sta-
tus, etc.) (Figure 7A). Subsequently, we compared PIS against 144 pre-
viously published LUAD signatures and found that PIS consistently
outperformed others across 6 data sets, achieving the highest C-index
values (Figure 7B). This clearly underscores the value of PIS in predict-
ing patient prognosis.

3.7 | Genomic alterations

Figure 8A vividly shows distinct chromosomal alterations between
high- and low-PIS groups. The heatmap in Figure 8B highlights a mark-
edly elevated TMB in the high-PIS group. Analyses in Figure 8C reveal
more frequent chromosomal deletions or amplifications within high-PIS
group. The high-PIS group had a higher TMB load, and PIS was posi-
tively correlated with TMB (Figure 8D,E). Furthermore, Figure 8F indi-
cates the worst prognosis in the L-TMB+ high-PIS subgroup.

3.8 | Immune infiltration

To gain a deeper understanding of the immune-related characteris-
tics in high- and low-PIS groups, we conducted a thorough investi-
gation into their potential biological mechanisms. Results from
seven algorithms indicated a higher degree of immune infiltration in
the low-PIS group, including increased infiltration of CD4 and CD8
T cells (Figure 9A). The levels of immune regulatory factors were
elevated in the low-PIS group, such as co-stimulatory molecules
CD28, CD80, ICOSLG and several antigen-presenting related mole-
cules like HLA-A, HLA-B, HLA-C, and so forth (Figure 9B). This sug-
gests that a lower PIS potentially facilitates immune cells' entry into
the TME, enhancing their anti-tumour activities, which might yield
benefits in immunotherapy. The immune infiltration level assessed
by the ESTIMATE algorithm showed that PIS negatively correlates
with stromal score, immune score, ESTIMATE score and positively
correlates with tumour purity (Figure 9C). The findings underscore
that the low-PIS group, with its heightened immune infiltration and
regulatory factor activation, creates a TME more conducive to effec-
tive immune surveillance and response. This enhanced immune
activity potentially explains the better prognosis observed in the
low-PIS group, as a robust immune presence within the tumour is
often associated with improved responses to treatment and longer
patient survival.

3.9 | Pathway enrichment

The primary pathways enriched in the high-PIS group include cell
cycle regulation, DNA replication and repair, chromosomal structure
alterations and protein localization and function, all of which are
closely associated with tumour progression (Figure 10A,B). The aber-
rant activation or suppression of these pathways leads to uncon-
trolled cell cycle progression, increased DNA replication stress,
accumulation of genetic variations and significant chromosomal
structural changes. These collectively promote limitless proliferation
of tumour cells, genetic instability and enhanced invasiveness and
metastatic potential. Such complex molecular and cellular mecha-
nism alterations drive rapid tumour progression and deterioration,
indicating higher disease risk and poorer prognosis. PIS shows signif-
icant positive correlations with various signalling pathways and the
cancer-immunity cycle (Figure 10C). The low-PIS group, in contrast,
exhibits a favourable prognosis, likely due to a less aggressive
tumour biology. This group is characterized by a lower degree of
enrichment in pathways associated with uncontrolled proliferation
and genetic instability. Furthermore, the enhanced immune infiltra-
tion in the low-PIS group suggests a more active immune surveil-
lance and response within the TME. This heightened immune
presence may lead to better control over tumour growth and spread,
translating to improved responses to treatments and longer patient
survival. The low-PIS group's TME, therefore, may be less conducive
to tumour progression and more responsive to therapeutic interven-

tions, contributing to the observed better prognosis.
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FIGURE 6 Model construction and validation. (A) Development of the prognostic immune score (PIS) using 10 machine learning methods,
with the concordance index (C-index) as the evaluation metric; Lasso + SuperPC identified as the optimal model. (B-1) Survival curves for patients
with high versus low PIS across seven cohorts, with p-values assessed using the log-rank method. (J) Calculation of PIS scores in the
immunotherapy cohort using the model formula, followed by evaluation of their prognostic significance. (K) Gradual increase in PIS scores across
partial response/complete response (PR/CR), stable disease (SD), and progressive disease (PD) groups, indicating the score's capability to predict
the efficacy of immunotherapy; p-values evaluated using the Wilcoxon test.
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FIGURE 7 Evaluation of model performance. (A) Comparison of prognostic immune score (PIS) with other clinical features across seven
cohorts, using the concordance index (C-index) as the metric for prognostic significance assessment. (B) Comparative analysis with 144 published
signatures, demonstrating PIS achieving the highest C-index in 6 of the cohorts, underscoring its superior prognostic ability.
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3.10 | Experimental validation

Previous studies have shown that CD8A and CD4 are associated with
the presence of CD8+ T cells and CD4+ T cells, respectively, both of
which can exert anti-tumour effects and indicate a better immune
therapy response. Meanwhile, PD-L1, an immune checkpoint protein,
when highly expressed, may predict better efficacy of immunother-
apy. We collected 14 LUAD samples for transcriptome sequencing
and calculated their PIS scores. The top two samples with the highest
PIS scores were categorized into the high-PIS group and the two sam-
ples with the lowest scores into the low-PIS group. Immunohisto-
chemistry confirmed higher expression of CD8A, CD4 and PD-L1 in
the low-PIS group compared to the high-PIS group (Figure 11A). PIS is
constituted by multiple model genes, among which PSMB7 showed a
significant  positive with PIS (correlation = 0.69,
Figure S2A). To explore the functional role of PSMB7 in LUAD tumor-
igenesis, we manipulated the expression of PSMB7 in A549 cells using

correlation

specific siRNA and an overexpression plasmid (Figure S2B). Colony
formation and EdU assays were conducted to determine the role of
PSMB7 in cell proliferation. Colony formation assays indicated that
PSMB?7 expression impacted clonogenic ability (Figure 11B), and EdU
assays revealed a significant effect of PSMB7 on LUAD cell prolifera-
tion (Figure 11C). Next, we tested the potential impact of PSMB7 on
cell migration and invasion. Wound healing assays showed that the
knockdown of PSMB7 significantly impeded wound closure
(Figure 11D). Transwell assays also demonstrated that PSMB7 knock-
down inhibited tumour migration. Conversely, the overexpression of
PSMB?7 significantly promoted cell migration (Figure 11E). Further-
more, the knockdown of PSMB7 restrained LUAD cells from invading
through matrices, whereas the overexpression of PSMB7 facilitated
their invasion (Figure 11E).

4 | DISCUSSION
As a groundbreaking approach in cancer therapy, immunotherapy func-
tions by activating or bolstering the patient's immune system to identify
and eradicate cancer cells while mitigating severe damage to normal
cells.?® Immunotherapy has found extensive application in treating vari-
ous cancers such as renal cell carcinoma, endometrial carcinoma, LC,
nasopharyngeal carcinoma, among others, yielding notable efficacy and
generally presenting fewer side effects.?? 2 However, clinical observa-
tions indicate that only a subset of patients exhibit a response to immu-
notherapy. Presently, scientists speculate this phenomenon may relate
to tumour type, the immune status of the patient and other factors, yet
the precise biological mechanisms remain elusive.>33* Single-cell
sequencing technology holds unique advantages in unravelling tumour
cell heterogeneity, identifying therapeutic targets and advancing per-
sonalized treatments, as corroborated by numerous past studies.®>3°

In our investigation, we meticulously analysed 29,255 tumour
cells from LUAD, drawing on single-cell data compiled by Stefan et al.
We pinpointed a distinct cell subpopulation (characterized by CKS1B
+ neoplasm) that demonstrates a significant correlation with the

response to chemotherapy and immunotherapy in LUAD. Notably,
this subgroup is distinguished by an enhanced stemness characteristic
and is positioned at an early stage of pseudo-time development, sug-
gesting a foundational role in tumour genesis and evolution. The
development and progression of malignant tumours are closely linked
to dysregulation within the cell cycle and deviant cellular differentia-
tion processes. The CKS1B gene, in this context, encodes a critical
regulatory subunit that plays a pivotal role in modulating the cell cycle,
underscoring its potential significance in cancer biology and therapy.®”
Studies suggest that heightened expression of CKS1B may be corre-
lated with abnormal proliferation, malignant transformation, invasive-
ness and prognosis of tumour cells.38-4°

Li et al. found that CKS1B is overexpressed in pancreatic
tumours, correlating with increased immune infiltration and cancer cell
invasiveness.*? Subsequently, utilizing machine learning techniques,
we constructed the PIS model, comprising marker genes of CKS1B-+
tumours (RHOV, ANLN, DEAR, PSMB7, KRT8, LDHA). This model
was validated across seven independent cohorts, consistently demon-
strating exceptional predictive accuracy. Further analysis of TMB,
immune infiltration and drug sensitivity underscored the robust dis-
criminatory power of PIS. Ultimately, immunohistochemistry was
employed to validate the differential immune microenvironments
between high- and low-PIS groups. The low-PIS group appeared more
capable of recruiting CD4 or CD8 T cells into the TME to kill tumour
cells.

In addition, we conducted in vitro experiments to validate one of
the characteristic genes, PSMB7. The results revealed a marked
reduction in the invasiveness and migratory potential of LUAD cells
upon the knockdown of the PSMB7 gene. Literature review indicates
that the protein encoded by the PSMB7 gene serves as a subunit of
the proteasome, engaging in intracellular protein degradation pro-
cesses, including the regulation of cell cycle, protein homeostasis and
antigen presentation.*? Studies suggest that the overexpression of
PSMBY7 in certain tumours might be associated with tumour prolifera-
tion, invasion and metastasis. Research links PSMB7 overexpression
to tumour progression, drug resistance in multiple myeloma and
shorter survival in breast cancer, underscoring its potential as a
marker for cancer severity and treatment response.*>** In our study,
we found a notable positive correlation between PSMB7 and PIS
scores, in vitro experiments also confirmed the critical role of the key
gene PSMB7 in enhancing the invasive and migratory potential
of LUAD.

Certainly, this study has some limitations. First, it is a retrospec-
tive study based on public databases. Second, the sample size in the
validation data set is limited, necessitating further independent valida-
tion. Third, the immunotherapy cohorts used in this study, OAK and
POPLAR, have limitations in their original clinical characteristic data;
histological types are only categorized as non-squamous and squa-
mous. Consequently, we were compelled to treat the non-squamous
data as indicative of LUAD for the purposes of our analysis. Lastly,
due to experimental constraints, knockdown experiments were not
performed on the other five genes, and additional in vitro evidence is

lacking.
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FIGURE 11 The influence of PSMB7 on clonogenicity, proliferation, and migration in lung adenocarcinoma (LUAD) cells. (A) Tissue section analysis
to validate the expression differences of CD8A, CD4, and PD-L1 between high- and low-prognostic immune score (PIS) groups. (B) Colony formation
assay to assess the clonogenic capability of A549 cells. (C) Ethynyl deoxyuridine (EdU) incorporation assay to analyse the proliferation of A549 cells post-
transfection. (D) Wound healing assay to evaluate the impact of si-PSMB7 and pcDNA-PSMB?7 transfection on the migratory ability of A549 cells.

(E) Transwell assay to examine the migration and invasion capacities of transfected A549 cells. **p < 0.01;***p < 0.001;****p < 0.0001.
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In summary, we have developed a novel PIS capable of accurately
identifying subgroups of LUAD patients suitable for immunotherapy,
providing a valuable tool for the precision treatment of LUAD. Fur-
thermore, our findings confirm that PSMB7 may be a potential thera-

peutic target for the progression of LUAD.
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