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Abstract

Peripheral neuropathy is a common and debilitating complication of diabetes and prediabetes. 

Recent clinical studies have identified an association between the development of neuropathy and 

dyslipidemia in prediabetic and diabetic patients. Despite the prevalence of this complication, 

studies identifying molecular mechanisms that underlie neuropathy progression in prediabetes or 

diabetes are limited. However, dysfunctional mitochondrial pathways in hereditary neuropathy 

provide feasible molecular targets for assessing mitochondrial dysfunction in neuropathy 

associated with prediabetes or diabetes. Recent studies suggest that elevated levels of dietary 

saturated fatty acid (SFAs) associated with dyslipidemia impair mitochondrial dynamics 

in sensory neurons by inducing mitochondrial depolarization, compromising mitochondrial 

bioenergetics, and impairing axonal mitochondrial transport. This causes lower neuronal ATP and 

apoptosis. Conversely, monounsaturated fatty acids (MUFAs) restore nerve function and sensory 

mitochondrial function. Understanding the mitochondrial pathways that contribute to neuropathy 

progression in prediabetes and diabetes may provide therapeutic targets for the treatment of this 

debilitating complication.
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1 Introduction

The global burden of diabetes is a pressing health concern. Over 450 million people 

had diabetes in 2017, and it is estimated that numbers will surpass 700 million people 

by 2040. This is in addition to the staggering number of people with prediabetes, a 

condition characterized by impaired glucose tolerance that typically precedes overt type 

2 diabetes (T2D); in the United States alone, roughly 34% of adults had prediabetes in 

2015. Both diabetic and prediabetic individuals are prone to an array of complications, 
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the most prevalent of which is neuropathy. Approximately 60% of individuals with T2D 

and 30% of individuals with prediabetes manifest with distal symmetric polyneuropathy 

(Callaghan, Price, & Feldman, 2015; Cortez, Singleton, & Smith, 2014; O’Brien, Hinder, 

Callaghan, & Feldman, 2017; Tabak, Herder, Rathmann, Brunner, & Kivimaki, 2012) and 

exhibit the typical “stocking and glove” pattern of progressive peripheral sensory nerve 

loss characterized by pain, numbness, eventual loss of sensation, and increased risk for 

amputation, all of which lead to significant morbidity and socioeconomic burden. In 2017, 

the estimated costs of diabetes totaled $327 billion USD, with $90 billion attributed to 

reduced productivity. This is further compounded by the lack of treatment options for 

neuropathy associated with diabetes and prediabetes, as the majority of management rests on 

lifestyle changes (Pop-Busui et al., 2017). Consequently, current research efforts are focused 

on identifying the biological pathways that underlie the onset and progression of neuropathy 

with the goal to develop novel therapeutic strategies and improve diagnostic approaches 

(O’Brien et al., 2017; O’Brien, Hinder, Sakowski, & Feldman, 2014; Vas & Edmonds, 2016; 

Zochodne, 2014).

Diabetic and prediabetic neuropathy are secondary to a series of metabolic perturbations 

that link hyperglycemia, dyslipidemia, and insulin resistance with inflammation, oxidative 

stress, and changes in gene expression. One unifying theme underlying these perturbations 

is mitochondrial dysfunction, the focus of this chapter. Neurons are reliant on a 

continuous supply of energy and are especially susceptible to mitochondrial impairment, 

and conditions that impede normal mitochondrial dynamics and function can lead to 

axonal dysfunction, sensory neuron injury and death, and ultimately to neuropathy. Here 

we build on these findings. In particular, we discuss relevant insights pertaining to 

mitochondrial dynamics and function during normal and diseased states, with particular 

emphasis on mitochondrial bioenergetics, mitochondrial morphology (including fission 

and fusion), endoplasmic reticulum (ER)-mitochondria interactions, and mitochondrial 

trafficking. We then concentrate on the most recent advances in our understanding of how 

metabolic imbalances common in diabetes and prediabetes, specifically hyperglycemia and 

dyslipidemia, affect mitochondrial dynamics in the peripheral nervous system (PNS).

2 Mitochondrial dynamics

2.1 Neurons rely on mitochondrial dynamics

Neurons, including sensory PNS neurons, are especially dependent on efficient 

mitochondrial dynamics to fulfill their energy needs due to constraints from their unique 

morphology (Pareyson, Saveri, Sagnelli, & Piscosquito, 2015). PNS neuron axons can 

measure 3 feet in length or longer and transmit signals from the extremities to the 

spinal cord, and their axon length versus cell body size ratio can be in excess of 20,000 

(Feldman, Nave, Jensen, & Bennett, 2017; Wang, Medress, & Barres, 2012). Therefore, they 

need to distribute mitochondria over large distances from their cell body along axons to 

their terminal(s). Furthermore, neurons require massive amounts of energy to sustain their 

activity; neuronal survival requires a constant adenosine triphosphate (ATP) supply (Nicholls 

& Budd, 2000) and a single cortical neuron utilizes approximately 4.7 billion ATPs per 

second in the resting human brain (X. H. Zhu et al., 2012). The reliance of neurons on ATP 
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for survival is highlighted by their mitochondrial density, which is greater in comparison 

to other cell types (Yu & Pekkurnaz, 2018). Additionally, neurons’ have energy demands 

for diverse tasks, and among the most consuming in brain neurons are housekeeping (~25% 

of energy), maintenance of resting membrane potential (~15%), firing of action potentials 

(~16%), and synaptic transmission (~44%) (Harris, Jolivet, & Attwell, 2012). Thus, their 

energy needs also are highly compartmentalized and neurons need to be able to direct 

mitochondria to the areas of highest energy consumption, such as at their synapses (Rossi & 

Pekkurnaz, 2019).

The constant need for ATP to survive means that neurons, including PNS neurons, critically 

rely on strictly controlled and coordinated mitochondrial dynamics to ensure sustained ATP 

production throughout their axons and synaptic terminal(s) (Sajic, 2014). Mitochondrial 

dynamics comprises several aspects of mitochondria, including fission/fusion (Section 2.3), 

mitophagy, and transport (i.e., trafficking, Section 2.5). Mitochondrial elongation, reshaping, 

and/or fusion is enhanced under conditions of nutrient starvation to increase the efficiency 

of ATP production and continue to meet the neuron’s energy demands (Yu & Pekkurnaz, 

2018). Conversely, mitochondrial fission intensifies in response to increased nutrient supply 

and severe stress. For quality control, damaged mitochondria are cleared by mitophagy 

under conditions of elevated oxidative stress to enable replacement by properly functioning 

mitochondria. Overall, the relative extent of mitochondrial fission to fusion controls the 

range of mitochondrial size and morphology, which is also coordinated with mitophagy 

to optimize mitochondrial distribution and quality for optimal ATP production on which 

neurons rely.

In addition to regulation of mitochondrial turnover, neurons must ensure distribution of 

mitochondria from the cell body throughout the axon to guarantee they are delivered to 

sites in need of ATP (Pareyson et al., 2015). Thus, mitochondrial transport mechanisms 

must match ATP requirements within neuronal axons, otherwise loss of mitochondria 

results in insufficient ATP, impaired synaptic transmission, and axonal injury. Within the 

myelinated nerve, electrical activity regulates mitochondrial transport, suggesting that the 

axon’s demand for energy regulates mitochondrial trafficking (Ohno et al., 2011). The 

essential nature of proper mitochondrial trafficking in neurons is highlighted by loss 

or mutation to critical mitochondrial fission/fusion, and motor proteins, which leads to 

neurological pathologies, such as Charcot-Marie-Tooth disease (CMT, Section 3) and motor 

neuron diseases, the most common of which is amyotrophic lateral sclerosis (ALS) (Baloh, 

Schmidt, Pestronk, & Milbrandt, 2007; De Vos et al., 2007; De Vos & Hafezparast, 2017). 

In a similar vein, depletion of ATP, such as through metabolically-triggered mitochondrial 

dysfunction associated with diabetes and prediabetes (e.g., hyperglycemia and dyslipidemia, 

Sections 4 and 5) could have pathological consequences, leading to neuronal cell injury and 

neuropathy.

2.2 Mitochondrial bioenergetics

Mitochondria are the source of ATP production, the cell’s energy currency (Fig. 1). ATP 

is generated through a series of biochemical reactions, starting with the tricarboxylic acid 

cycle (TCA) (Krebs & Johnson, 1937) followed by oxidative phosphorylation (OXPHOS) 
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(Chaban, Boekema, & Dudkina, 2014). The TCA cycle is fueled by acetyl-coenzyme A 

(acetyl-CoA), which can be synthesized from glycolysis-derived pyruvate or from fatty 

acid (FA) β-oxidation (Houten & Wanders, 2010). The TCA cycle generates reduced 

nicotinamide adenine dinucleotide (NADH) and reduced flavin adenine dinucleotide 

(FADH2), which drive OXPHOS and, ultimately, ATP production. Glycolytic metabolism 

within the cytoplasm rapidly releases 2 ATP molecules from catabolism of a single glucose 

molecule whereas oxygen-dependent energy conversion within mitochondria liberates, under 

ideal conditions, 36 additional ATP molecules by OXPHOS. The utilization of glycolysis 

versus OXPHOS during neuronal signal transmission is not precisely known, but evidence 

suggests that glycolysis serves as a readily available ATP source during periods of excessive 

energy demand, but that mitochondrial oxidative OXPHOS, which is more efficient, occurs 

during both basal conditions and periods of high neuronal activity (Rossi & Pekkurnaz, 

2019).

Mitochondria are composed of an outer mitochondrial membrane (OMM) that surrounds an 

inner mitochondrial membrane (IMM), which folds inwardly forming cristae that expand the 

IMM surface area to maximize energy production. Within the cristae is the mitochondrial 

matrix, which is comprised of TCA components and other metabolites, lipids, ribosomes, 

transfer RNAs, and mitochondrial DNA, enzymes, and proteins, whereas OXPHOS enzymes 

reside within the IMM. The TCA cycle utilizes acetyl-CoA, which is broken down through a 

series of enzymatically catalyzed biochemical reactions to CO2, NADH, FADH2, guanosine 

triphosphate (GTP), and protons. Next, NADH and FADH2 serve as cofactors to complexes 

I and II, respectively, which are entry points into the OXPHOS electron transport chain 

(Cecchini, 2003; Hirst, 2005), and which are followed by complexes III and IV (Crofts, 

2004; Tsukihara et al., 1996). Electrons move down the potential energy gradient along 

complexes of the electron transport chain, aided by shuttle proteins, which results in a net 

transport of protons from the matrix to the intermembrane space (IMS) (Chaban et al., 

2014). This transfer of protons across the IMM generates a proton gradient that is dissipated 

through complex V (ATP synthase), which produces ATP as protons are transported from 

the IMS to the matrix (Boyer, 1997) (Fig. 1). The proton gradient also establishes the 

mitochondrial membrane potential (MMP), which is necessary for mitochondrial function, 

regulates the direction of mitochondrial transport (Miller & Sheetz, 2004), and prevents 

mitochondrial damage (Sivitz & Yorek, 2010).

In addition to the TCA cycle and OXPHOS, pyruvate produced by cytoplasmic glycolysis 

is shuttled into the mitochondrial matrix where a three-enzyme pyruvate dehydrogenase 

complex (PDC) converts it into acetyl-CoA through pyruvate decarboxylation (Patel, 

Nemeria, Furey, & Jordan, 2014). FA acyl-L-carnitine derivatives are also shuttled into 

mitochondria and catabolized by β-oxidation (Houten & Wanders, 2010; Kastaniotis et al., 

2017). For even-chain FAs, a repeated 4-step cycle cleaves two carbon atoms at a time from 

the FA, which is converted into acetyl-CoA. For odd-chain FAs, the final cleavage yields 

propionyl-CoA in addition to acetyl-CoA.

Careful coordination of mitochondrial biochemical processes ensures efficient ATP 

generation. However, unanticipated side reactions or exogenous species can lead to 

suboptimal energy production or mitochondrial dysfunction, such as through the formation 
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of reaction oxygen species (ROS) or toxic intermediates. ROS can be inadvertently 

produced at the electron transport chain by premature escape of a semi-reduced oxygen 

species, such as the superoxide anion (Angelova & Abramov, 2018). The MMP influences 

ROS production; in some contexts, a low MMP slows respiration, which increases ROS 

production, however, in certain instances, a high MMP triggers expression of uncoupling 

proteins that lower ROS but also drop ATP production. Thus, MMP and ROS are intimately 

linked and together impact mitochondrial efficiency, ATP production, and neuronal health.

Excessive influx of long-chain saturated fatty acids (LCSFAs) into mitochondria, for 

instance as occurs during dyslipidemia (Section 5), interferes with the normal physiological 

process of FA β-oxidation. When FA uptake overcomes a mitochondria’s capacity for FA 

β-oxidation, lipotoxic metabolic intermediates are generated, such as ceramides (Fucho, 

Casals, Serra, & Herrero, 2017), diacylglycerols, or cardiolipin (D’Souza, Nzirorera, & 

Kienesberger, 2016; DeFronzo, 2010), which negatively impact mitochondrial bioenergetics. 

Proteins involved in mitochondrial fission and fusion also influence mitochondrial size, 

and thus bioenergetic capacity. Conversely, the metabolic state (i.e., normal physiological 

or pathological conditions) affects mitochondrial fission and fusion (Section 2.3). Overall, 

mitochondrial bioenergetics and dynamics coordinate with the neuron’s energy demands 

to sustain ATP production and neuronal health. However, this carefully orchestrated 

process can be disrupted by aberrant metabolic states, including diabetes or prediabetes, 

or hereditary mutations, such as in CMT, ultimately leading to neuropathy.

2.3 Mitochondrial morphology, fission, and fusion

Within cells, and especially neurons that are particularly reliant on continuous ATP 

production, mitochondrial dynamics ensure that cellular energy demands are met. The 

balance between mitochondrial fission and fusion regulates their number, morphology, and 

size distribution, whereas trafficking delivers them to the locations they are needed (Fig. 1, 

Section 2.5). Mitochondria also coordinate with other cellular organelles, such as the ER, for 

lipid biosynthesis, calcium exchange, and signaling (Section 2.4).

The major players in mitochondrial fission include mitochondrial fission factor (MFF), 

mitochondrial fission 1 protein (FIS1), mitochondrial elongation factor 1 and 2 (MIEF1 and 

MIEF2), and ganglioside induced differentiation associated protein 1 (GDAP1) localized 

to the OMM and dynamin 1 like (DNM1L) in the cytoplasm (Bertholet et al., 2016). 

The precise mechanism for fission is not known, although an interaction of GDAP1 with 

DNM1L and FIS1 has been proposed (Niemann, Wagner, Ruegg, & Suter, 2009; Pareyson 

et al., 2015). DNM1L is recruited to mitochondria by its receptor proteins MFF and FIS1, 

or alternatively by MIEF1 and MIEF2, that can recruit DNM1L in the absence of MFF 

and FIS1 (Loson, Song, Chen, & Chan, 2013). DNM1L that is recruited to the OMM 

forms a ring-shaped oligomer around the mitochondria, which is also wrapped by ER 

(Friedman et al., 2011). In MIEF1- or MIEF2-mediated fission, the DNM1L ring oligomer 

dissociates from the MIEF1 or MIEF2 receptors and contracts to trigger fission (Kalia et 

al., 2018). DNM1L activity is regulated by several post-translational modifications (Chang 

& Blackstone, 2010), including O-GlcNAcylation. Changes in DNM1L activity can result in 

mitochondrial fragmentation and a lowering of MMP (Gawlowski et al., 2012). Similar loss 
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of mitochondrial integrity and polarization can be triggered by hyperglycemia (Makino et 

al., 2011), such as occurs in diabetes.

Mitochondrial fusion is mediated by mitofusins 1 and 2 (MFN1 and MFN2), which 

are dynamin-related GTPases localized to the OMM, and optic atrophy 1 (OPA1), a 

mitochondrial dynamin-like GTPase localized to the IMM. MFN1 and MFN2 from two 

mitochondria form homo- and heterooligomers, that tether and initiate the fusing process 

of the OMM. Upon fusion, there is an interaction between MFN1 and OPA1 in the OMM 

that fuses the IMM (Meeusen et al., 2006; Meeusen, McCaffery, & Nunnari, 2004; Pareyson 

et al., 2015). The energy for the OMM fusion process derives from MFN1 and MFN2 

GTPase activity whereas tethering is mediated by their C-terminal coiled-coil domain (Suen, 

Norris, & Youle, 2008). OPA1 is also the principle regulator of mitochondrial cristae 

organization, whose surface area impacts OXPHOS and therefore the efficiency of ATP 

production (Pernas & Scorrano, 2016). OPA1 deficiency can induce defects in mitochondrial 

morphology within optic nerves (Davies et al., 2007).

Neurofilaments (NFs) are cytoskeletal framework components that are specific to neurons 

(Gentil, Tibshirani, & Durham, 2015). They occur as light (NF-L), medium (NF-M), and 

heavy (NF-H) chains; the NF-H subunits run parallel to the axon, lending mechanical 

support, whereas the NF-M and NF-L run perpendicularly to the NF-H subunits (Pareyson 

et al., 2015; Sajic, 2014). NFs also organize organelles, in addition to mitochondria, whose 

length, rate of fusion, and motility is affected by NFs (Gentil et al., 2012).

Mutations to mitochondrial fission and fusion proteins GDAP1 and MFN2 and the gene 

encoding NF-L, neurofilament, light polypeptide (NEFL), and mitochondrial transport 

machinery (Section 2.5) are all associated with hereditary CMT neuropathy (Section 3) 

(Pareyson et al., 2015). Mutant OPA1 is linked to autosomal dominant optic atrophy, a 

heritable disease of optic nerve deterioration (Alexander et al., 2000; Delettre et al., 2000), 

whereas DNM1L mutations are connected with severe infantile encephalopathy disease. In 

addition to their more established roles in mitochondrial fission and fusion, mutations to 

MFN2 (Loiseau et al., 2007; Pich et al., 2005) and OPA1 (Chevrollier et al., 2008; Zanna et 

al., 2008) also lead to altered mitochondrial bioenergetics, MMP, and coupling defects (Fig. 

1).

2.4 ER-mitochondrial interactions regulate mitochondrial dynamics

Mitochondria-associated ER membranes (MAMs) are juxtaposed interorganellar sites 

(Lopez-Crisosto et al., 2015). The ER and mitochondrial membranes are brought in very 

close proximity through bridging by various tethering complexes, but the membranes do not 

actually fuse (Csordas et al., 2006). Therefore, each organelle maintains its own identify, 

but the MAM contact sites enable mutual regulation of both organelles. MAM contact sites 

allow interorganellar transfer of calcium and lipids and control diverse cellular activities, 

ranging from mitochondrial dynamics, autophagy, and inflammation (Marchi, Patergnani, & 

Pinton, 2014).

Tethering proteins are located in the OMM and ER membranes and maintain MAMs stably 

or transiently. Four MAM tethering complexes have been identified in mammalian cells. 
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MFN1 and MFN2 were originally discovered on the surface of mitochondria (Section 

2.3), followed by discovery of MFN2 on ER membranes, where it helps form the MAM 

interface by homologous interaction with mitochondrial MFN2 or heterologous interaction 

with mitochondrial MFN1 (de Brito & Scorrano, 2008). This process is regulated by the 

mitochondrial ubiquitin ligase MITOL, which only modifies mitochondrial MFN2 at lysine 

63 with a polyubiquitin chain that elicits oligomerization and subsequent tethering (Sugiura 

et al., 2013).

Another tethering complex is formed from the interaction between ER-localized vesicle 

associated membrane protein-associated protein B (VAPB) with mitochondria-localized 

protein tyrosine phosphatase-interacting protein 51 (PTPIP51) (De Vos et al., 2012). 

Voltage-dependent anion channel 1 (VDAC1) complexes with two other proteins, subtype 3 

of the 1,4,5-triphosphate receptor (IP3R3) and 75 kDa glucose regulated protein (GRP75), 

to form another tethering complex, which regulates calcium exchange between mitochondria 

and ER (Szabadkai et al., 2006). A complex of ER-localized B-cell receptor associated 

protein 31 (BAP31), FIS1, and phosphofurin acidic cluster sorting protein-2 (PACS-2) 

form the tethering structure that regulates apoptosis (Iwasawa, Mahul-Mellier, Datler, 

Pazarentzos, & Grimm, 2011; Simmen et al., 2005). Lastly, a suite of additional proteins 

also associates with MAMs, including proteins or enzymes that participate in mitochondrial 

dynamics, lipid synthesis, and autophagy regulation, as well as ER chaperones.

MAMs perform several key functions to maintain neuronal health. Calcium transport 

between ER and mitochondria is primarily mediated by the GRP75-IP3R3-VDAC1 tethering 

complex through interaction with sigma non-opioid intracellular receptor 1 (SIGMAR1), 

an ER chaperone protein. SIGMAR1 blocks breakdown of IP3R3 to sustain calcium 

transfer across MAMs, which is essential for ER and mitochondrial function (Hayashi, 

Rizzuto, Hajnoczky, & Su, 2009). MAMs can also regulate autophagosome formation 

through the tethering proteins MFN2 (Hamasaki et al., 2013), SIGMAR1 (Vollrath et al., 

2014), and VAPB-PTPIP51 (Gomez-Suaga et al., 2017), and mitophagy through PTEN-

induced kinase 1 (PINK1) and Beclin-1 (BECN1) (Gelmetti et al., 2017). Importantly for 

mitochondrial dynamics, MAMs impact mitochondrial morphology, transport, fission, and 

fusion (Bernard-Marissal, Chrast, & Schneider, 2018). ER and mitochondria mutually affect 

each other’s morphology through MAMs via MFN2. Loss of MFN2 triggers ER expansion 

and protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) activation, leading 

to aberrant mitochondrial morphology and function (Munoz et al., 2013). MAMs influence 

mitochondrial transport through the interaction of MFN2 with mitochondrial Rho GTPase 

1 and 2 (Miro 1 and 2, Section 2.5), receptor proteins that tether mitochondria to motor 

proteins in a calcium-dependent fashion. MAMs also stimulate mitochondrial fission and 

fusion via the tethering proteins MFN1 and MFN2, as well as through MAM-associated 

DNM1L (Friedman et al., 2011) or inverted formin-2 (INF2) (Korobova, Ramabhadran, & 

Higgs, 2013).

Overall, tethering complexes and other MAM-associated proteins coordinate to regulate 

calcium, auto- and mitophagy, and mitochondrial transport and dynamics (fission, fusion). 

Aberrant mitochondrial and ER function is an early event in the course of neuronal 

degeneration; in parallel, deficiencies in MAM function similarly leads to neuronal injury 
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(Bernard-Marissal et al., 2018). Mutation to some of these tethering and MAM-associated 

proteins results in CMT (Section 3.1.3) or to familial forms of ALS (Bernard-Marissal et al., 

2018), underscoring the importance of MAMs to healthy neuronal function.

2.5 Mitochondrial trafficking and motor proteins

Mitochondria are transported along neuronal axons by the synchronized effort of numerous 

proteins involved in the motor machinery. Broadly speaking, the machinery is composed 

of the molecular motors that achieve step-wise movement along a microtubule track 

with receptor and adaptor proteins that secure the mitochondria cargo to the motors 

(Mishra & Chan, 2016). Mitochondria need to be transported along axons in either 

direction, so anterograde and retrograde transport are both essential. Kinesin-1 [KIF5A, 

KIF5B, KIF5C (Kawaguchi, 2013)] and dynein motor proteins conduct anterograde and 

retrograde mitochondrial transport, respectively (Saxton & Hollenbeck, 2012; Sheng, 2014). 

A canonical kinesin-1 motor is comprised of three principal domains, an ATPase motor 

domain that takes steps along microtubules, and a heavy and light chain, which join 

the motor domain to the adaptor proteins and cargo (Hirokawa & Takemura, 2005). The 

dynein motor is a multi-protein complex, which also contains an ATPase motor domain, in 

addition to heavy, intermediate, and light chain domains, and other components, including 

dynactin (DCTN), that join the motor domain to the adaptor proteins and mitochondrial 

cargo (Roberts, Kon, Knight, Sutoh, & Burgess, 2013; Sajic, 2014).

Securing the mitochondrial cargo to the motors are a number of receptor and adaptor 

proteins (Mishra & Chan, 2016). The main receptor proteins are Miro1 and Miro2, which 

are expressed on the outer mitochondrial membrane (Nguyen et al., 2014) and are required 

for mitochondrial transport (Fransson, Ruusala, & Aspenstrom, 2006). They possess 

calcium-binding binding EF-hand motifs (Lee & Lu, 2014), which are able to sense calcium 

levels, and regulate binding or release of mitochondria from the transport machinery. 

Trafficking kinesin-binding protein 1 and 2 (TRAK1 and TRAK2, also referred to as Milton) 

are adaptor proteins that interact with Miro and kinesins to fasten the mitochondria to the 

motor (Brickley & Stephenson, 2011) and are also essential for mitochondrial trafficking 

(van Spronsen et al., 2013). Syntaphilin is another protein that anchors mitochondria to 

microtubules in regions of high local calcium levels (Chen & Sheng, 2013; Kang et al., 

2008).

The final component of the axonal transport machinery are the tracks themselves, the 

microtubules that run along axons. Microtubules form by the polymerization of α-tubulin 

and β-tubulin dimers (Conde & Caceres, 2009). Polymerization of the dimers instills an 

inherent polarity to the microtubule tracks, with a minus end on the α-tubulin side, which is 

usually directed towards the cell body, and a plus end on the β-tubulin side, which is distal 

and is generally directed towards the axon terminals. The polarity also defines the transport 

direction since kinesin prefers to move towards the plus end (anterograde) (Hirokawa 

et al., 1991) and dynein, although bidirectional (Ross, Wallace, Shuman, Goldman, & 

Holzbaur, 2006), favors motion towards the negative end (retrograde) (Pilling, Horiuchi, 

Lively, & Saxton, 2006). Movement in either direction is carefully regulated by a number of 

mechanisms (Nirschl, Ghiretti, & Holzbaur, 2016).
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The concerted interaction of the mitochondria cargo, receptor and adaptor proteins, 

motors, and microtubule tracks ensures efficient mitochondrial trafficking. Loss of function 

mutations to mitochondrial trafficking proteins, such as KIF5A and TUBB3 (β-tubulin 

subtype) in hereditary CMT neuropathy (Section 3.1.4) (Pareyson et al., 2015). Under 

normal physiological conditions, a number of environmental cues, such as ATP, calcium, 

glucose, and oxygen levels, can regulate movement of mitochondria along axons or 

attachment/detachment of mitochondria to/from the motor tracks (Mishra & Chan, 2016; 

Saxton & Hollenbeck, 2012). Unsurprisingly, disease conditions, such as hyperglycemia 

(Section 4.4) or dyslipidemia (Section 5.5) in diabetic patients will disrupt regulatory 

mechanisms governing mitochondrial trafficking, leading to neuropathy.

3 Mitochondrial dynamics in disease

Understanding dysfunctional mitochondrial pathways associated with genetic neuropathic 

diseases, including hereditary neuropathies, has incredible potential to offer insight into 

molecular mechanisms of mitochondrial dysfunction that may be pertinent to neuropathy 

progression in prediabetes and diabetes. In this section, we will therefore discuss 

relevant advances in mitochondrial bioenergetics, mitochondrial fusion and fission, ER-

mitochondrial interaction sites, and mitochondrial trafficking that have been identified 

through studies of mitochondrial pathways underlying other hereditary neuropathies (Table 

1). These insights have paved the way for the recent progress and emerging research on 

mitochondrial dysfunction in neuropathy associated with diabetes and prediabetes that will 

be discussed in subsequent sections.

3.1 CMT, Hereditary Motor Neuropathies and Hereditary Sensory Neuropathies

CMT is a heterogeneous group of inherited neuropathies that affect both sensory and 

motor neurons and is also known as hereditary motor and sensory neuropathy (HMSN). 

Classically CMT is divided into a demyelinating form of the disease (CMT1, based on 

slowed motor nerve conduction velocities) and an axonal form (CMT2, based on normal 

nerve conduction velocities). In both CMT1 and CMT2 and their multiple respective 

subtypes, both motor and sensory nerves are affected. Clinical manifestations vary and 

include distal muscle wasting and weakness with sensory loss that most commonly begins 

distally in the lower limbs and progresses with age proximally, to include the upper 

limbs. Over 70 mutations are identified as underlying distinct forms of CMT neuropathies 

as well as two forms of CMT2, distal hereditary motor neuropathies (dHMN), and 

hereditary sensory neuropathies (HSN), which predominantly affect motor and sensory 

nerves, respectively (Pareyson et al., 2015; Rossor, Polke, Houlden, & Reilly, 2013). The 

nomenclature of the distinct types of CMT neuropathies continues to evolve even today. 

Historically these neuropathies were classified on a purely clinical presentation and nerve 

conduction studies; currently CMT neuropathies are classified based on gene mutation(s) 

coupled with clinical phenotypes (Pisciotta & Shy, 2018; Rossor, Tomaselli, & Reilly, 2016). 

Regardless, the unifying thread across all inherited mutations is that they adversely impact 

cellular machinery that impairs neurons and axons (Rossor et al., 2013). These impairments 

include defects in mitochondrial function, ER homeostasis, axonal transport, and synaptic 

transmission. Mutations to mitochondrial proteins or mitochondrial motor proteins lead to 
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altered mitochondrial bioenergetics, fission/fusion, and trafficking that make PNS neurons 

and axons especially susceptible to injury and degeneration (Table 1).

3.1.1 CMT mutations in genes that regulate mitochondrial bioenergetics
—Altered mitochondrial bioenergetics reduce ATP output (Section 2.2), and since 

neurons are reliant on a constant ATP source (Section 2.1), this scenario has negative 

consequences for neuronal health and survival. Mutations to several metabolic mitochondrial 

enzymes underlie inherited peripheral neuropathies. Apoptosis inducing factor mitochondria 

associated 1 (AIFM1) is an NADH oxidase encoded in the nucleus that is transported 

to the mitochondria (Rinaldi et al., 2012). Mutant AIFM1 is associated with recessive 

X-linked CMTX4 otherwise known as Cowchock syndrome [Online Mendelian Inheritance 

in Man (OMIM)# 310490], which manifests with axonal neuropathy, deafness, and cognitive 

impairment (Rinaldi et al., 2012). Other peripheral neuropathy disorders have also been 

linked with mutant AIFM1, a rare severe, early-onset mitochondrial encephalopathy 

combined with OXPHOS deficiency (COXPD6, OMIM# 300816) (Ghezzi et al., 2010) and 

a rare infantile motor neuron disease (Diodato et al., 2016).

Mutation to another metabolic mitochondrial protein, dehydrogenase E1 and transketolase 

domain containing 1 (DHTKD1), is associated with CMT2Q (OMIM# 615025), which is 

similar to classical CMT2 (W. Y. Xu et al., 2012). DHTKD1 encodes the E1 subunit of the 

mitochondrial amino acid degrading alpha-ketoadipic acid dehydrogenase complex (Hagen 

et al., 2015). Knockdown of DHTKD1 in vitro decreased ATP production and mitochondrial 

biogenesis while increasing ROS generation, leading to a greater extent of cellular apoptosis 

and lower proliferation (W. Xu et al., 2013). Hexokinase 1 (HK1) phosphorylates glucose 

to glucose-6-phosphate (G6P), the initiation in most glucose metabolic pathways. A fraction 

of HK1 is bound to the OMM, where it couples cytoplasmic glycolysis to OXPHOS by 

interacting with VDAC and the IMM-bound adenine nucleotide translocator (ANT) (Robey 

& Hay, 2006). Mutant HK1 is linked with CMT4G (OMIM# 605285) and also a severe 

early-onset CMT1, which is autosomal recessively inherited (Gabrikova et al., 2013).

Mitochondrial encoded ATP synthase 6 (MT-ATP6) is a mitochondrial DNA gene coding for 

the ATP6 subunit of mitochondrial ATP synthase of complex V in OXPHOS. Mutations in 

MT-ATP6 leads to a form of CMT2 (Pitceathly et al., 2012) or other neuropathies, such as 

NARP syndrome (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) (Thorburn, 

Rahman, & Rahman, 1993). The NARP MT-ATP6 mutation results in lower ATP production 

despite proper complex assembly and normal protein expression levels (Rak et al., 2007). 

Another metabolic mitochondrial enzyme, pyruvate dehydrogenase kinase 3 (PDK3), is 

involved in peripheral neuropathy. PDK3 phosphorylates PDC, the multi-enzyme complex 

that generates acetyl-CoA from pyruvate coupling glycolysis to the TCA cycle (Gudi, 

Bowker-Kinley, Kedishvili, Zhao, & Popov, 1995). Phosphorylation of PDC thoroughly 

inactivates its enzymatic activity, shutting down pyruvate-derived acetyl-CoA entry into 

the TCA cycle. Mutant PDK3 is associated with dominant X-linked inheritance CMTX6 

(OMIM# 300905) (Kennerson et al., 2016; Kennerson et al., 2013).

3.1.2 CMT mutations in genes that regulate mitochondrial morphology, 
fission, and fusion—Mitochondria reshape, divide, and fuse in response to a cell’s 
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energy needs (Section 2.3), and interference with this carefully regulated process is 

inevitably detrimental to cellular health. Mutation to mitochondrial fission and fusion 

proteins are well established causes of CMT. The most prevalent mutation in CMT 

patients in a mitochondrial protein is MFN2. Mutations in MFN2 results in CMT2A 

(OMIM# 609260) (Pareyson et al., 2015). Mutant MFN2 is also associated with autosomal 

recessive CMT2A (OMIM# 617087) and with autosomal dominant CMT5, a rare category 

characterized by pyramidal tract involvement (D. Zhu et al., 2005), and CMT6 (HSMN6, 

OMIM# 601152), which is accompanied by optic atrophy (Zuchner et al., 2006). Other 

complex phenotypes also arise more akin to mitochondrial encephalopathies (Boaretto et 

al., 2010). The majority of MFN2-linked CMT patients display a severe phenotype with 

early onset sensory and motor neuropathy and rapid progression although a fraction exhibit 

less debilitating disease. Aside from neuropathy, patients harboring mutant MFN2 may also 

suffer from tremors, proximal weakness, respiratory involvement, optic atrophy, hearing 

loss, vocal cord palsy, and spotty white matter brain abnormalities (Pareyson et al., 2015).

Around 100 mutant MFN2 variants have been identified, mostly as missense mutations 

in essential protein domains (e.g., GTPase domain, coil-coiled motifs), yet the precise 

mechanism that leads from mutant MFN2 to CMT2 pathology and neuropathy is not 

precisely known, nor why it manifests itself in a cell-specific manner. Certain mutant MFN2 
variants negatively impact mitochondrial fusion (A. L. Misko, Sasaki, Tuck, Milbrandt, 

& Baloh, 2012), yet others have no effect and complementation with wild-type MFN1 

can rescue fusion defects (Detmer & Chan, 2007). Axonal transport may similarly be 

compromised by mutant MFN2 (A. L. Misko et al., 2012), possibly through an interaction 

with Miro (A. Misko, Jiang, Wegorzewska, Milbrandt, & Baloh, 2010), as well as through 

loss of calcium homeostasis or ROS production.

Mutant GDAP1 is another major contributor to CMT (Cassereau, Chevrollier, Gueguen, et 

al., 2011), possibly the second most common type of autosomal recessive CMT and perhaps 

approximately 5% of all CMT2 cases (Pareyson et al., 2015). Mutations to GDAP1 give 

rise to CMT subsets, either as an autosomal recessive, demyelinating CMT4A (OMIM# 

214400), which is characterized by early onset, possibly with vocal cord and diaphragmatic 

paralysis (OMIM# 607706) (Baxter et al., 2002; Claramunt et al., 2005), or an autosomal 

recessive, axonal, early onset, severe CMT2K (OMIM# 607831) or autosomal dominant, 

late onset, less severe CMT2K (OMIM# 607831) (Cassereau, Chevrollier, Bonneau, et al., 

2011).

Examination of sural nerve biopsies from patients diagnosed with dominant CMT2K 

confirm mitochondrial defects, characterized by aggregates of normal and abnormal 

mitochondria (Sivera et al., 2010). Similar mitochondrial abnormalities are a common 

feature in nerve biopsies from both dominant and recessive CMT2K patients (Fu et al., 

2017). Dominant and recessive GDAP1 mutations may adversely impact mitochondrial 

dynamics (Niemann et al., 2009). Overexpression of recessive mutant GDAP1 in HeLa 

cells reduced mitochondrial fission whereas dominant mutant GDAP1 inhibited fusion 

and increased ROS production and susceptibility to apoptosis. In CMT2K patient-derived 

fibroblasts, dominant mutant GDAP1 induced a 40% decrease in complex I turnover and 

a 33 and 20% decrease in tubular mitochondria size and mitochondrial mass, respectively, 
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suggesting dominant mutant GDAP1 may impact mitochondrial bioenergetics as well as 

morphology (Cassereau et al., 2009). In addition to altered bioenergetics, another facet of 

research related to mutant GDAP1 in CMT4A and CMT2K is dysregulation of calcium 

dynamics (Gonzalez-Sanchez et al., 2017; Gonzalez-Sanchez, Satrustegui, Palau, & Del 

Arco, 2019). GDAP1 possesses putative glutathione S-transferase (GST) binding sites and a 

possible role against oxidative stress has also been proposed for wild-type GDAP1 (Noack et 

al., 2012).

3.1.3 CMT mutations in genes that regulate MAMs—MAMs are crucial to 

healthy mitochondrial function (Section 2.4), and mutations to several proteins essential 

for maintaining MAMs are associated with CMT (Bernard-Marissal et al., 2018). MFN2 

forges MAM tethering complexes in addition to its role in mitochondrial fusion. Although 

most reports have focused on its impact on mitochondrial fusion in CMT2A, a recent 

study examined MAM dynamics in fibroblasts derived from 3 CMT2 patients harboring 

mutant MFN2 (Larrea et al., 2019). Mitochondria-ER contact distance and ER-mitochondria 

contact coefficient (a measure of ER-mitochondrial distance, length of contact, and 

mitochondrial perimeter), MAM-specific phospholipid synthesis, and capacitative calcium 

entry (extracellular calcium influx upon intracellular depletion) were impacted to varying 

extents by mutant MFN2 depending on the disease phenotype severity. On the other hand, 

respiratory chain function was relatively unaffected, leading the authors to conclude that 

mutant MFN2 predominantly affects MAMs but not mitochondrial bioenergetics.

SIGMAR1 is an ER chaperone protein that maintains calcium exchange between ER 

and mitochondria (Hayashi et al., 2009), and mutations to this gene have been linked to 

autosomal recessively inherited dHMN (Gregianin et al., 2016; Li et al., 2015). In vitro 
functional studies in human neuroblastoma cell lines transfected with mutant SIGMAR1 
exhibited defects in SIGMAR1 localization, which did not accumulate at MAMs, but 

instead formed aggregates (Gregianin et al., 2016). Mutant SIGMAR1 also decreased basal 

proliferation and survival under stress and altered cellular calcium dynamics. Autophagy 

was induced to a greater extent in mutant SIGMAR1 cells, but the autophagosomes were 

not mobilized for clearing the SIMGAR1 aggregates. Another study similarly found that 

expression of mutant SIGMAR1 led to ER stress and elevated apoptosis (Li et al., 2015).

Solute carrier family 25 member 46 (SLC25A46) is a transmembrane protein located in 

the OMM that mediates lipid transfer between ER and mitochondria (Palmieri, 2013). 

It maintains mitochondrial lipid homeostasis and cristae; loss of function SLC25A46 
mutations inhibit mitochondrial respiration and trigger mitochondrial hyperfusion (Janer 

et al., 2016). Mutations to SLC25A46 are linked to CMT2 and optic atrophy (Abrams 

et al., 2015) and to Leigh syndrome (Janer et al., 2016). Regulation of autophagy is 

another important MAM function; autophagosomes occur at MAMs in mammalian cells 

(Hamasaki et al., 2013). Autophagy related 14 (ATG14) and ATG5 localize to MAMs under 

starvation conditions, a process that is blocked in cells with disrupted MAMs through MFN2 

knockdown. The tethering complex VAPB-PTPIP51 also regulates autophagy at MAMs 

(Gomez-Suaga et al., 2017); VAPB or PTPIP51 overexpression tighten MAMs, whereas 

knockdown loosens them, initiating autophagosome formation. The impact of VAPB-

PTPIP51 on autophagy is specifically dependent on their tethering function and involves 
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their role in calcium transport from ER to mitochondria. The role of autophagy, including 

autophagy at MAMs, is increasingly appreciated in hereditary peripheral neuropathies 

(Haidar & Timmerman, 2017). Although no mutation to either VAPB or PTPIP51 has been 

linked to CMT, mutations to VAPB have been identified in patients with motor neuron 

diseases, including ALS (type 8, OMIM# 608627) and spinal muscular atrophy (OMIM# 

182980) (Nishimura et al., 2004).

3.1.4 CMT mutations in genes that regulate mitochondrial trafficking—
Interference with the mitochondrial transport machinery (Section 2.5) jeopardizes a neuron’s 

capacity to deliver mitochondria to areas of high energy demand. The occurrence of 

heritable neuropathies with mutations to key mitochondrial transport proteins highlights 

the essential nature of mitochondrial trafficking to neuronal health. Mutations to the key 

anterograde mitochondrial transport motor KIF5A causes hereditary spastic paraplegia 10 

(SPG10, OMIM# 604187), an autosomal dominant disorder characterized by progressive 

gait disorder and spasticity accompanied by degeneration of corticospinal tracts and 

peripheral nerves (Reid et al., 2002). The disease phenotype can vary and can present as a 

forme-fruste of axonal CMT2 (Crimella et al., 2012). In a similar vein, mutation to kinesin-3 

isoform B (KIF1B), a monomeric motor for anterograde mitochondrial transport (Nangaku 

et al., 1994), has been identified in a single family with CMT2A1 (OMIM# 118210) (C. 

Zhao et al., 2001). Another isoform, KIF1A, is a neuron-specific kinesin, which transports 

vesicles rather than mitochondria. Mutant KIF1A also leads to rare, recessively inherited 

neuropathies, HSN2C (OMIM# 614213) (Riviere et al., 2011) or SPG30 (OMIM# 610357) 

(Erlich et al., 2011).

Mutations to the retrograde dynein motor and its accessory proteins also cause heritable 

neuropathies. Dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) is a dynein subunit; mutant 

DYNC1H1 is linked with dominant CMT2O (OMIM# 614228) (Weedon et al., 2011) 

as well as dominant SMALED (spinal muscular atrophy, lower extremity predominant, 

OMIM# 158600), a disorder of cortical migration defects, intellectual disability, and 

lower-limb predominant abnormalities (Harms et al., 2012). In mice, heterozygous mutant 

DYNC1H1 results in progressive motor neuron degeneration (Hafezparast et al., 2003) and 

deficient retrograde transport (J. Zhao et al., 2016). Fibroblasts derived from heterozygous 

mutant DYNC1H1 mice display aberrant mitochondrial morphology, similar to SMALED 

patient-derived fibroblasts, and progressive mitochondrial dysfunction (Eschbach et al., 

2013).

In addition to mutations to the motor proteins, mutations to the tracts along which 

mitochondria are transported can similarly lead to neuropathy. Class III β-tubulin (β3-

tubulin or β-tubulin III), is a microtubule isotype of the tubulin family, which is mostly 

specific to neurons and is encoded by the TUBB3 gene (Sullivan & Cleveland, 1986). 

Mutant TUBB3 results in congenital fibrosis of the extraocular muscles type 3 (CFEOM3, 

OMIM# 600638), an axonal sensorimotor polyneuropathy with loss of eye movement (Hong 

et al., 2015; Tischfield et al., 2010). In vivo in a knock-in mouse model, mutant TUBB3 
triggers deficiencies in axon guidance but not in cortical cell migration (Tischfield et 

al., 2010). In vitro, it interferes with tubulin heterodimerization, but mutant heterodimers 

that fold retain the ability to polymerize. In yeast, certain mutant TUBB3 variants disrupt 
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microtubule dynamics while others perturb the microtubule-kinesin interaction. Dynamin 2 

(DNM2) is a dynamin-like GTPase also linked to CMT; however, the involvement of this 

microtubule associated protein to mitochondrial dynamics has not been fully determined 

(Pareyson et al., 2015).

Mutation to cytoskeletal proteins have also been linked with mitochondrial disorders in 

inherited neuropathies. Mutant NEFL occurs in a generally autosomal dominant CMT1F 

(OMIM# 607734) or CMT2E (OMIM# 607684), with patients frequently suffering from 

early onset and severe disease, and whose sural nerve biopsies show accumulated 

mitochondria (Fabrizi et al., 2007). Indeed, NFs impact mitochondrial dynamics; mutant 

NEFL results in attenuated mitochondrial fusion and increased movement in primary 

mouse dorsal root ganglion (DRG) neurons (Gentil et al., 2012). Also, in mouse DRG 

neurons, expression of mutant NEFL resulted in rounder and shorter mitochondria preceding 

disruption of the neurofilament network, suggesting mitochondrial dysfunction contributes 

to CMT2E pathogenesis (Tradewell, Durham, Mushynski, & Gentil, 2009). Aberrant 

mitochondrial trafficking was also seen in motor neurons differentiated from induced 

pluripotent stem cells obtained from CMT2E patient fibroblasts (Saporta et al., 2015).

3.2 Other hereditary neuropathies

Mutant OPA1 is linked to autosomal dominant optic atrophy (OMIM# 165500), which 

is primarily characterized by optic nerve deterioration leading to progressive vision loss 

(Alexander et al., 2000; Delettre et al., 2000). Around 20% of patients additionally exhibit 

peripheral neuropathy and are classified as autosomal dominant optic atrophy plus (OMIM# 

125250) (Burte, Carelli, Chinnery, & Yu-Wai-Man, 2015). Optic atrophy 3 (OPA3) is a 

protein that localizes to the OMM, that regulates lipid metabolism and thermogenesis (Wells 

et al., 2012), and triggers mitochondrial fission (Ryu, Jeong, Choi, Karbowski, & Choi, 

2010). Autosomal dominant mutant OPA3 leads to optic atrophy and premature cataracts 

(OMIM# 165300) (Reynier et al., 2004), whereas autosomal recessive mutant variants are 

associated with 3-methylglutaconic aciduria type III (alternatively called Costeff syndrome, 

OMIM# 258501) (Anikster, Kleta, Shaag, Gahl, & Elpeleg, 2001). OPA3 overexpression 

in cells markedly increases mitochondrial fragmentation while knockdown results in 

mitochondrial elongation, demonstrating an impact of OPA3 on mitochondrial dynamics 

(Ryu et al., 2010). Mutant DNM1L results in severe infantile encephalopathy (OMIM# 

614388) (Waterham et al., 2007) by altering DNM1L recruitment and oligomerization 

and hence mitochondrial fission (Chang et al., 2010; Fahrner, Liu, Perry, Klein, & Chan, 

2016). Familial ALS patients harbor mutations to mitochondrial trafficking proteins that 

trigger neuropathy, including coiled-coil-helix-coiled-coil-helix domain containing 10 gene 

(CHCHD10), SIGMAR1, VDAC1, and VAPB (Bannwarth et al., 2014; Bernard-Marissal 

et al., 2018). A broad spectrum of additional rare neuropathies with mitochondrial defects 

have been documented but are outside the scope of this review. The reader is directed to 

other excellent reviews for further reading (Cassereau, Codron, & Funalot, 2014; Pareyson, 

Piscosquito, Moroni, Salsano, & Zeviani, 2013).
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3.3 Neuropathy associated with diabetes and prediabetes

Hereditary neuropathies that exhibit mitochondrial dysfunction have provided important 

considerations for evaluating mitochondrial dynamics in neuropathy associated with diabetes 

and prediabetes. The genetic mutations to OXPHOS complexes, fission and fusion proteins, 

MAM proteins, and mitochondrial trafficking motor proteins in hereditary neuropathies 

suggest that similar pathways may also be altered in neuropathy associated with diabetes 

and prediabetes. Of critical importance to these studies, however, is the recent data from 

a Cochrane review of clinical trials with diabetic patients exhibiting neuropathy as an 

outcome measure. The results showed that maintaining tight glycemic control improved 

neuropathy outcomes in type 1 diabetes (T1D) patients but had limited efficacy in slowing 

the progression of neuropathy in T2D patients (Callaghan, Little, Feldman, & Hughes, 

2012). Instead, a follow-up study reported that neuropathy development in T2D patients 

correlates with components of metabolic syndrome, including obesity and dyslipidemia 

(Callaghan & Feldman, 2014; Callaghan, Xia, Banerjee, et al., 2016; Lupachyk, Watcho, 

Hasanova, Julius, & Obrosova, 2012). Prediabetic patients with metabolic syndrome also 

develop neuropathy and the progression of nerve damage and sensory loss is identical 

to their T2D counterparts (Callaghan, Xia, Reynolds, et al., 2016). Therefore, there may 

be differential disease mechanisms related to hyperglycemia and dyslipidemia underlying 

the development of neuropathy in T1D and T2D patients, respectively (Callaghan, Hur, & 

Feldman, 2012). Hence, while dysfunctional mitochondrial pathways are only beginning to 

be addressed in the context of diabetes and prediabetes, Section 4 will highlight the effect 

of hyperglycemia on mitochondrial mechanisms underlying neuropathy development, and 

Section 5 will focus on the impact of dyslipidemia on mitochondrial function and dynamics 

associated with the development of neuropathy.

4. Regulation of mitochondrial dynamics by glucose

4.1 Hyperglycemia compromises DRG neuron bioenergetics

Elevated levels of glucose associated with hyperglycemia are processed by glycolysis and 

the TCA cycle followed by OXPHOS (Feldman et al., 2017). Excess glucose levels overload 

the glycolytic and TCA cycle resulting in a high proton gradient across the IMM. OXPHOS 

becomes compromised in the high proton gradient resulting in a decrease in ATP generation 

and increase in ROS production by an overloaded electron transport system.

Hyperglycemia significantly impairs mitochondrial bioenergetics in cultured DRG neurons. 

Elevated levels of glucose associated with hyperglycemia leads to excessive flux through 

the glycolytic pathway. Treatment of DRG neurons with 100 mM glucose decreases 

mitochondrial respiration and reduces ATP turnover (Rumora et al., 2018). Lower ATP 

production resulting from less efficient mitochondrial respiration suggests that DRG neuron 

bioenergetics are compromised by hyperglycemia. In combination with these altered 

bioenergetics, an increase in mitochondrial DNA indicates that mitochondrial biogenesis 

is occurring in DRG neurons, most likely to compensate for the increased metabolic load.

In parallel, DRG neurons from TD1 mice and rats show compromised maximal oxygen 

consumption rate and diminished spare respiratory capacity (S. K. Chowdhury et al., 2010; 
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S. R. Chowdhury et al., 2014). This decrease in mitochondrial respiratory function is 

accompanied by a decrease in mitochondrial electron transport chain proteins complexes 

I and IV and the TCA cycle protein citrate synthase (S. K. Chowdhury et al., 2010). 

Interestingly, mitochondrial respiration can be recovered using insulin (Aghanoori et al., 

2017; S. K. Chowdhury et al., 2010), neurotrophin-3 (Huang, Sayers, Verkhratsky, & 

Fernyhough, 2005), or ciliary neurotrophic factor (S. R. Chowdhury et al., 2014), which 

correlates with improved hind paw thermal sensitivity.

4.2 Hyperglycemia induces aberrant mitochondrial fission in DRG axons

As discussed above, DRG neurons respond to oxidative stress through mitochondrial 

biogenesis allowing DRG neurons to increase mitochondrial mass by the division of 

existing mitochondria (Vincent et al., 2010). Increased mitochondrial mass is thought 

to improve metabolic capacity and minimize mitochondrial damage. However, excessive 

levels of glucose lead to proapoptotic fission of the mitochondria. Proapoptotic fission 

is facilitated by DNM1L which splits the mitochondria and recruits proapoptotic protein 

BCL2 associated X (BAX) (Leinninger, Backus, et al., 2006). This recruitment is thought 

to prevent mitochondrial fusion and permeabilize the mitochondrial membrane for apoptosis 

(Leinninger, Edwards, Lipshaw, & Feldman, 2006). Knockdown of fission protein DNM1L 

in glucose-treated DRG neurons results in a decrease in mitochondrial fission and an 

improvement in neuronal health. Collectively, these data suggest that apoptotic fission may 

play a key role in glucose-induced injury in DRG neurons (Russell et al., 2002; Vincent, 

McLean, Backus, & Feldman, 2005).

4.3 Potential for hyperglycemia to regulate ER-mitochondrial interactions DRG neurons

Although glucose-regulated MAMs have not been reported in DRG neurons or diabetic 

nerve damage, MAM interactions are essential for intracellular metabolic pathways and are 

likely to play a key role in the progression of neuropathy, as documented for the hereditary 

neuropathies (Section 3.1.3). Numerous reports link hyperglycemia to MAM formation in 

the regulation of mitochondrial function. Elevated concentrations of glucose trigger the 

formation of fragmented mitochondria and a decrease in MAM interactions in liver, skeletal 

muscle, adipose tissue, and beta cells (Rieusset et al., 2016; Theurey et al., 2016). Further 

research is needed in this area to understand the role of MAMs in diabetic and prediabetic 

neuropathy.

4.4 Hyperglycemia has no effect on mitochondrial trafficking in DRG axons

Despite the reduction in mitochondrial respiration and ATP production in glucose-treated 

DRG neurons, glucose has no effect on mitochondrial motility in the axons of DRG 

neurons cultured from adult mice (Rumora et al., 2018). Additionally, the directionality 

and velocity of mitochondrial transport is not altered by glucose treatment. These results 

suggest that axonal mitochondrial transport is maintained despite impaired mitochondrial 

bioenergetics. Interestingly, mitochondrial transport is altered in DRG neurons treated with 

dyslipidemic concentrations of LCSFAs (Section 5.5) indicating that mitochondrial transport 

is differentially affected by hyperglycemia and dyslipidemia.
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In contrast to DRG neurons, glucose metabolism in hippocampal neurons of the central 

nervous system (CNS) plays a crucial role in regulating axonal mitochondrial transport 

through post-translational modification of the motor protein Milton. Rat hippocampal 

neurons treated with physiological levels of glucose display GlcNacylation of Milton 

by O-GlcNAc transferase resulting in a significant reduction in axonal mitochondrial 

transport (Pekkurnaz, Trinidad, Wang, Kong, & Schwarz, 2014). This glucose-related 

post-translational regulation of axonal mitochondrial transport is specific to mitochondria 

in hippocampal neurons. These results suggest that DRG neurons may possess unique 

regulatory mechanisms for mitochondrial dynamics and mitochondrial transport that differ 

from neurons of the central nervous system. Moreover, the effect of hyperglycemia and 

dyslipidemia on molecular mechanisms are distinct in DRG neurons.

5. Regulation of mitochondrial dynamics by dyslipidemia

5.1 Dyslipidemia and neuropathy

Since dyslipidemia plays a central role in the pathogenesis of neuropathy in patients 

with prediabetes and T2D (Callaghan, Little, et al., 2012), current studies are focused 

on understanding the lipid-related disease mechanisms that contribute to neuropathy 

development. To identify pathogenic molecular mechanisms underlying the development 

of neuropathy, murine models of prediabetes and T2D have been used to model 

dysfunctional mitochondrial dynamics. Common models of T2D include leptin and leptin 

receptor knockout animals, the ob/ob and db/db murine models respectively, characterized 

by hyperglycemia, dyslipidemia, and polyneuropathy. Prediabetes is also modeled in 

mice, using a lard-based high fat diet (HFD) chow. HFD-fed mice develop prediabetes 

characterized by obesity, dyslipidemia, and neuropathy similar to their human counterparts 

(O’Brien, Sakowski, & Feldman, 2014).

The fatty acid composition of murine diets has recently emerged as a regulator of nerve 

function in prediabetic and diabetic murine models. Recent studies by the Yorek laboratory 

demonstrate that polyunsaturated fatty acids (PUFAs) reduce diabetes- and prediabetes-

induced neuropathy. Mice fed a HFD combined with streptozotocin treatment develop 

T2D and neuropathy. Feeding these mice menhaden oil, an oil composed of omega-3 

PUFAs, alone (Shevalye et al, 2015) or in combination with α-lipoic acid, an antioxidant, 

and enalapril, an angiotensin-converting enzyme inhibitor (Yorek et al., 2017), improves 

neuropathy phenotypes compared to untreated animals. In a rat model of T2D, menhaden 

oil similarly slowed nerve loss and neuropathy progression (Coppey, Davidson, Shevalye, 

Torres, & Yorek, 2018). Cumulatively, the results suggest that LCSFAs are pathogenic in 

the development of neuropathy whereas PUFAs can prevent neuropathy in prediabetic or 

diabetic mice.

In line with these studies, monounsaturated fatty acids (MUFAs) also restore nerve function 

in a murine model of prediabetes (Rumora, LoGrasso, Hayes, et al., 2019) (Fig. 2). Mice 

fed a LCSFA-rich HFD develop glucose intolerance, increased body weight and fat mass and 

exhibit deficits in both sensory and motor nerve conduction velocity. A separate group of 

mice fed the LCSFA-rich HFD followed by 8 weeks of a MUFA-rich HFD (HFD-MUFA) 

exhibited similar metabolic dysfunction but had a complete restoration in sensory and motor 
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nerve conduction velocities. HFD-MUFA-fed mice also exhibited a significant increase in 

intraepidermal nerve fiber density in footpads compared to animals who remained on the 

LCSFA-rich HFD. These results suggest that unsaturated fatty acids have a beneficial effect 

on nerve function and are likely to improve mitochondrial dynamics to repair peripheral 

nerve function.

5.2 Dyslipidemia and mitochondrial bioenergetics

Our laboratory has recently reported that treating db/db T2D mice with pioglitazone, 

an agonist of the peroxisome proliferator-activated receptor gamma (PPAR-γ), improves 

diabetic neuropathy. Transcriptomic analyses of sciatic nerves from treated animals 

reveal changes in expression patterns of genes related to OXPHOS, FA β-oxidation, 

and the TCA cycle, suggesting that improving bioenergetic pathways correlates with 

an improvement in nerve function (Hinder et al., 2017). Additionally, impairment of 

mitochondrial bioenergetics in the sciatic nerves of db/db mice and DRG neurons of HFD-

fed mice indicate that mitochondrial energy production is compromised under dyslipidemic 

conditions (Sas et al., 2016; Sas et al., 2018).

To support these findings, an in vitro analysis of mitochondrial bioenergetics in DRG 

neurons revealed that diabetic levels of LCSFA palmitate caused an elevation in resting 

ATP generation and basal respiration (Rumora et al., 2018) (Fig. 3B). These changes in 

resting state bioenergetics were accompanied by a significant proton leak. Diabetic levels 

of LCSFA palmitate caused significant impairment of OXPHOS. These changes correlated 

with palmitate-induced axonal mitochondrial depolarization (Rumora et al., 2018) and of 

intracellular loss of ATP level (Rumora, LoGrasso, Haidar, et al., 2019).

Lower bioenergetic energy production reduces axonal ATP levels in the nerve and affects 

essential ATP-driven cellular mechanisms, such as axonal mitochondrial transport (Rumora 

et al., 2018). The loss of functional mitochondria in the axon is likely to exacerbate the 

reduction in axonal ATP leading to complete bioenergetic failure (De Vos & Hafezparast, 

2017). Therefore, research efforts are being directed toward understanding how certain 

diet-derived fatty acids are responsible for dysfunction in DRG neuron bioenergetics and 

these fatty acids effect neuronal and axonal mitochondrial trafficking and mitochondrial 

function.

5.3 Fusion and fission dynamics in dyslipidemia

Since mitochondrial bioenergetics are dependent on maintaining a balance of mitochondrial 

dynamics, fission and fusion of mitochondria are likely to play a key role in the 

pathogenesis of neuropathy. Although few studies have focused on fission and fusion in 

the dyslipidemic nerve, lipids are emerging as regulators of mitochondrial morphology 

and size. Complex lipids that are upregulated in dyslipidemia such as cardiolipin, 

phosphatidic acid, diacylglycerol, and phosphatidylethanolamine can regulate mitochondrial 

morphology (Frohman, 2015; Ha & Frohman, 2014). Cardiolipin is a negatively charged 

lipid found within the IMM that interacts with fusion and fission proteins. It is required for 

mitochondrial fusion mediated by dynamin-related GTPase MGM1 (yeast; mitochondrial 

dynamin like GTPase OPA1 in humans), a protein localized on the IMM (DeVay 
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et al., 2009). Cardiolipin may also interact with α-synuclein to induce mitochondrial 

fission (Nakamura et al., 2011), and also with pro-apoptotic factors, such as BAX and 

BH3 interacting domain death agonist (BID), which it recruits to mitochondria (Lucken-

Ardjomande, Montessuit, & Martinou, 2008; Lutter et al., 2000).

Phosphatidylethanolamine is another phospholipid present within the OMM and IMM 

that controls membrane curvature and mitochondrial fusion. Yeast cells that lack 

phosphatidylserine decarboxylase 1, the enzyme that synthesizes phosphatidylethanolamine, 

exhibit fragmented mitochondria (Chan & McQuibban, 2012). Phosphatidic acid, which 

can be derived from cardiolipin, is also a negatively charged lipid that induces curvature 

and induces mitochondrial aggregation and fusion through DNM1L (Adachi et al., 2016; 

Ha & Frohman, 2014). Conversely, diacylglycerol induces mitochondrial fission, but the 

precise mechanism is not known (Ha & Frohman, 2014). Dyslipidemia-induced alterations 

to phospholipid synthesis could potentially alter mitochondrial size and morphology by 

changing the mitochondrial membrane lipid composition. Indeed, in vitro in mouse DRG 

neurons, palmitate and stearate increased mitochondrial circularity and shifted their size 

distribution towards larger mitochondria (Rumora, LoGrasso, Haidar, et al., 2019).

5.4 ER-mitochondrial interactions in dyslipidemia

Although the role of MAMs in prediabetic and diabetic neuropathy is unknown (Section 

4.3), MAMs are upregulated in response to metabolic overload associated with prediabetes 

and T2D (Arruda et al., 2014; Lowell & Shulman, 2005). MAMs have been identified 

in murine models of obesity and are essential for regulating lipid synthesis pathways and 

maintaining mitochondrial function. MAMs are a major site for lipid biosynthesis and 

lipid exchange between the ER and mitochondria. The two major lipid synthesized at the 

MAM site are phospholipids, phosphatidylcholine and phosphatidylethanolamine (Rowland 

& Voeltz, 2012). Additionally, MAM formation can play a role in ceramide transfer from 

the ER to the mitochondria to initiate apoptotic cell death. MAMs are also major regulatory 

sites for regulating calcium-driven cell death. Under cellular homeostasis, calcium transfer 

from the ER to the mitochondria preserves normal bioenergetics (Cardenas et al., 2010). 

An increase of calcium flux from the ER to the mitochondria at the MAM site can 

trigger apoptosis (Section 2.4). Therefore, future studies on the involvement of MAMs in 

dyslipidemia and neuropathy may provide a novel therapeutic target for neuropathy.

5.5 The effect of dyslipidemia on axonal mitochondrial trafficking

A number of recent experiments have specifically investigated the differential impact 

of LCSFAs and MUFAs on mitochondrial function and trafficking in sensory neurons. 

Treatment of primary mouse DRG neurons with the LCSFA palmitate (C16:0) (Fig. 

4D) substantially lowered the number and velocity of motile mitochondria and increased 

mitochondrial depolarization (Fig. 3A,B) (Rumora et al., 2018). Similar outcomes were 

reported upon incubation of primary mouse DRG neurons with the LCSFA stearate 

(C18:0) (Fig. 4E), which markedly reduced the fraction of motile mitochondria and 

velocity of mitochondrial trafficking (Rumora, LoGrasso, Haidar, et al., 2019). Conversely, 

the shorter LCSFA myristate (C14:0) (Fig. 4C) and the medium chain saturated fatty 

acid (MCSFA) laurate (C12:0) (Fig. 4B) did not elicit any changes to mitochondrial 
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trafficking. The LCSFA-induced impairment in mitochondrial trafficking correlated with 

a reduction in mitochondrial membrane potential, decrease in ATP levels, and activation 

of neuronal apoptosis (Rumora, LoGrasso, Haidar, et al., 2019) (Fig 3A,B). Overall, this 

body of evidence suggests LCSFAs trigger mitochondrial dysfunction supporting a role for 

dyslipidemia in the pathogenesis of neuropathy.

Another study compared the effect of MUFA oleate and LCSFA palmitate on mitochondrial 

trafficking to determine the beneficial effect of dietary MUFAs in prediabetic murine 

models of neuropathy (Rumora, LoGrasso, Hayes, et al., 2019). As previously reported, 

palmitate caused a significant reduction in the percentage of motile mitochondria in the 

axons of DRG neurons. Conversely, oleate had no effect on mitochondrial trafficking 

(Fig. 4F). Interestingly, equimolar or 2:1 mixture of oleate and palmitate completely 

prevented the palmitate-induced impairment in mitochondrial transport (Fig. 4G). Oleate 

also prevented mitochondrial depolarization, reduction in ATP levels, and caspase activation. 

The mechanism by which oleate prevents mitochondrial dysfunction may be related to lipid 

droplet formation throughout the DRG axon (Fig. 2B). The formation of lipid droplets 

allows for the sequestration of palmitate preventing downstream mitochondrial dysfunction.

This differential regulation of axonal mitochondrial trafficking in DRG axons suggests that 

LCSFAs including palmitate and stearate are particularly damaging to DRG neurons. It is 

likely that LCSFAs are metabolized into lipotoxic lipids, such as ceramides (Listenberger 

et al., 2003), diacylglycerols, or cardiolipins, that cause mitochondrial dysfunction and 

apoptosis in DRG neurons and axons. A MUFA-rich HFD can reverse neuropathy and 

restore nerve function. On a molecular level, oleate prevents impairment of mitochondrial 

axonal transport, retains mitochondrial membrane potential, and abolishes DRG neuron 

apoptosis likely by the formation of intra-axonal lipid droplets that sequester lipotoxic 

LCSFAs (Fig. 2B).

6 Conclusions

Peripheral neuronal architecture is essential for transmitting sensory and motor signals 

across long distances between the CNS and PNS, but it places unique constraints on 

managing their energy demands. First, neurons rely on mitochondria during basal and 

high activity periods for their constant ATP demand (i.e., mitochondrial bioenergetics). 

Second, in order to meet that continuous need, neurons are reliant on carefully orchestrated 

mitochondrial dynamics to ensure balanced biogenesis (i.e., fission/fusion, remodeling) for 

optimal energy production, and that these mitochondria are delivered to areas of high 

activity (i.e., trafficking/transport). Interactions with other organelles such as ER (i.e., 

MAMs) add a further layer of coordinated activity, in addition to clearance mechanism, 

which are necessary for removing and replacing damaged mitochondria. Heritable peripheral 

neuropathies caused by mutations in genes that regulate mitochondrial bioenergetics, fission/

fusion, and transport elegantly demonstrate this critical vulnerability of neurons. Loss of 

well-regulated mitochondrial dynamics in these heritable neuropathies leads to aberrant 

mitochondrial functioning and neuronal injury and loss, underscoring the essential role of 

mitochondria in normal nerve function.
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This particular susceptibility of neurons to mitochondrial dysfunction has led to 

investigations into their roles in the pathogenesis of neuropathy associated with prediabetes 

and diabetes. Confirming this, studies have shown that mitochondrial dysfunction underlies 

neuropathy onset and development in both prediabetic and diabetic patients. Hyperglycemia 

and dyslipidemia contribute to the pathogenesis of neuropathy but exert a differential effect 

on neuronal mitochondrial dynamics and function. Preliminary results suggest that impaired 

mitochondrial bioenergetics in prediabetes or diabetes plays a key role in the progression of 

neuropathy by reducing axonal energy to maintain neuronal function. To compensate for this 

bioenergetic reduction, DRG neurons undergo mitochondrial biogenesis under conditions 

of hyperglycemia or proton leak during dyslipidemia. Elevated LCSFAs associated with 

dyslipidemia impair mitochondrial trafficking, depolarize the MPP, induce a loss of ATP, 

and apoptosis. Conversely, MUFAs restore mitochondrial dynamics in DRG axons and 

nerve function in murine models of neuropathy. These recent developments in mitochondrial 

mechanisms underlying the progression of neuropathy will direct future studies with the 

goal of developing treatments for this prevalent and debilitating complication.
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Fig. 1. 
Schematic of mitochondrial fission and fusion dynamics. Mitochondrial bioenergetics are 

regulated by mitochondrial fission and fusion events. Mitochondrial fusion events retain 

mitochondrial bioenergetic function, MMP, ATP production, and decrease ROS generation 

and apoptosis. Conversely, mitochondrial fission leads to mitochondrial depolarization 

which impairs mitochondrial bioenergetic function and decreases ATP production. 

Compromised bioenergetics lead to ROS production triggering apoptosis.
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Fig. 2. 
A dietary switch from a SFA-rich HFD to a MUFA-rich HFD restores nerve function in a 

murine model of prediabetes and neuropathy. A) Mice fed a SFA-rich HFD develop robust 

neuropathy phenotypes including a decrease in sensory and motor nerve conduction velocity 

and a reduction in intraepidermal nerve fiber density. In line with these results, cultured 

DRG neurons treated with SFAs exhibit a decrease in axonal mitochondrial trafficking 

and MMP. These mitochondrial changes are associated with apoptosis and a reduction in 
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neuronal ATP level. B) Changing mice from a SFA-rich diet to a MUFA-rich diet restores 

both nerve and mitochondrial function.
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Fig. 3. 
Dyslipidemia decreases mitochondrial function in DRG neurons. (A) LCSFA palmitate 

induces a loss of MMP through mitochondrial depolarization. Mitochondria labeled with 

mito-GFP are stained with MMP-dependent stain TMRM. Axonal mitochondria maintain 

MMP in the bovine serum albumin vehicle control and appear yellow in an overlay of 

both signals. Palmitate-treated cells exhibit a loss in TMRM staining due to mitochondrial 

depolarization. (B) Palmitate impairs mitochondrial bioenergetics through mitochondrial 

depolarization by increasing basal respiration and ATP turn over which leads to a 
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decrease in coupling efficiency and increased proton leak from the electron transport 

chain. Bioenergetics bar graphs included with permission from Rumora, A.E., Lentz, S.I., 

Hinder, L.M., Jackson, S.W., Valesano, A., Levinson, G.E., and Feldman, E.L. (2018). 

Dyslipidemia impairs mitochondrial trafficking and function in sensory neurons. Faseb j 32, 
195–207. Mitochondrial depolarization figures adapted with permission from Rumora, A.E., 

LoGrasso, G., Haidar, J.A., Dolkowski, J.J., Lentz, S.I., and Feldman, E.L. (2019). Chain 
length of saturated fatty acids regulates mitochondrial trafficking and function in sensory 
neurons. J Lipid Res 60, 58–70.
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Fig. 4. 
SFAs impair axonal mitochondrial transport in DRG neurons. (A) A kymograph analysis 

is used to record mitochondrial movement from 0–150 seconds using live-cell confocal 

microscopy. Straight lines indicate non-motile mitochondria. Elevated levels of exogenous 

short and medium chain SFAs laurate (B) and myristate (C) did not impact the number 

of motile mitochondrial in the axon of sensory DRG neurons. LCSFAs associated with 

T2D and prediabetes such as palmitate (D) and stearate (E) induce a dose-dependent 

decrease in the percentage of motile mitochondria in the axon of sensory DRG neurons. (F) 

MUFA oleate had no effect on mitochondrial motility. (G) Mixtures of oleate and palmitate 

prevented palmitate-induced impairment of mitochondrial transport. SFA kymographs and 
bar graphs modified with permission from Rumora, A.E., LoGrasso, G., Haidar, J.A., 

Dolkowski, J.J., Lentz, S.I., and Feldman, E.L. (2019). Chain length of saturated fatty acids 
regulates mitochondrial trafficking and function in sensory neurons. J Lipid Res 60, 58–70. 
Permission to be obtained for MUFA kymographs and bar graphs from J. Neurosci upon 
release of paper in press.
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