
Cansdale and Chong ﻿Microbiome          (2024) 12:226  
https://doi.org/10.1186/s40168-024-01949-z

METHODOLOGY Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Microbiome

MAGqual: a stand-alone pipeline to assess 
the quality of metagenome-assembled 
genomes
Annabel Cansdale1* and James P. J. Chong1 

Abstract 

Background  Metagenomics, the whole genome sequencing of microbial communities, has provided insight 
into complex ecosystems. It has facilitated the discovery of novel microorganisms, explained community interactions 
and found applications in various fields. Advances in high-throughput and third-generation sequencing technologies 
have further fuelled its popularity. Nevertheless, managing the vast data produced and addressing variable dataset 
quality remain ongoing challenges. Another challenge arises from the number of assembly and binning strategies 
used across studies. Comparing datasets and analysis tools is complex as it requires the quantitative assessment 
of metagenome quality. The inherent limitations of metagenomic sequencing, which often involves sequencing 
complex communities, mean community members are challenging to interrogate with traditional culturing methods 
leading to many lacking reference sequences. MIMAG standards aim to provide a method to assess metagenome 
quality for comparison but have not been widely adopted.

Results  To address the need for simple and quick metagenome quality assignation, here we introduce the pipeline 
MAGqual (Metagenome-Assembled Genome qualifier) and demonstrate its effectiveness at determining metagen-
omic dataset quality in the context of the MIMAG standards.

Conclusions  The MAGqual pipeline offers an accessible way to evaluate metagenome quality and generate meta-
data on a large scale. MAGqual is built in Snakemake to ensure readability and scalability, and its open-source nature 
promotes accessibility, community development, and ease of updates. MAGqual is built in Snakemake, R, and Python 
and is available under the MIT license on GitHub at https://​github.​com/​ac1513/​MAGqu​al.
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Background
Metagenomics, the analysis of whole genomes of 
microbial communities directly from environmental 
samples, has proved to be a revolutionary tool in micro-
biology. With applications in environmental, medical and 

biotechnology arenas, metagenomics has resulted in the 
discovery of many interesting species and even whole 
phyla that had remained uncharacterised because they 
are not easily manipulated in the lab or are unculturable 
[1, 2]. This has led to the elucidation of the real dynamics 
of more complex microbial communities [3].

Metagenomic sequencing of environmental sam-
ples has become increasingly popular in recent years, 
mainly due to the development of next-generation 
sequencing. Sequencing technologies have become 
higher throughput and lower in cost, which makes the 
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sequencing of entire microbial communities more fea-
sible [4]. Due to the advantage metagenomic sequenc-
ing offers by removing the need for isolation and 
amplification of organisms, many mixed microbial 
communities once known as the “uncultured micro-
bial majority” or “microbial dark matter” [5, 6] that 
were previously challenging to characterise [7] have 
been targeted by metagenomic sequencing. A result of 
metagenomics targeting little-characterised communi-
ties is that high-quality reference genomes do not exist 
for many microbes observed in metagenomic studies, 
either because they are being seen for the first time or 
are uncultured non-model organisms [7].

A typical metagenomics analysis pipeline would be 
as follows: raw reads from shotgun DNA sequencing of 
a microbial community would undergo quality control 
before being assembled using appropriate assembly soft-
ware (including MetaSPAdes, MEGAHIT, IDBA-UD for 
short-read metagenomics and metaFlye, Canu for long-
read metagenomics [8–12]), and then the metagenomic 
assembly would be binned using a variety of approaches 
to group the contigs associated with different organisms 
in the sequenced community into metagenome-assem-
bled genomes (MAGs) [13].

Metagenomic-specific software employs many differ-
ent assembly and binning strategies [13] as metagenomic 
studies have different challenges than single-organism 
genomic studies. A mixed community with organisms at 
different abundances makes both the assembly and bin-
ning of a metagenome challenging [8, 13, 14]. The risk of 
contamination of MAGs from closely related organisms 
is an additional challenge [13]. Therefore, it is important 
to have a method of determining overall metagenome 
and MAG quality.

The lack of reference genomes available for many 
organisms identified through metagenomics becomes 
an issue when comparing metagenome analysis methods 
and software due to a lack of ground truth. Benchmark-
ing and quality assessment tools exist for metagenomic 
studies, such as AMBER and MetaQUAST [15, 16]; how-
ever, these require the organisms present in the dataset to 
be known and have appropriate reference genomes.

Determining MAG quality is important to indicate 
the quality of the initial analysis and highlight which 
MAGs are worthy of further investigation or deposi-
tion onto online databases. The Minimum Information 
about a Metagenome-Assembled Genome (MIMAG) 
[17] is a standard developed by the Genomics Standards 
Consortium (GSC) which outlines a framework for the 
classification of MAG quality (into either high-quality 
draft, medium-quality draft or low-quality draft) and 

recommends the reporting of specific metadata for each 
MAG. While this framework aids in the reproducibility 
of metagenomic studies, it has not yet received universal 
uptake.

Within the MIMAG standards, three criteria are used 
to determine overall MAG quality: genome complete-
ness, contamination and assembly quality. When tax-
onomy is known and a reference genome is available for 
a MAG, these metrics are easier to determine. However, 
identifying appropriate references and the subsequent 
pairwise alignment of MAGs is often a manual and com-
putationally intensive process and so is not an appropri-
ate method for a large number of MAGs [13].

Due to the lack of a “ground truth” (i.e. a closely related 
reference strain) for many communities that are inves-
tigated using metagenomic sequencing and the com-
putational power required to determine closely related 
organisms at scale, it is necessary to take a reference-free 
or de novo approach to determine the success of both 
metagenomic sequencing and binning [17]. One such 
approach determines the completeness and contamina-
tion of a genome (or in this case a metagenome-assem-
bled genome) using marker genes, as exemplified by the 
popular software CheckM [18].

For many organisms identified through metagenom-
ics, determining assembly quality is challenging as there 
is not a defined sequence to compare the MAG back to. 
For MAGs, determining assembly quality is suggested 
to be determined by the presence and completeness of 
encoded rRNA and tRNA genes within the metagenome 
bin [17].

Due to the abundance of metagenomic software avail-
able, community adoption of standards like MIMAG 
is important to increase reproducibility and reliability 
within and between datasets; however, currently, the 
MIMAG standards remain underutilised by many stud-
ies. Adopting these standards is an important aspect of 
the FAIR principles for scientific data, which empha-
sise findability, accessibility, interoperability and reus-
ability [19]. The advances and increasing throughput of 
metagenomic sequencing have resulted in the genera-
tion of hundreds to thousands of MAGs per metagenome 
[14, 20]. Parsing the information required to determine 
the quality of these bins and isolating the higher-quality 
MAGs worthy of further analysis is a challenge.

Here, we introduce MAGqual (Metagenome-Assem-
bled Genome Quality), a pipeline implemented in 
Snakemake v7.30.1 [21], to automate MAG quality anal-
ysis at scale. MAGqual enables the user to pass in MAGs 
generated by metagenomic binning software and quickly 
assess the quality of these bins according to the MIMAG 
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standards. These bins are analysed to determine com-
pleteness and contamination (using CheckM v1.0.13 
[18]) and the number of rRNA and tRNA genes (using 
Bakta v1.7.0 [22]) that each bin encodes. This informa-
tion is used by bespoke code to determine the quality 
of each bin, in line with the MIMAG standards (with 
an additional “near-complete” category), and produces 
figures and a report that outlines the quality and other 
metrics of the input MAGs.

MAGqual enables users to automate the assignment of 
quality to their metagenome bins and quickly determine 
the success of their metagenomic analysis. This will hope-
fully improve the uptake of MIMAG standards across the 
metagenomics community and provide an easy way to 
benchmark new metagenomic binning software or analy-
sis methods. MAGqual supports the FAIR principles by 
generating comparable metrics from metagenomic data-
sets collected by diverse methods and provides a visual 
measure of MIMAG and additional metagenomic sta-
tistics. Its open-access nature and simple Snakemake 
pipeline will enable timely updates as the metagenomic 
field moves forward. MAGqual is available from https://​
github.​com/​ac1513/​MAGqu​al under an MIT license.

Methods
MAGqual pipeline (Fig. 1)
The MAGqual pipeline is built in Snakemake (v.7.30.1) 
[21]. Snakemake is a popular workflow management 
tool based on Python that enables a human-readable 
plug-and-play strategy for analysis pipeline design. This 
method of design results in a pipeline that is easier to 
understand, adapt and maintain. Furthermore, Snake-
make integrates easily into high-performance computing 
clusters, making workflows highly scalable on many sys-
tems — which is key as datasets increase in size.

The MAGqual pipeline requires only the installation of 
Miniconda and Snakemake by the user. The installation of 
all remaining software is handled by the Snakemake pipe-
line using Conda environments. Additionally, MAGqual 
handles the installation of databases required by Bakta 
and CheckM. The light version of the Bakta database is 
downloaded to maximise speed and minimise storage 
space required; however, MAGqual allows the specifica-
tion of a local Bakta and/or CheckM database if required. 
Two file types are required as input: first, a directory con-
taining the metagenomic bins (MAGs) in FASTA format 
(with the file extension fasta, fna or fa) and second the 

Fig. 1  The MAGqual pipeline. MAGs in FASTA format are run through CheckM for quality assessment, SeqKit to calculate basic statistics and Bakta 
for MAG annotation, and the output from these is classified according to the MIMAG standards using a bespoke Python script. This outputs a CSV 
file containing recommended metadata, the MAGs organised according to their classification and plots and a report are generated to visualise 
the classification and assembly statistics

https://github.com/ac1513/MAGqual
https://github.com/ac1513/MAGqual
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metagenomic assembly (in FASTA format) used to gener-
ate the metagenomic bins.

To remain accessible to those unfamiliar with Snake-
make pipelines, MAGqual can be run using a Python 
wrapper with the basic command:

python MAGqual.py --asm assembly.fa --bins bins_dir/

The wrapper achieves full pipeline functionality with-
out requiring users to edit configuration files. See Table 1 
for the full command line options available to the user 
and their defaults.

MAGqual also retains full Snakemake functionality 
and can easily be run using the Snakemake architecture. 
The basic command for this is snakemake --use-conda -j 
1 and the user is required to edit the config/config.yaml 
file to specify the location of the input files and has the 
option to further edit the command and the config/clus-
ter.json file to add configuration options to run MAG-
qual on an HPC cluster. This is a useful option for those 
more familiar with Snakemake pipelines, as the pipeline 
can be further modified to run better on different infra-
structures; however, this is not necessarily appropriate 
for every user.

MAG completeness and contamination
While MIMAG introduces metagenomic standards, 
it does not recommend a specific “industry-standard” 
method for calculating them. Both the completeness 
and contamination values vary depending on what set of 

initial single-copy marker genes is used, so the method 
used requires reporting. Here, we use the CheckM, which 
has become the de facto software used for these calcula-
tions in the years since the standards were published [23].

Assembly quality
In line with the MIMAG standards, the presence and 
completeness of tRNA and rRNA ribosomal genes are 
also determined. This is suggested as a method of assem-
bly quality determination. Here, the MAG is run through 
Bakta for annotation and rapidly identifies rRNA and 
tRNA ribosomal genes. Previously, Prokka was the soft-
ware of choice for fast microbial annotation [24]; how-
ever, Bakta improves the annotation of CDS compared to 
Prokka and remains actively supported so it was chosen 
for use in this pipeline [22]. To be classified as a high-
quality draft MAG, a MAG must encode tRNAs for at 
least 18 of the 20 possible amino acids and the 5S, 16S 
and 23S rRNA genes [17].

Determining MAG quality
Using the results from CheckM and Bakta, MAGqual cal-
culates overall MAG quality using Python (Table 2).

Along with the high, medium and low-quality stand-
ards introduced in the MIMAG standards [17], we 
include the “near-complete” quality draft MAG category 
introduced by Almeida et al. (2019) [25]. We define this 
“near-complete” quality (NCQ) draft MAG as > 90% com-
plete, < 5% contaminated, but not encoding the necessary 
tRNA and rRNA to be classified as a highly complete 
draft MAG. This was determined to be an important 
addition to MAGqual due to documented problems 
around the assembly and annotation of rRNA/tRNA 
sequences [23], especially with metagenomes generated 
from short-read sequencing [20, 26]. As uncultured and 
previously undetermined organisms comprise a signifi-
cant proportion of metagenomic communities, this ena-
bles some flexibility for any CDS annotation issues.

Table 1  MAGqual command line options and their usage

Command line option Usage

-a / --asm Required: The location of the assem-
bly in FASTA format used to gener-
ate the metagenome bins

-b / --bins Required: The location of the direc-
tory containing all the metagenome 
bins for quality assignation

-p / --prefix The prefix for the job. Default 
is MAGqual_YYYYMMDD

-j / --jobs Links to the Snakemake flag 
-j, the number of cores to use 
or if using the cluster option 
and the number of jobs to run 
at once. Default is 1

--cluster Optional: The type of cluster to run 
MAGqual on a HPC system (available 
options: slurm), not to be used 
if running MAGqual locally

--checkmdb Optional: The location of a local 
install of the CheckM database

--baktadb Optional: The location of a local 
install of the Bakta database. Note: 
Must be v.5 or above

-h / --help Show help message

Table 2  MAGqual quality evaluation categories and the 
completeness, contamination and rRNA/tRNA requirements

Quality Completeness Contamination rRNA/tRNA 
required

High  > 90%  ≤ 5%  ≥ 18 tRNA and 23S, 
16S and 5S rRNA 
genes

Near complete  > 90%  ≤ 5% None

Medium  ≥ 50%  ≤ 10% None

Low  < 50%  ≤ 10% None

Failed -  ≥ 10% None
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Once the MAGs have been assessed, a figure showing 
a breakdown of size, completeness and contamination 
scores and quality category for each bin is generated. 
This provides users with simple and quick evidence of 
the quality of their metagenome bins. A file containing 
the recommended metadata (see Table  3) is exported 
for each MAG to enable easy submission and analysis. 
An interactive HTML report is also generated to allow 
easy viewing of these plots and metadata. MAGqual will 
finally output multiple directories containing the MAGs 
split by overall quality category.

Reported metadata
Alongside determining MAG quality, MAGqual also gen-
erates metadata recommended by the MIMAG stand-
ards. The metadata categories can be seen in Table  3; 
MAGqual produces a CSV file with a line of correspond-
ing metadata for each MAG run through the pipeline.

MAGqual report
Along with a metadata table, MAGqual generates an 
interactive HTML report generated using Python, 
RMarkdown and Plotly. This report produces numerous 
figures including the bases and contigs binned, complete-
ness and contamination, N50 length, total length and 
tRNA completeness along with tables for MAG quality 
and metadata. This report is generated from all available 
MAGqual runs in the same directory, enabling a quick 
comparison of binning results between MAGqual runs.

Running the pipeline
To determine the runtime of the pipeline on minimal 
architecture, an 8-core 32  GB Linux instance (Canoni-
cal Ubuntu 22.04) on Oracle Cloud was used. Snakemake 
(v7.30.1) and Conda (v.23.5.2) were installed into this 
nascent environment, and MAGqual handled the instal-
lation and database downloads required.

Due to the requirement for over 40  GB of memory, 
CheckM was run for this test with the --reduced_tree 
option which lowers the memory required to 16 GB. 

To reflect actual runtime, each benchmark was run 
from a clean environment; therefore, the Conda environ-
ments had to be remade and the databases re-downloaded 
to include the time required for these into each run.

To validate the MAGqual pipeline, we generated a 
dataset of 10, 100, 500 and 1000 MAGs from Parks et al. 
(2017) [20]. This study was chosen as these MAGs were 
previously assigned a quality with completeness and 
contamination scores. However, this paper predates the 
publication of the MIMAG standards so no high-quality 
MAGs were defined.

Comparison of binning tools
A small metagenomics dataset from a gut microbiome 
was procured from ENA project PRJEB44880 [27] cor-
responding to a nanopore metagenome assembly pol-
ished with Illumina short reads and seven samples of 
short-read Illumina raw sequencing data. Three popular 
metagenomic binning tools were chosen for comparison: 
CONCOCT (v1.1.0), MetaBAT2 (v2.12.1) and BinSanity 
(v0.5.4) [28–30]. All three tools use abundance informa-
tion for binning, obtained by mapping Illumina short 
reads back to the assembly using BWA (v0.7.17) [31] to 
produce a BAM file for each sample.

The BAM files were then passed to each binning soft-
ware using the minimum contig length of 1000  bp — 
apart from CONCOCT, which requires contigs < 10  kb, 
where the assembly had to be split and the raw reads 
remapped to each split assembly. The MAGs produced by 
these three binners were passed through the bin refine-
ment tools MetaWrap (v1.3.2) and DAS Tool (v1.1.6) [32, 
33]. DAS Tool was run as directed, with the flag --write_
bins to produce the bins for comparison. MetaWrap was 
run using the bin_refinement module and the flags -c 0 
(minimum completeness)—× 100 (maximum contamina-
tion) to output all bins regardless of quality.

Results
Running the pipeline
MAGqual is quick and easy to run, with only one com-
mand required to initiate the pipeline, install dependen-
cies and run each of the steps. The speed of the pipeline 

Table 3  Metadata and metrics reported by the MAGqual 
pipeline in CSV format

Metric Reported

Assembly quality High-quality draft, near complete, 
medium-quality draft, low-quality draft, 
failed

Completeness score Percentage (%)

Contamination score Percentage (%)

Completeness software CheckM (version)

16S rRNA genes recovered Yes/no

16S rRNA software Bakta (version & database version)

tRNA extracted No./20

tRNA software Bakta (version & database version)

Completeness approach Marker gene

Assembly statistics -

  Size No. of bp

  N50 No. of bp

  Maximum contig length No. of bp

  Number of contigs No
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depends on the size of the dataset being analysed and is 
overall limited by the speed of the programmes Bakta 
and CheckM.

As seen in Table  4, with the generated dataset of 10, 
100, 500 and 1000 MAGs from [20], as the number of 
MAGs increases, the majority of runtime is assigned to 
Bakta, which, while only taking on average ~ 2.5 min per 
MAG, becomes significant when running 1000 MAGs.

While it was important to determine the minimal com-
putational infrastructure required to run this pipeline, as 
the majority of metagenomic research is undertaken on 
HPCs, it is recommended to run Bakta jobs in parallel 
which is possible using the flag -j using both the Python 
wrapper and using the Snakemake infrastructure.

Fig. 2  A The completeness and purity (100-contamination score) of the 1000 MAGs from the metagenomic benchmarking dataset when using 
the completeness, contamination and quality metrics from the original paper. B The completeness and purity (100-contamination score) 
of the 1000 MAGs from the metagenomic benchmarking dataset using the MIMAG standards and the introduced near-complete category

Table 5  The total number of MAGs and their respective qualities for each of the five binning tools evaluated with this dataset

BinSanity CONCOCT MetaBAT2 DAS Tool MetaWRAP

Total number of MAGs 109 91 92 25 126
High quality 8 8 5 10 9

Near complete 1 2 1 2 2

Medium quality 11 12 18 11 17

Low quality 83 61 66 2 98

Failed 6 8 2 0 0
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Validation of MAGqual
The 1000 MAGs used in the previous analysis were also 
used to compare the quality score assigned by Parks et al. 
(2017) [20] (Fig. 2A) to the new MAGqual quality score 
(Fig.  2B). The introduction of MIMAG quality scores 
changed the assignment of many MAGs from the origi-
nal dataset, classifying 17 high-quality MAGs that were 
previously within the “near-complete” category.

Analysis of this example dataset highlights the impor-
tance of the near-complete category in the MAGqual 
pipeline. All 417 would have been assigned as medium-
quality MAGs, and only 17 would be classed as high 
quality. In contrast, these MAGs are still > 90% com-
plete and < 5% contaminated and potentially would ben-
efit from further analysis. Including this category in the 
MAGqual pipeline will hopefully increase the uptake of 
metagenomic dataset benchmarking in studies. A small 

Fig. 3  A The total number of bases (bp) and contigs binned for each of the five binning tools examined with this dataset. B Boxplot showing 
the distribution of the completeness and contamination scores for each MAG generated by the five binning tools evaluated with this dataset
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number of MAGs have different completeness and purity 
scores; however, the majority remain the same.

To demonstrate the speed of MAGqual on an HPC, 
where most metagenomic research is undertaken, these 
1000 MAGs were analysed using the MAGqual pipeline 
on a 64-core, 512 GB machine. MAGqual completed with 
a wall-clock time of 2:55:57 and a CPU time of 243:34:04.

Comparison of binning tools
To demonstrate the use of MAGqual as a bin compari-
son tool, a simple gut microbiome metagenome [27] was 
re-binned using three different metagenomic binning 
tools, CONCOCT, MetaBAT2 and BinSanity [28–30], 
and then refined using the pipeline from MetaWRAP 
and DAS Tool [32, 33]. MAGqual was used to analyse 
the bins generated using these five different tools. Table 5 
shows that CONCOCT and MetaBAT2 both generated 
a similar number of bins (91 and 92, respectively); how-
ever, CONCOCT generated more high-quality bins (8) 
than MetaBAT2, as did BinSanity. DAS Tool and MetaW-
RAP both improved the overall quality of bins, indicating 
the benefits of a combined binning approach. However, 
DAS Tool produced a much lower number of bins over-
all, and DAS Tool binned substantially fewer contigs 
and bases overall (Fig.  3A) but produced higher-quality 
MAGs (more complete with low contamination, Fig. 3B), 
illustrating a potential trade-off between assigning more 
of the sequence data and improved bin quality that likely 
depends on different algorithmic approaches to binning 
philosophies. MAGqual enabled a rapid comparison of 
the MAGs created using these five methods so that users 
could select the most appropriate binning strategy for 
their research. Further plots from this analysis can be 
seen in the Supplementary HTML file.

Conclusions
As the size of metagenomic datasets continues to grow, 
researchers face new challenges in managing and ana-
lysing these data. Larger datasets require more sophis-
ticated computational infrastructure, often involving 
high-performance computing clusters or cloud resources. 
Metagenome analysis is characterised by a wide array of 
methods and tools, each with its strengths and limita-
tions, and researchers often choose different tools based 
on their specific research questions or the nature of their 
data. This diversity in tools can lead to variations in anal-
ysis outcomes. The adoption of MAGqual, a lightweight 
and user-friendly pipeline, offers a valuable solution to 
researchers, as it simplifies the binning evaluation pro-
cess and can be quickly and efficiently applied to datasets 
of varying sizes generated by any analysis tool.

Building the MAGqual pipeline in Snakemake provides 
further advantages, including cluster execution, modu-
larisation and simple pipeline updates. After testing and 
benchmarking using the Snakemake benchmarking func-
tion, new tools can be integrated into the MAGqual pipe-
line with ease, and as the pipeline is hosted on GitHub, 
any updates will be shared with the community promptly. 
For example, during the preparation of this manuscript, 
CheckM2 [34] was released and could be easily substi-
tuted into the pipeline.

One of the pipeline’s primary objectives is to encour-
age wider adoption of the MIMAG (Minimum Infor-
mation about a Metagenome-Assembled Genome) 
reporting standards to ultimately improve the consist-
ency and quality of metagenomic research. MAGqual 
aids users in swiftly identifying data that merits further 
analysis. By identifying good quality MAGs, MAGqual 
provides a targeted approach to metagenome analy-
sis, which can reduce both computational and storage 
costs, making metagenome analysis more accessible and 
cost-effective.
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