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Abstract

Signal transduction enables cells to sense and respond to chemical and mechanical information in 

the extracellular environment. Recently, phase separation has emerged as a physical mechanism 

that can influence the spatial organization of signaling molecules and regulate downstream 

signaling. Although many molecular components of signaling pathways, including receptors, 

kinases, and transcription factors, have been observed to undergo phase separation, understanding 

the functional consequences of their phase separation in signal transduction remains an ongoing 

area of research. In this review, we will discuss recent studies investigating how cells potentially 

use phase separation to regulate different signaling pathways by initiating signaling, amplifying 

signaling, or inhibiting signaling. We will also discuss recent observations that suggest a role for 

phase separation in mechanosensing in the Hippo pathway and at focal adhesions.

Introduction

Signal transduction enables cells to sense and respond to information in the extracellular 

environment. Cells sense chemical information, such as secreted peptides, hormones, ions, 

and growth factors, as well as mechanical information, such as tissue stretch, shear force, 

surface topology, and substrate stiffness1. Recently, phase separation has emerged as a 

physical mechanism that can influence the spatial organization of signaling molecules 

and regulate downstream signaling2,3. Phase separation occurs when a homogenous 

mixture of molecules spontaneously de-mixes to form two or more distinct phases4. 

Many biological molecules, including proteins and nucleic acids, can undergo phase 

separation to form liquid-like droplets that concentrate specific collections of molecules3,4. 

These compartments, termed biomolecular condensates, can be found throughout the 

kingdoms of life and function to organize cells and potentially regulate diverse cellular 

processes3. Proteins that undergo phase separation often contain multivalent folded domains 

and/or intrinsically disordered regions (IDRs) that can mediate multivalent, intermolecular 
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interactions2,3. Phase separation is thermodynamically driven, and whether a solution 

undergoes spontaneous phase separation depends on the concentration and identities of the 

macromolecules as well as environmental conditions such as temperature, salt concentration, 

and pH3,5.

Understanding the functional consequences of phase separation in signal transduction 

remains an ongoing area of research, and there are challenges to rigorously studying the 

impact of phase separation on signaling in vivo4,6. For example, phase separation is sensitive 

to concentration, so experiments caried out with endogenous protein levels are ideal. Recent 

reviews discuss some challenges and best practices for phase separation experiments in 

more detail4,6. In this review, we will discuss recent studies investigating how cells use 

phase separation to regulate signaling pathways (Figure 1). We will also discuss recent 

observations that suggest a role for phase separation in mechanosensing in the Hippo 

pathway and at focal adhesions.

Phase separation can initiate signaling.

In many cases, fluctuations in environmental conditions can be directly sensed by the 

phase separation of intracellular molecules7. Since phase separation is exquisitely sensitive 

to factors such as pH, temperature, and crowding6, the formation or dissolution of phase 

separated condensates can be a sensitive switch to initiate signaling in diverse physiological 

contexts.

Plant growth is sensitive to many environmental variables including hydration, temperature, 

and light, and plant cells use phase separation to initiate signaling and adapt to 

environmental fluctuations. A prion-like protein FLOE1 found in Arabidopsis thaliana 
embryos phase separates upon hydration, resulting in seed germination**8. Mutations 

that impair FLOE1 phase separation cause inappropriate seed germination in dehydration 

conditions. The evening complex protein ELF3, a component of the plant circadian clock, 

undergoes phase separation at high temperatures, leading to a decrease in its activity as 

a transcriptional repressor9. ELF3 phase separation is mediated by its prion-like domain 

and this domain is required for thermal responsive growth. Photoreceptor phytochrome B 

(PhyB), the major red/far-red light receptor in plants, undergoes phase separation to form 

condensates that selectively incorporate signaling components to activate signaling*10. Since 

formation of PhyB condensates is sensitive to both light and temperature, PhyB phase 

separation enables the integration of light and temperature signals.

Mammalian cells can also use phase separation to initiate signaling. Hypertonic stress causes 

a rapid decrease in cell volume, leading to an increase in intracellular crowding. In response, 

cells regulate ion transporters to drive net solute influx, leading to a reclamation of water 

and regulatory volume increase**11. This signaling pathway is initiated by with-no-lysine 

(WNK) kinases, which form cytoplasmic condensates within seconds of hypertonic stress. 

WNK kinase phase separation requires the C-terminal IDR and occurs in response to 

increased crowding, leading to an increase in WNK kinase activity to initiate the regulatory 

volume increase in response to hyperosmotic stress11.
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In the presence of cytosolic double stranded DNA (dsDNA), cyclic GMP-AMP synthase 

(cGAS) produces the second messenger cGAMP to activate the ER membrane localized 

STING protein, culminating in the activation of the innate immune response12–14. cGAS-

STING signaling is initiated by the presence of double stranded DNA in the cytoplasm. 

Binding to dsDNA triggers cGAS phase separation, forming condensates that promotes 

cGAS activation and downstream signaling12,13. Thus, phase separation of cGAS may be 

used to sense viral infection and initiate signaling.

Phase separation can amplify signaling.

In many signaling pathways, an upstream signal leads to the phosphorylation of the cytosolic 

domain of a transmembrane receptor on multiple tyrosine residues. These phosphorylated 

receptors can then interact with collections of cytosolic adaptor proteins containing 

SH2 domains, SH3 domains, and proline rich motifs (PRMs). Multivalency in these 

molecules can drive their phase separation, leading to the formation of liquid-like signaling 

condensates on the plasma membrane3. For example, the cell-cell adhesion receptor nephrin 

undergoes multivalent interactions with the adaptor protein Nck (which contains one SH2 

and three SH3 domains) and the actin regulatory protein N-WASP (which contains multiple 

PRMs), leading to the formation of phase separated condensates15. Similarly, the linker 

for activation of T-cells (LAT) receptor undergoes multivalent interactions with the adaptor 

protein Grb2 (which contains one SH2 and two SH3 domains) and the Ras GEF SOS 

(which contains multiple PRMs)16. More recently, several receptor tyrosine kinases (RTKs), 

including EGFR, FGFR, and VEGFR, have been observed to undergo phase separation 

when combined with cytosolic proteins containing multiple SH2 domains17,18.

In these examples, phase separation requires phosphorylation on multiple tyrosine 

residues15,19 and is likely regulated by competition between kinase and phosphatase 

activities. Specific protein interactions and the emergent chemical properties of condensates 

have been observed to protect receptors from dephosphorylation. Binding of the SH2 

domain of phospholipase PLCγ1 to LAT favors phase separation by protecting a specific 

tyrosine residue from dephosphorylation20. LAT condensates are enriched with negative 

charge and can exclude negatively charged phosphatases through electrostatic repulsion19. 

Phosphorylated FGFR forms liquid-like condensates in cells and in vitro that concentrate 

both the phosphatase SHP2 and PLCγ1. However, the phosphatase activity of SHP2 

is significantly reduced by the formation of condensates in vitro. Additionally, FGFR 

condensates are protected from the activity of nonspecific phosphatases, such as CIP**18. 

Reducing phosphatase activity through these mechanisms may help to stabilize multivalent 

phosphotyrosine condensates and sustain downstream signaling.

For Nephrin, LAT, EGFR, and FGFR2, phase separation has been observed to 

upregulate downstream signaling. Phase separation of nephrin promotes downstream actin 

polymerization by increasing the membrane dwell time of N-WASP and Arp2/3 complex21. 

Phase separation of the LAT receptor and EGFR can promote downstream Ras activation by 

increasing the membrane dwell time of SOS16,17,19. Phase separation of FGFR2 increases 

FGFR2 kinase activity and the lipolytic activity of PLCγ118. When both kinases and their 

substrates are localized within engineered synthetic condensates, substrate phosphorylation 
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significantly increases both in vitro and in yeast cells22. Additionally, localization to 

condensates increased phosphorylation of unfavorable substrates that lacked docking 

motifs or contained non-consensus phospho-acceptor sequences. These results suggest that 

concentration of kinases and substrates within condensates can promote phosphorylation 

of sub-optimal substrates and thus expand kinase specificity22. In these examples, phase 

separation of signaling molecules propagates and amplifies the initial signal. In cancer, 

aberrant phase separation may lead to activation or amplification of signaling pathways to 

promote tumor growth or metastasis23–28.

Phase separation can inhibit signaling.

In some pathways, phase separation has been observed to attenuate or inhibit signaling. 

During c-Gas-STING signaling, excessively produced cGAMP can trigger the formation 

of STING condensates on the ER that downregulate innate immunity by sequestering 

STING away from downstream signaling components*29. Thus, phase separation of STING 

dampens signaling, providing a mechanism to prevent overactivation of the innate immune 

response when pathogenic stimulus is too high. The Wnt/β-catenin signaling pathway 

regulates tissue homeostasis and cell fate decisions during animal development. In the 

absence of Wnt ligand, signaling is kept off through the formation of the destruction 

complex, which targets the transcription factor β-catenin for proteasomal degradation. The 

destruction complex is a condensate that contains the proteins Axin, APC, GSK3β and 

CK1α, and formation of the destruction complex requires Axin to undergo phase separation 

via its IDR. β-catenin is recruited to the destruction complex, where it is phosphorylated30. 

Phosphorylated β-catenin is then recognized by an E3 ligase and rapidly degraded by the 

proteosome. Ultimately, phase separation of Axin inhibits Wnt signaling by promoting 

β-catenin degradation in the cytoplasm. Upon Wnt ligand binding to the transmembrane 

receptor Frizzled, signaling is turned on by the formation of the signalosome at the plasma 

membrane. This requires recruitment of the cytosolic protein Dishevelled 2 (Dvl2) to 

the membrane. Additionally, Dvl2 has been observed to undergo phase separation, and 

mutations in the Dvl2 IDR that impair phase separation also reduce signalosome formation 

and Wnt signaling31. Axin is slowly recruited to the signalosome condensate at the plasma 

membrane, which disrupts the phase separation of the destruction complex, leading to an 

increase in cytosolic β-catenin concentrations31. The activation of Wnt signaling enables 

β-catenin to enter the nucleus and regulate transcription.

Phase separation can regulate mechanosensitive signaling.

In addition to sensing chemical signals, cells also sense and respond to mechanical signals 

in their environment. Recent studies suggest that phase separation may contribute to the 

regulation of certain cellular mechanosensitive signaling pathways. The Hippo pathway is 

a kinase cascade that negatively regulates YAP/TAZ, a homologous pair of transcriptional 

coactivators that promote cell proliferation, survival, and maintenance of stem cell fate. The 

Hippo pathway enables cells to sense and respond to diverse mechanical stimuli, including 

cell density, cell area, tissue stretch, shear forces, and substrate stiffness32,33. Activation 

of the Hippo pathway leads to phosphorylation and activation of MST1/2 kinases, which 

then phosphorylate and activate LATS1/2 kinases, which then phosphorylate YAP/TAZ. 

Phosphorylated YAP/TAZ is inactive and sequestered in the cytoplasm. Recently, many 
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components of the Hippo pathway have been observed to undergo phase separation34,35. 

For example, the positive upstream regulators AMOT and KIBRA form condensates that 

activate Hippo signaling, while the negative upstream regulator SLMAP forms condensates 

that inhibit Hippo signaling by recruiting MST and its phosphatase. However, these 

compositionally distinct condensates can coalesce to activate signaling by enriching the 

kinase cascade and excluding the phosphatase**34. In cancer, several non-protein molecules 

can dysregulate Hippo pathway phase separation and signaling. Excess glycogen in tumors 

can undergo phase separation, forming condensates that sequester and inhibit MST1/2**24. 

The tumor promoting long non-coding (lnc) RNA SNHG9 can bind to LATS1, which 

promotes LATS1 phase separation and reduces YAP phosphorylation*36. YAP/TAZ can also 

form liquid-like condensates in the nucleus in direct response to osmotic shock-induced 

crowding37. Together, these recent studies suggest that phase separation may provide a 

mechanism for cells to sense and integrate numerous signals that converge on Hippo 

signaling and YAP/TAZ regulated transcription.

Integrin-dependent signaling is another important mechanosensitive pathway in animal 

cells. Integrins are heterodimeric receptors that mediate adhesion to the extracellular 

matrix. Integrins cluster and assemble with numerous cytosolic adaptor proteins, signaling 

molecules, and actin regulatory proteins to form multiprotein adhesion complexes38. 

Mechanical forces are transmitted across integrin receptors, and integrin adhesion complexes 

play a central role in integrating biochemical and mechanical information within cells39,40. 

Several recent studies provide evidence that phase separation may contribute to the 

formation, maturation, and turnover of integrin adhesion complexes.

Integrins initially cluster with a subset of cytosolic proteins to form small, diffraction-

limited puncta termed nascent adhesions. Several of the cytosolic proteins that localize 

within nascent adhesions, including phosphorylated p130Cas and focal adhesion kinase 

(FAK) undergo phase separation at physiological concentrations in vitro**41. Moreover, the 

p130Cas- and FAK-dependent pathways act synergistically to promote phase separation, 

integrin clustering, nascent adhesion formation and partitioning of key components in 
vitro and in cells. Thus, phase separation may provide an intracellular trigger for integrin 

clustering and nascent adhesion formation. After initial formation, a subset of nascent 

adhesions are stabilized and undergo a process of force-dependent growth and compositional 

maturation to form mature focal adhesions that attach to actin stress fibers38,42. The adaptor 

protein LIMD1 is recruited to maturing focal adhesions in a force-dependent manner, likely 

by a direct interaction with the protein vinculin. Additionally, LIMD1 also undergoes phase 

separation both in vitro and in cells to form droplets that enrich additional adaptor proteins 

such as Zyxin**43. Mutations that disrupt LIMD1 phase separation, such as phosphomimetic 

point mutations in the IDR, lead to impaired FA dynamics, reduced force transduction, 

and impaired mechanosensative cell migration. Thus, the force-dependent recruitment of 

LIMD1 to focal adhesions could trigger its subsequent phase separation to enable the 

enrichment of specific adaptor proteins, promote focal adhesion maturation, and regulate 

cellular mechanotransduction. The turnover and disassembly of focal adhesions is regulated 

by phosphorylation, protease activity, and endocytosis40. Recently, the focal adhesion 

protein tensin was observed to undergo phase separation as focal adhesions disassemble44. 
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However, how tensin phase separation is regulated and the functional consequences of tensin 

condensates remain unclear.

Perspectives

Progress in understanding biological phase separation has been rapid, but many open 

questions remain. Although we have cited many examples of signaling molecules that 

can undergo phase separation, in some cases the functional consequences of this phase 

separation remain unclear, and more rigorous studies would help provide deeper insight into 

whether phase separation specifically impacts signaling6. One exciting approach to assess 

the functional relevance of phase separation is to explore the selection of phase separation 

in evolution8,9. While the Arabidopsis protein ELF3 undergoes temperature sensitive phase 

separation to regulate growth, plants from hotter climates contain an ELF3 protein that 

does not exhibit temperature sensitive phase separation and these plants lack thermal 

responsive growth9. Another question is the extent to which the emergent chemical and 

material properties of condensates have been selected for in evolution6,8,45,46. The material 

properties of condensates could be particularly important in mechanosensitive signaling 

pathways where mechanical forces are potentially sensed or transmitted at condensates. At 

membranes, lipids often play an important role in regulating molecular organization and 

activity. Recent studies have shown that membrane surfaces can promote protein and RNA 

driven phase separation47 and that lipid phase separation can be coupled to multivalent 

protein driven phase separation**48,49. Lipid membranes are likely to regulate protein phase 

separation in diverse signaling pathways, although the feedback between lipid membranes 

and protein condensates remains under studied50. In conclusion, growing evidence suggests 

that diverse signaling molecules undergo phase separation, and future studies should focus 

on investigating the functional consequences of phase separation in signal transduction.
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Figure 1. 
Potential roles for phase separation in chemical and mechanical signaling pathways. Created 

with BioRender.
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