
Abstract. Background/Aim: Glioma, the most common type of 
primary brain tumor, is characterized by high malignancy, 
recurrence, and mortality. Long non-coding RNA (lncRNA) H19 
is a potential biomarker for glioma diagnosis and treatment due 
to its overexpression in human glioma tissues and its involvement 
in cell division and metastasis regulation. This study aimed to 
identify potential therapeutic targets involved in glioma 
development by analyzing gene expression profiles regulated by 
H19. Materials and Methods: To elucidate the role of H19 in 
A172 and U87MG glioma cell lines, cell counting, colony 
formation, and wound healing assays were conducted. RNA-seq 
data analysis and bioinformatics analyses were performed to 
reveal the molecular interactions of H19. Results: Cell-based 
experiments showed that elevated H19 levels were related to 
cancer cell survival, proliferation, and migration. Bioinformatics 

analyses identified 2,084 differentially expressed genes (DEGs) 
influenced by H19 which are involved in cancer progression. 
Specifically, ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, 
and CDCP1 were positively correlated with H19 expression, 
while CSDC2 and FOXO4 were negatively correlated. These 
DEGs were predicted to function as oncogenes or tumor 
suppressors in gliomas, in association with H19. Conclusion: 
These findings highlight H19 and its associated genes as 
potential diagnostic and therapeutic targets for gliomas, 
emphasizing their clinical significance in patient survival. 
 
Among adult brain tumors, gliomas are the most common 
primary malignancy, constituting approximately 80% of all 
cases (1). Gliomas include all tumors derived from neuroglial 
progenitor cells (2) and are categorized into two types based 
on histological features, low-grade gliomas (LGGs) and high-
grade gliomas (HGGs). The most aggressive form of HGG is 
glioblastoma multiforme (GBM), a particularly malignant 
tumor with a median survival time of 12 months (3). Due to 
their high malignancy, recurrence, and mortality rates are the 
most representative features of gliomas, a variety of new 
cancer treatments, such as surgery, chemotherapy, and radiation 
therapy, have been proposed and combined to improve 
outcomes (4-6). However, despite treatment advancements, the 
treatment success rate for glioma remains low, and some 
treatments are associated with serious side effects (7, 8). 
Studies on the pathogeneses of gliomas have identified 
molecular mechanisms associated with brain tumors and 
support the potential of personalized cancer therapy (9, 10). 
Therefore, to facilitate the discovery of effective biomarkers, 
it is essential to profile and analyze gene expression changes 
in glioma patients. 

Long non-coding RNAs (lncRNAs) are non-coding RNAs 
that are greater than 200 nucleotides in length and do not 
translate into proteins (11, 12). LncRNAs have specific 
biological roles in the nucleus and cytoplasm (13, 14) and are 
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concerned with chromatin and histone modification, mRNA 
splicing, and microRNA (miRNA) processing, and by so 
doing, regulate nuclear gene expressions. However, they have 
also been reported to act as competitive endogenous RNAs 
(ceRNAs) in the cytoplasm, to function as miRNA sponges, 
and to regulate mRNA expressions (13, 15, 16). In addition, 
lncRNAs contribute significantly to cancer development by 
regulating major signaling pathways, such as NF-ĸB, p53, 
Notch, and PI3K/AKT (17, 18). Dysregulation of lncRNAs is 
closely associated with tumor progression, metastasis, and 
metabolic reprogramming (19-21).  

H19 is one of the most widely studied lncRNAs, with its 
gene located on chromosome 11p15.5 (22, 23). Previous 
studies have shown that H19 levels vary and exhibit tumor-
promoting or preventing activity depending on cancer type 
(Table I). Elevated H19 expression in breast cancer 
significantly correlates with enhanced tumorigenesis, 
accelerated progression, and resistance to chemotherapies, 
including temozolomide therapy (24, 25). H19 up-regulation 
is positively correlated with cell invasion and tumor growth 
in gastric cancer (26), while it activates signaling pathways 
associated with cell proliferation and migration in glioma (27), 
and promotes epithelial-mesenchymal transition (EMT) in 
lung adenocarcinoma (28). On the other hand, other studies 
have reported that H19 has a tumor-suppressive role. For 
example, lack of H19 expression has been associated with 
liver carcinogenesis (29). In osteosarcoma, H19 expression has 
been negatively correlated with tumorigenesis and promoted 
DNA repair by inhibiting the activity of the small nucleolar 
RNA H/ACA box 7A (SNORA7A) (30). Additionally, H19 
acts as a negative regulator of tumor necrosis factor receptor 
2 (TNFR2) expression in papillary thyroid carcinoma, thereby 
suppressing cell proliferation and migration (31). Taken 
together, H19 has various effects in cancers; nevertheless, in 
glioma, it is known to be overexpressed and associated with 

angiogenesis, proliferation, metastasis, and EMT by 
interacting with several miRNAs. Thus, H19 is a great 
candidate to be investigated as a potential therapeutic target 
for glioma progression, diagnosis and facilitating the 
development of novel therapeutic strategies (22, 32). 

Recently, bioinformatics has been utilized to screen for 
cancer-related genes, including H19, and integrated analyses 
of multi-omics data have identified cancer-specific 
biomarkers and potential therapeutic targets for anti-cancer 
drugs (25, 33, 34). These bioinformatics tools enable the 
exploration of genes and signaling pathways and the analysis 
of clinical data, such as relationships between gene 
expression levels and their effects on individual cancer 
patients. Bioinformatics analyses are effective tools for 
gaining a deeper understanding of functional molecules and 
biological networks in different cancer types, and the results 
of these analyses can be used to create cancer-specific gene 
lists and provide valuable predictions for clinical studies. 

In this study, transcriptome sequencing analysis was 
conducted on glioma cell lines transfected to overexpress or 
knockdown H19 to identify differentially expressed genes 
(DEGs) that are significantly associated with H19 expression and 
simultaneously closely related to tumorigenesis. Furthermore, 
bioinformatics analyses of these DEGs were used to validate 
relationships between the altered expressions of selected genes 
and the characteristics of glioma. This study focused on 
investigating the impact of H19 in gliomas and to identify 
molecular mechanisms of therapeutic and diagnostic utility. 
 
Materials and Methods 
 
Cell culture and transient transfection. The A172 and U87MG 
human glioma cell lines were obtained from the American Type 
Culture Collection (ATCC, Manassas, VA, USA). A172 cells were 
cultured in RPMI-1640 (Hyclone, Marlborough, MA, USA) 
containing 10% FBS (Hyclone), 100 U/ml penicillin, and 100 μg/ml 
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Table I. Function of H19 gene/protein in various tumor types. 
 
Cancer type                                            Cancer                                                                 Effects on cancer                                                                Ref. 
                                                            correlation 
 
Breast cancer                                         Positive                             Increasing the aggressiveness of breast cancer and promoting                           (24) 
                                                                                                                          migration, tumor growth, and metastasis                                                  
Gastric cancer                                        Positive                               Inducing cell proliferation and invasion, and inhibiting cell                            (26) 
                                                                                                   apoptosis through sponging for miR-138 and up-regulation of E2F2                           
Glioma                                                   Positive                                Reinforcing cell proliferation, invasion, and migration via                             (27) 
                                                                                                                                Wnt/β-catenin signaling pathway                                                        
Lung adenocarcinoma                           Positive                                    Promoting cell proliferation and EMT, and inhibiting                                 (28) 
                                                                                                          apoptosis through increased methylation of CDH1 promoter                                  
Liver tumor                                           Negative                                      Inhibiting tumor growth and development in liver                                     (29) 
Osteosarcoma                                       Negative                  Accelerating DNA repair process through down-regulation of SNORA7A                 (30) 
Papillary thyroid carcinoma                Negative              Reducing cell proliferation and migration through down-regulation of TNFR2              (31) 
 
CDH1: Cadherin 1; EMT: epithelial mesenchymal transition; E2F2: E2F transcription factor 2; SNORA7A: small nucleolar RNA, H/ACA box 7A; 
TNFR2: tumor necrosis factor receptor 2.



streptomycin (Gibco, Waltham, MA, USA) in a humidified 
incubator with a 5% CO2/95% air atmosphere at 37˚C, whereas 
U87MG cells were incubated in MEM (Hyclone) under the same 
conditions (35).  

The two cell lines were set into four groups: negative control 
(NC), siRNA control (si-Cont), H19-knockdown (H19-KD), and 
H19-overexpression (H19-OE) groups. Transient transfection was 
performed when cell confluence reached 70-80%. The si-Cont group 
was transfected with scrambled siRNA (Invitrogen, Waltham, MA, 
USA), the H19-KD group with H19-specific siRNA (Thermo 
Scientific, Waltham, MA, USA) using Lipofectamine RNAiMAX 
(Invitrogen), and the H19-OE group with pcDNA3.1-H19 vector 
using Lipofectamine 2000 (Invitrogen). Cells were harvested after 
transfection for 48 h for cell-based assays. 
 
Total RNA-preparation. After transiently transfecting each glioma cell 
line with H19-specific siRNA or pcDNA3.1-H19 vector, total RNA 
was extracted using TRI reagent (Invitrogen), as previously described 
(36). RNA qualities and concentrations were assessed using OD 
260/280 ratios using a Nanodrop 2000 (Thermo Scientific). Extracted 
RNAs were subjected to reverse transcription quantitative polymerase 
chain reaction (RT-qPCR) and forwarded to Macrogen Inc. (Seoul, 
Republic of Korea) for transcriptome sequencing. 
 
RT-qPCR. The M-MLV reverse transcriptase system (Bioneer, 
Daejeon, Republic of Korea) was used to generate first-strand 
cDNAs from total RNA. The conditions used for RT were 60 min 
at 37˚C and 5 min at 99˚C and were stored at 4˚C for subsequent 
experiments. RT products were immediately subjected to qPCR. 
Real-time qPCR of the RT products was performed using GoTaq® 
qPCR Master Mix (Promega, Madison, WI, USA) according to the 
manufacturer’s instructions and normalized versus U6 (37). The 
qPCR protocol used in this study included the following steps: 
initial activation of GoTaq Hot Start Polymerase at 95˚C for 2 min, 
followed by 40 cycles of denaturation at 95˚C for 15 sec, and 
annealing and extension at 60˚C for 1 min. The relative expression 
levels of RNAs were calculated using the comparative 2–ΔΔCt 

method (38). The primers used for this study were as follows: H19 
forward primer: 5’-TTCAAAGCCTCCACGACTCT-3’; H19 
reverse primer: 5’-CTGAGACTCAAGGCCGTCTC-3’; U6 forward 
primer: 5’-CTCGCTTCGGCAGCACATA-3’; U6 reverse primer: 
5’-CGAATTTGCGTGTCATCCT-3’. 
 
Cell counting assay. Trypan blue solution (Gibco) was used to 
determine numbers of living cells. In brief, cells (1×105) were 
incubated in 60 mm dishes for 24 h, transfected with si-H19 or 
pcDNA3.1-H19 vector, washed twice with PBS (WELGENE, 
Gyeongsan, Gyeongbuk, Republic of Korea), detached using 10% 
trypsin-EDTA (Gibco), resuspended in PBS, and diluted 1:1 with 
trypan blue solution (39). Numbers of surviving cells were then 
measured to assess short-term cell viability. 
 
Colony formation assay. A172 and U87MG cells were seeded at 
3,000 cells per 35 mm dish, incubated for 48 h, transfected with si-
H19 or pcDNA3.1-H19 vector, and incubated in the same conditions 
as cell culture in a humidified incubator for 7 days. Resulting colonies 
were washed twice with PBS (WELGENE), fixed with 50% 
methanol, and stained with 0.5% crystal violet (Sigma, St. Louis, 
MO, USA) (40). Colonies containing more than 50 cells were then 
imaged and scored as survivors to assess long-term cell viability. 

Wound healing assay. Wound healing assays were conducted to 
analyze the effects of H19 on cell migration (41). Transfection was 
performed after cells had achieved 80% confluence in 60 mm dishes 
at 37˚C in a 5% CO2 atmosphere. Cell layers were scratched with a 
sterile yellow tip, washed twice with PBS to remove floating cells 
and incubated in fresh culture medium for 48 h. Photomicrographs 
were captured at ×100 using an Olympus CKX53 inverted 
microscope (Olympus Optical, Tokyo, Japan). 
 
Transcriptome analysis. Total RNA concentrations were calculated 
using the Quant-IT RiboGreen assay (Invitrogen). To evaluate the 
integrity of total RNA, samples were analyzed using the TapeStation 
RNA screentape (Agilent, Santa Clara, CA, USA). Only high-
quality RNA preparations, with RIN values greater than 7.0 were 
utilized to construct RNA libraries. For each sample, an independent 
library was prepared using 0.5 μg of total RNA and the Illumina 
TruSeq Stranded Total RNA Library Prep Gold Kit (Illumina, Inc., 
San Diego, CA, USA). rRNA was removed from total RNA using 
the Ribo-Zero rRNA Removal Kit (Human/Mouse/Rat Gold) 
(Illumina), and the remaining mRNA was fragmented under 
elevated temperature conditions using divalent cations. Cleaved 
RNA fragments were then converted into first-strand cDNA using 
SuperScript II reverse transcriptase (Invitrogen) and random 
primers. Subsequently, second-strand cDNA synthesis was 
performed using DNA Polymerase I, RNase H, and dUTP. cDNA 
fragments were end-repaired, and this was followed by the addition 
of a single ‘A’ base and adapter ligation. The resulting products 
were purified, and PCR was used to enrich the final cDNA libraries. 
Libraries were quantified using KAPA Library Quantification Kits 
for Illumina Sequencing platforms as detailed in the qPCR 
Quantification Protocol Guide (Kapa Biosystems Inc., Wilmington, 
MA, USA). Library quality was assessed using the TapeStation 
D1000 ScreenTape (Agilent). Indexed libraries were then submitted 
for sequencing on an Illumina NovaSeq (Illumina), and paired-end 
(2×100 bp) sequencing was performed by Macrogen Inc. The 
sequencing results were deposited in the Gene Expression Omnibus 
database (GEO Series accession number GSE243116). 
 
RNA-seq data analysis. The raw reads obtained from the sequencer 
underwent preprocessing to eliminate low-quality and adapter 
sequences prior to analysis. Processed reads were aligned to the Homo 
sapiens (hg38) reference genome using HISAT v2.1.0 (42), which 
utilizes two types of indexes for alignment, a global, whole-genome 
index and tens of thousands of small local indexes. These indexes are 
constructed using the Burrows-Wheeler transform and a graph FM 
index similar to Bowtie2. The efficient data structures and algorithms 
of HISAT enable faster spliced alignments compared to widely used 
tools like Bowtie and Burrows-Wheeler Aligner. The reference genome 
sequence of Homo sapiens (hg38) and annotation data were obtained 
from the UCSC table browser (http://genome.uscs.edu). Following 
alignment, StringTie v2.1.3b (43, 44) was utilized to assemble the 
aligned reads into transcripts and estimate transcript abundances. The 
resulting data provided relative abundance estimates as Read Count 
values for each transcript and gene expressed in each sample. 

Statistical analysis was performed to identify DEGs based on the 
abundance estimates for each gene across samples. Genes with zero 
or fewer Read Count values in all samples were excluded. To 
facilitate log2 transformation, a value of 1 was added to each Read 
Count value for filtered genes. Filtered data was then log2-
transformed and subjected to relative log expression normalization. 

Chae et al: Gene Expression Profiling Regulated by H19

610



The statistical significances of differential expression data were 
assessed using the nbinomWaldTest function in DESeq2, 
considering fold change. The null hypothesis assumed no intergroup 
difference. p-Values were adjusted using the Benjamini-Hochberg 
algorithm to control the false discovery rate. Hierarchical clustering 
analysis was performed on the set of DEGs using complete linkage 
and Euclidean distance as a measure of similarity. 
 
Bioinformatic analyses of DEGs. Gene ontology (GO) enrichment 
analyses (45, 46) and Kyoto encyclopedia of genes and genomes 
(KEGG) pathway analyses (47-49) were conducted on significant 
gene lists utilizing DAVID 2021 (https://david.ncifcrf.gov). These 
analytical approaches offer comprehensive functional genomic 
annotations (50, 51). Gene expression and survival analysis were 
subsequently performed to validate expression levels in glioma 
versus normal tissue using GEPIA2 (http://gepia2.cancer-pku.cn/) 
leveraging data from the cancer genome atlas (TCGA) and the 
genotype-tissue expression (GTEx) databases (52). 
 
Statistical analysis. Statistical analysis was conducted using Prism 
5 software (GraphPad Software, San Diego, CA, USA), and p-
values of <0.05 were considered significant. Each experiment was 
performed independently in three technical replicates per sample, 
and results were analyzed by the two-tailed unpaired Student’s t-
test, one-way ANOVA for ranked data followed by Tukey’s honestly 
significant difference test, or two-way ANOVA for ranked data 
followed by Bonferroni’s post-tests. 

 
Results 
 
Effects of H19 on glioma cell lines. In order to study the effects 
of H19 in glioma, cell survival, proliferation, and migration 
assays were performed on A172 and U87MG glioma cell lines. 
First, RT-qPCR was used to assess H19 expression levels by 
comparing H19-OE groups and H19-KD groups with NC 
groups for each cell line. The results demonstrated a significant 
reduction in H19 expression in the H19-KD groups compared 
to the NC groups, whereas H19 expression was notably 
elevated in the H19-OE groups (Figure 1A). Cell counting 
assays showed cell viability was significantly greater in the 
H19-OE groups but significantly lower in the H19-KD groups 
(Figure 1B), and colony formation assays showed colony 
numbers were significantly higher in the H19-OE groups but 
significantly lower in the H19-KD groups (Figure 1C). Wound 
healing assays revealed percentages of covered areas were 
higher in the H19-OE groups but lower in the H19-KD groups 
(Figure 1D). Taken together, these findings indicate that H19 
up-regulation in glioma promotes tumorigenesis, while its 
down-regulation suppresses tumorigenesis, and also confirm 
the role of H19 as an oncogenic factor in glioma. 
 
Profiling of H19-regulating DEGs in glioma cell lines. Glioma 
cell lines (A172, U87MG) were treated with si-H19 or 
pcDNA3.1-H19 vector, respectively, to identify changes in 
gene expression regulated by H19. Transient transfection was 
performed for each cell line, resulting in H19-KD groups and 

H19-OE groups for A172 and two corresponding groups for 
U87MG. Comparative analysis was performed based on total 
RNA sequencing analysis data to determine the fold changes 
shown by DEGs. Analysis showed that 242 DEGs in A172 and 
U87MG cell lines were down-regulated in the H19-KD groups, 
and 319 DEGs were up-regulated (|log2 fold change| ≥1.5) 
(Figure 2A). In contrast, 875 DEGs were up-regulated in the 
H19-OE groups, and 648 DEGs were down-regulated (|log2 
fold change| ≥1.5) (Figure 2B). The results showed that a 
comprehensive set of 2,084 DEGs, including both protein-
coding RNAs and non-coding RNAs, were regulated by H19. 
1,379 protein-coding DEGs from the total were selected for 
functional analysis. Among these genes, 74 DEGs down-
regulated in the H19-KD groups and 539 DEGs up-regulated 
in the H19-OE groups were expected to be oncogenic (Figure 
2C) and 118 DEGs up-regulated in the H19-KD groups and 
648 DEGs down-regulated in the H19-OE groups were 
expected to be tumor suppressive (Figure 2D), based on the 
tumorigenic roles of H19 (8, 53). 
 
Functional analyses of DEGs regulated by H19. Functional 
analyses, including GO and KEGG pathway enrichment 
analyses, were conducted on 613 protein-coding DEGs 
predicted to have oncogenic properties. GO enrichment 
analyses unveiled notable enrichment of these DEGs within 
categories such as ‘DNA binding’ (112 genes, p=1.35E-05) 
under Molecular Function, ‘Chromosome’ (111 genes, 
p=1.93E-09) under Cellular Component, and ‘Cell cycle’ (111 
genes, p=2.12E-13) under Biological Process (Figure 3A). 
KEGG pathway analyses demonstrated high levels of 
association between the selected DEGs and pathways such as 
‘Pathways in cancer’ (30 genes, p=4.0E-03), ‘PI3K-Akt 
signaling pathway’ (19 genes, p=3.9E-02), ‘Ras signaling 
pathway’ (15 genes, p=2.2E-02), and ‘Viral carcinogenesis’ (14 
genes, p=3.4E-02) (Figure 3B). In addition, GO and KEGG 
pathway enrichment analyses were performed on 766 protein-
coding DEGs predicted to be tumor suppressors. The GO 
enrichment analyses demonstrated that selected DEGs 
exhibited predominant enrichment in ‘Ion binding’ (293 genes, 
p=6.65E-06) under Molecular Function, ‘Neuron part’ (94 
genes, p=7.79E-04) under Cellular Component, and ‘Nervous 
system development’ (131 genes, p=1.86E-05) under 
Biological Process (Figure 3C). Besides, the KEGG pathway 
enrichment analyses showed close associations between the 
selected DEGs and several key pathways such as ‘cAMP 
signaling pathway’ (17 genes, p=6.8E-03), ‘FOXO signaling 
pathway’ (12 genes, p=7.2E-03), ‘AMPK signaling pathway’ 
(12 genes, p=4.0E-03), and ‘Longevity regulating pathway’ (11 
genes, p=1.2E-03) (Figure 3D). 
 
Bioinformatic analyses of DEGs interacting with H19 in 
gliomas. A total of 1,379 candidate DEGs, associated with 
glioma and expected to interact with H19, were screened. 

CANCER GENOMICS & PROTEOMICS 21: 608-621 (2024)

611



Chae et al: Gene Expression Profiling Regulated by H19

612

Figure 1. H19 expression levels and effects of H19 on cell viability and migration. (A) Relative mRNA expression levels of H19 in A172 and U87MG 
cells were quantified by RT-qPCR. (B) Cell counting assays determined the short-term effects of H19 expression levels on glioma cell lines. (C) 
Colony formation assays determined the long-term effects of H19 expression levels on glioma cell lines. (D) Wound-healing assays determined the 
motility of H19 expression levels on glioma cell lines. (*p<0.05, **p<0.01, ***p<0.001). NC: Negative control; si-Cont: scrambled siRNA as 
control; H19-KD: H19-knockdown; H19-OE: H19-overexpression.



Among the DEGs showing positive correlations with H19, 9 
DEGs were selected based on existing literatures that have 
documented oncogenic functions and have been studied in 
various tumors for their roles in contributing to tumorigenesis 
(Table II). 

Gene expression analyses were performed on these DEGs 
using GEPIA2 based on TCGA and GTEx databases (Figure 
4A). The results revealed elevated expression levels of 
Annexin A5 (ANXA5), C-type lectin domain family 18 
member B (CLEC18B), RAB42, member RAS oncogene 
family (RAB42), C-X-C motif chemokine ligand 8 (CXCL8), 
2'-5'-oligoadenylate synthetase like (OASL), ubiquitin-specific 
protease 18 (USP18), and CUB domain containing protein 1 
(CDCP1) in GBM tissues compared to normal tissues. In the 
case of ANXA5 and USP18, the expression levels were also 
increased in LGG. Furthermore, survival analyses were 
performed on these 7 DEGs suggested by the gene expression 
results, and all showed negative association with overall 
survival. High expression of each gene, ANXA5, CLEC18B, 
RAB42, CXCL8, OASL, USP18, and CDCP1, was associated 
with high mortality (Figure 4B). Ten DEGs, expected to 

inhibit tumorigenesis, exhibited tumor-suppressive effects in 
various cancer types (Table III), and gene expression and 
survival analyses were conducted on these DEGs. The results 
showed that the expressions of cold shock domain containing 
C2 (CSDC2) and forkhead box O4 (FOXO4) were 
significantly decreased in GBM (Figure 4C), compared to 
normal tissue and that low expressions of CSDC2 and FOXO4 
were associated with high mortality (Figure 4D). Overall, 9 
DEGs were selected as target genes based on the results of 
both bioinformatics analyses. Our results suggest that 7 genes 
with oncogenic properties (ANXA5, CLEC18B, RAB42, 
CXCL8, OASL, USP18, and CDCP1) and 2 with tumor-
suppressive properties (CSDC2 and FOXO4) are regulated by 
H19 and participate in the development of glioma. 
 
Discussion 
 
Previous studies have established the oncogenic significance 
of H19 in glioma. Although studies have been performed on 
the pathogenesis and progression of glioma at the molecular 
level, few studies have addressed H19-related networks. 
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Figure 2. Common DEGs in the two glioma cell lines regulated by H19. (A) A total of 242 DEGs were down-regulated by ≤–1.5 log2 fold change in 
H19-KD group, while 319 DEGs were up-regulated by ≥1.5 log2 fold change. (B) A total of 875 DEGs were up-regulated by ≥1.5 log2 fold change in 
H19-OE group, while 648 DEGs were down-regulated by ≤–1.5 log2 fold change. (C) A total of 613 protein-coding genes, showing a positive correlation 
with H19 expression, were expected to be oncogenes. (D) A total of 766 protein-coding genes, showing a negative correlation with H19 expression, 
were expected to be tumor-suppressive genes. DEG: Differentially expressed gene; H19-KD: H19-knockdown; H19-OE: H19-overexpression.
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Figure 3. Functional analyses performed on selected DEGs. (A) The results of GO enrichment analyses highlighted the most enriched GO terms of 
DEGs putatively promoting tumorigenesis. (B) KEGG pathway enrichment analyses showed the most enriched pathways of DEGs putatively promoting 
tumorigenesis. (C) GO enrichment analyses displayed the most enriched terms of DEGs presumed to suppress tumorigenesis. (D) KEGG pathway 
enrichment analyses presented the most enriched pathways of DEGs presumed to suppress tumorigenesis. The color gradient in the KEGG pathway 
analysis results indicated p-values. DEG: Differentially expressed gene; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genome.



Understanding how H19 functions in glioma is essential. Thus, 
we conducted mRNA expression profiling and bioinformatic 
analyses on two H19-regulated glioma cell lines to identify 
genes that interact with H19 and influence glioma. Cell-based 
assays on A172 and U87MG showed that H19-OE increased 
cell proliferation, viability, and motility. Total RNA-seq 
analysis confirmed changes in expression levels of protein-
coding and non-coding RNAs including miRNA and lncRNA. 
Finally, a total of 2,084 DEGs associated with H19 expression 
were found, of which 1,379 DEGs were protein-coding. 
Utilizing the DAVID database, GO and KEGG pathway 
enrichment analyses were performed to functionally analyze 
these protein-coding DEGs. The results of GO enrichment 
analyses indicated that DEGs, predicted to promote 
tumorigenesis, were enriched in ‘DNA binding’, ‘chromatin 
binding’, ‘chromosome’, and ‘cell cycle’. These results are 
consistent with the previous studies that demonstrated a 
relationship between chromatin remodeling and cancer therapy 
highlighting the close association between cell cycle regulation 
and cancer cell metabolism (74, 75). Additionally, genes 
involved in cell cycle regulation might be important in tumor 
progression and aggressiveness in gliomas, playing a crucial 
role in the regulation of cancer hallmarks (76). KEGG pathway 
analyses showed significant involvement in the ‘Pathways in 
cancer’, ‘PI3K-Akt signaling pathway’, and ‘Ras signaling 
pathway’. The PI3K-Akt signaling pathway is essential for 
numerous cellular functions and is abnormally activated in 
cancers (77), and the Ras signaling pathway is critical for 
cellular processes including cell growth, survival, and 
differentiation (78). These findings support that the selected 
613 protein-coding DEGs might be associated with cellular 
proliferation, survival, and motility and suggest that H19 could 
contribute to glioma malignancy with these genes. In contrast, 
766 DEGs, forecasted to suppress tumorigenesis, were 
identified in GO enrichment analyses with annotations related 

to ‘ion binding’, ‘neuron part’, and ‘nervous system 
development’. These results indicate characteristics associated 
with stem and progenitor cells rather than correlations between 
selected DEGs and tumorigenesis. The KEGG pathway 
analyses on these 766 DEGs identified key pathways including 
‘cAMP signaling pathway’, ‘FOXO signaling pathway’, 
‘AMPK signaling pathway’, and ‘Longevity regulating 
pathway’. The cAMP signaling pathway is recognized as a 
significant tumor-suppressive pathway, underscoring its 
potential role in glioma therapy (79, 80). The FOXO signaling 
pathway is considered a tumor-suppressive pathway across a 
wide range of cancers (81). AMPK is a key regulator of 
cellular energy homeostasis (82), and the AMPK activation 
suppresses cancer cell growth by inducing cell cycle arrest and 
inhibiting the oncogenic mTORC1 pathway (83). These 
signaling pathways have been shown to be associated with 
energy metabolism, induction of cell death, and cell cycle 
inhibition, which suggests that down-regulations of these 
DEGs might be involved in glioma development. In addition, 
DEGs down-regulated in the H19-KD groups and DEGs up-
regulated in the H19-OE groups were predicted to be 
oncogenes. Conversely, DEGs up-regulated in the H19-KD 
groups and DEGs down-regulated in the H19-OE group were 
predicted to be tumor-suppressor genes. Eventually, using 
bioinformatics analyses, we selected 19 candidate H19-
regulated DEGs that function as oncogenes or tumor-
suppressor genes. Gene expression analyses and survival 
analyses were performed on the 19 candidate genes, and 
comprehensively 9 genes regulated by H19 were found to be 
involved in glioma development. Thus, further investigations 
are warranted to elucidate the underlying molecular 
mechanisms governing the regulations of these 9 genes by 
H19. ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18, and 
CDCP1 levels in LGG and GBM were negatively associated 
with survival rates. ANXA5 promotes tumor formation and 
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Table II. Relative gene expression level of DEGs expected to promote tumorigenesis. 
 
Group                 Gene                        log2 fold change                                            Oncogenic functions in various tumors                                      Ref. 
                                
                                                    in A172            in U87MG                                                                                                                                              
 
H19-KD           ANXA5             –2.589248          –2.027261                          Facilitating angiogenesis and progression of glioma                           (54) 
                      CLEC18B          –2.421070          –1.776630                  Promoting the growth, migration, and invasion of GBM cells                    (55) 
                         RAB42             –2.148033          –1.711191                  Promoting cell growth, invasion and tumorigenesis of glioma                   (56) 
                          ETV2              –2.147487          –1.962656            Contributing to the invasion, migration, and EMT process of glioma             (57) 
H19-OE           CXCL8           115.285663            1.693676                          Promoting proliferation and invasion of GBM cells                            (58) 
                          OASL              71.810444            1.635825                          Resulting in worse overall survival in breast cancer                            (59) 
                         USP18             29.916867            1.574815                        Accelerating GBM cell invasion, migration and EMT                          (60) 
                         BIRC3             15.587837            4.537087               Promoting higher grade glioma and reducing tumor-free survival                (61) 
                        CDCP1            14.421578            1.999767          Correlating with increasing tumor grade and a poor prognosis in GBM           (62) 
 
ANXA5: Annexin A5; BIRC3: baculoviral IAP repeat containing 3; CDCP1: CUB domain containing protein 1; CLEC18B: C-type lectin domain family 
18 member B; RAB42: RAB42, member RAS oncogene family; CXCL8: C-X-C motif chemokine ligand 8; DEG: differentially expressed gene; ETV2: 
ETS variant transcription factor 2; GBM: glioblastoma; OASL: 2'-5'-oligoadenylate synthetase like; USP18: ubiquitin specific peptidase 18.
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Figure 4. Gene expression and survival analyses on candidate DEGs in LGG and GBM patient tissue samples. Seven DEGs, ANXA5, CLEC18B, 
RAB42, CXCL8, OASL, USP18, and CDCP1, predicted to function as oncogenes, (A) showed high expression levels in GBM through gene expression 
analysis, and (B) were positively correlated with poor overall survival through survival analysis. Two DEGs, CSDC2 and FOXO4, predicted to 
function as tumor suppressor genes, (C) showed reduced expression levels in GBM through gene expression analysis, and (D) were negatively 
correlated with poor overall survival through survival analysis. ANXA5: Annexin A5; CDCP1: CUB domain containing protein 1; CLEC18B: C-
type lectin domain family 18 member B; CSDC2: cold shock domain containing C2; CXCL8: C-X-C motif chemokine ligand 8; DEG: differentially 
expressed gene; FOXO4: forkhead box O4; GBM: glioblastoma; LGG: low-grade glioma; OASL: 2'-5'-oligoadenylate synthetase like; RAB42: 
RAB42, member RAS oncogene family; USP18: ubiquitin specific peptidase 18. 



angiogenic capacity in glioma (54), while it is known that the 
growth and progression of glioma depends primarily on 
angiogenesis (84). Previous studies have indicated that 
overexpression of H19 promotes GBM cell invasion, 
angiogenesis, stemness, and tumorigenesis (85), and thus 
ANXA5 regulation by H19 might facilitate angiogenesis and 
promote the development and progression of glioma. CLEC18B 
promotes GBM cell growth, migration, and invasion by 
increasing Wnt/β-catenin signaling activity (55), and inhibition 
of H19 suppresses Wnt/β-catenin signaling pathway activation, 
thereby suppressing the growth, invasion, and migration of 
glioma cells (27). CLEC18B and H19 play significant roles in 
glioma malignancy by activating the Wnt/β-catenin signaling 
pathway, and RAB42 reportedly promotes glioma cell invasion 
and migration by inducing VEGF signaling (56). Furthermore, 
H19 has been reported to enhance glioma cell proliferation, 
migration, invasion, and angiogenesis by increasing the 
expressions of HIF-1α and VEGF (86). CXCL8 was more 
highly expressed in GBM than LGG and has been shown to 
promote cell proliferation and invasion, and activate the NF-ĸB 
and Akt pathways (58, 87). H19 also confers temozolomide 
resistance to glioma cells by activating NF-ĸB signaling, 
suggesting H19 and CXCL8 are involved in the same signaling 
pathway in glioma (88). OASL is up-regulated in astrocytes, 
which have the capability to transform into glioma cells (89). 
H19 has been reported to activate astrocytes by modulating the 
JAK/STAT pathway, which suggests that the up-regulation of 
OASL in astrocytes is associated with H19 (90). Since OASL 
is significantly associated with poor overall survival in breast 
and pancreatic cancers (59, 91, 92) and our results showed that 
H19 overexpression in A172 and U87MG increased OASL 
levels, the role of OASL in glioma and its correlation with H19 
warrant further investigation. USP18 promotes GBM cell 

invasion, migration, and EMT by removing ubiquitin from 
Twist1 and stabilizing the protein (60). In addition to the results 
of our transcriptome analysis showing USP18 was 
overexpressed in the H19-OE groups, H19 has been reported to 
regulate the Twist1 through miR-326 sponge (93), and thus it is 
possible that USP18 functions as a downstream component of 
H19. Reportedly, the high expression level of CDCP1 is 
associated with high tumor grade and poor prognosis in GBM 
(62). Furthermore, CDCP1 levels are positively correlated with 
the Wnt signaling pathway (94), and H19, functioning as a 
ceRNA, has been reported to regulate the Wnt signaling 
pathway by sponging miR-148 (95). Conversely, survival 
analyses showed that low levels of CSDC2 and FOXO4 
(putative tumor-suppressor genes) in GBM tissues were 
associated with increased mortality. Furthermore, the GEO 
database showed that CSDC2 expression is down-regulated in 
GBM, and this down-regulation was reported to be strongly 
associated with the tumorigenesis of GBM (68). The PI3K/Akt 
signaling-induced FOXO4 down-regulation has been positively 
correlated with glioma malignancy, and the up-regulation of 
FOXO4 inhibited cell proliferation and promoted the apoptosis 
of GBM cells (71, 96). Furthermore, this signaling pathway has 
also been reported to be up-regulated by H19 and to promote 
cell proliferation, invasion, and migration in various cancers 
(92, 97, 98). Levels of CSDC2, a tumor-suppressive gene, were 
higher in LGG tissues than in normal tissues but significantly 
lower in GBM tissues. These results suggest that CSDC2 has 
potential use as a prognostic biomarker in glioma. In addition, 
CLEC18B, RAB42, CXCL8, OASL, and CDCP1 levels were 
similar in LGG and normal tissues, but significantly higher in 
GBM tissues. Conversely, FOXO4 levels were markedly 
reduced in GBM compared to LGG tissues. These findings 
suggest the potential utility of these genes as biomarkers for 
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Table III. Relative gene expression level of DEGs expected to suppress tumorigenesis.  
 
Group                 Gene                        log2 fold change                                     Tumor-suppressive functions in various tumors                               Ref. 
 
                                                    in A172            in U87MG                                                                                                                                              
 
H19-KD         TNFSF10             4.7104086          1.719610          Being regarded as an anticancer agent by inducing cancer cell apoptosis            (63) 
                          ITIH4                1.874714            2.744833                     Inhibiting cell proliferation and angiogenesis with KNG1                       (64) 
                           CGN                 1.856810            1.535571                                  Hindering metastasis in colorectal cancer                                    (65) 
                       SCUBE2              1.691323            1.780518                   Inhibiting glioma cell proliferation, migration, and invasion                     (66) 
                        PGBD3              1.509895          20.535054                            Affecting DNA repair and chromatin remodeling                              (67) 
H19-OE           CSDC2             –5.016720          –8.573095                                      Modulating tumorigenesis in gliomas                                       (68) 
                     HSD17B14          –3.470761          –4.1977910                  Acting as a tumor-suppressor gene by regulating apoptosis                  (69, 70) 
                        FOXO4            –3.297208          –2.2564431                         Suppressing cell growth and malignancy of GBM                             (71) 
                          KLF9              –3.110408          –5.866879                  Inhibiting glioma cell proliferation and tumor growth in vivo                   (72) 
                       FGFBP3           –2.9988.00         –2.193251                   Being known as protective biomarkers in low-grade glioma                     (73) 
 
CGN: cingulin; CSDC2: cold shock domain containing C2; DEG: differentially expressed gene; FGFBP3: fibroblast growth factor binding protein 3; 
FOXO4: forkhead box O4; GBM: glioblastoma; HSD17B14: hydroxysteroid 17-beta dehydrogenase 14; ITIH4: inter-alpha-trypsin inhibitor heavy chain 
4; KLF9: KLF transcription factor 9; PGBD3: piggyBac transposable element derived 3; SCUBE2: signal peptide, CUB domain and EGF like domain 
containing 2; TNFSF10: TNF superfamily member 10.



distinguishing between LGG and GBM, and that the 
mechanisms regulated by H19 via the selected 9 genes might 
provide a novel means of diagnosing and treating glioma. 
 
Conclusion 
 
H19 functions as an oncogene by regulating several genes 
responsible for tumor development and malignancy in glioma 
cells. ANXA5, CLEC18B, RAB42, CXCL8, OASL, USP18 and 
CDCP1 were predicted to exert oncogenic functions in H19-
expressing gliomas, whereas CSDC2 and FOXO4 were 
predicted to play tumor-suppressive roles. Because these 9 
genes are influenced by H19 expression, they are expected to 
interact with H19, but the molecular details underlying these 
interactions need to be determined experimentally. Nevertheless, 
total RNA expression profiling and bioinformatics analyses of 
the effects of H19 in glioma cell lines will enhance our 
understanding of the role of H19 in glioma development and 
aid in identifying H19-regulated cancer signaling pathways. 
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