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Abstract

Shrimp aquaculture has been growing rapidly over the last three decades. However, high-density 

aquaculture together with environmental degradation has led to increased incidence of shrimp 

infections. Thus, devising and implementing effective strategies to predict, diagnose and control 

the spread of infections of shrimps are crucial, also to ensure biosecurity and sustainability of the 

food industry. With the recent advancements in biotechnology, more attention has been given to 

develop novel promising therapeutic tools with potential to prevent disease occurrence and better 

manage shrimp health. Furthermore, owing to the advent of the next-generation sequencing (NGS) 

platforms, it has become possible to analyze the genetic basis of susceptibility or resistance of 
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different stocks of shrimps to infections and how sustainable aquaculture could be made free of 

shrimp diseases.
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1 Introduction to shrimp farming and disease management

Shrimp farming has been identified as one of the most profitable aquaculture sectors in 

the Asia-Pacific region (De Silva et al., 2007). Aquaculture production of shrimp has been 

increasing globally, dominated by Southeast Asia, China, India, and America (Anderson et 

al., 2019). Shrimps belonging to the Penaeidae family are recognized as a valuable economic 

resource in crustacean aquaculture sector. Among all farmed shrimps, the black tiger shrimp 

(Penaeus monodon) and the pacific white shrimp (Litopenaeus vannamei) contribute to more 

than 90-95% of the world production. Initially, P. monodon was identified as the dominant 

species among cultured shrimps. However, owing to factors such as lower levels of protein 

requirements and disease resistance, L. vannamei surpassed P. monodon, and now attributes 

to more than 70% of crustacean aquaculture production (Flegel et al., 2008; Arulmoorthy et 

al., 2020).

Over the past few decades, there has been a rapid growth in penaeid shrimp aquaculture 

sector. This over-intensification, along with environmental degradation and the introduction 

of new varieties in the tropics and subtropics, has resulted in an increased occurrence of 

emerging shrimp diseases (Walker and Mohan, 2009; Thitamadee et al., 2016; Xiong et 

al., 2016). The production of shrimp is impaired by diseases primarily caused by various 

microbial pathogens such as viruses, bacteria, fungi, and protozoa. The World Animal 

Health Organization (OIE: Office International des Epizooties) recognizes certain diseases 

as the most significant, which were included in their list for penaeid shrimp diseases 

(Lightner et al., 2012).

Since the late 1980s, unknown diseases have emerged and spread in shrimp aquaculture 

farms across the globe, causing staggering economic losses in some countries. For instance, 

Taiwan faced a loss of US$3 billion of farmed shrimp in 1994, and US$0.5 billion of 

P. monodon cultures between 1987 and 1988 (Lundin, 1995). White spot syndrome virus 

(WSSV) was discovered in Taiwan in the early 1990s, and it quickly spread to major 

shrimp aquaculture farms in Asian countries such as Japan. WSSV caused high mortality 

rates, leading to an economic loss of US$6 billion (Afsharnasab et al., 2014). In addition 

to WSSV, other viral pathogens have also caused epidemics in different regions. While 

Taiwan encountered monodon baculovirus (MBV) epidemic during the mid-1980s, shrimp 

farms in America were impacted by infectious hypodermal and hematopoietic necrosis virus 

(IHHNV) and taura syndrome virus (TSV) in 1981 and 1992, respectively. Simultaneously, 

in 1990, yellow head virus (YHV) first emerged in cultivated shrimps in Thailand (Walker 

and Mohan, 2009).
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Other significant pathogenic diseases include necrotizing hepatopancreatic bacterium 

(NHPB) disease (Cuéllar-Anjel et al., 2018) and vibriosis (Chandrakala and Priya, 2017) 

caused by bacteria. Moreover, there are some other fungal and protozoan parasitic diseases 

that can infect shrimps, as well. Owing to such diseases, mostly caused by viruses, it was 

projected that since 1994, the worldwide aquaculture sector has incurred an annual loss of 

US$3 billion (Lundin, 1995; Lightner, 1999). Although there has been a noticeable recovery 

over the last few years, the growth and profitability of this sector remains impacted by 

infectious diseases caused by various microbial pathogens.

Penaeid shrimps, unlike vertebrates, lack adaptive immune system and separate lymphatic 

systems to protect themselves against invading pathogens; thus, increasing the risk of 

mortality within a few days of infection. This also makes it challenging to develop vaccines 

against various pathogens (Johnson et al., 2008; Aguirre-Guzman et al., 2009). Moreover, 

some pathogens infect shrimps at different life stages, even larvae, that has little or no innate 

immune response (Lightner et al., 2012). Therefore, the enhancement of biosecurity at 

shrimp farms, development of rapid diagnostic methods and disease prevention strategies are 

crucial. This review should serve as a compendium of the major shrimp diseases caused by 

pathogens, the significance of shrimp gut microbiota, and its correlation with the emergence 

and occurrence of diseases. Furthermore, in addition to the available pathogen detection, 

diagnostic, and control strategies, novel technologies for improved detection methods and 

promising therapeutic tools for shrimp diseases are also reviewed in this paper.

2 Pathogen diversity in shrimp aquaculture

2.1 Microbial diseases of penaeid shrimps

Microbial pathogens that cause diseases in shrimps belong to various types of viruses, 

bacteria, fungi, and protozoan parasites. Among these, certain diseases that cause major 

economic losses, are recognized by OIE as most significant (Table 1).

2.1.1 Viral diseases

2.1.1.1 Taura syndrome (TS): Taura syndrome virus (TSV) which belongs to the family 

Dicistroviridae is the causative agent of TS. With a diameter of 32 nm, the virion is a naked 

(without an envelope) icosahedron. TSV’s genetic material consists of 10,205 nucleotides of 

positive-sense, single-stranded RNA (+ssRNA). TSV’s genome has two open reading frames 

(ORFs): ORF 1, which codes for non-structural proteins, and ORF 2, which contains TSV 

structural protein sequences such as capsid proteins (Mari et al., 2002). Studies conducted 

on the TSV using molecular tools indicated that a single virus strain was behind the first 

TSV pandemic in American (Ecuador) aquaculture farms from 1991-1992. However, when 

cDNA sequences of TSV capsid protein 2 (CP2) were compared (Tang and Lightner, 2005), 

four different genetic variants of TSV were discovered (Wertheim et al., 2009). TS has 

caused a huge loss to the global shrimp aquaculture industry and has been reported in the 

Middle East, America, and Asia. The spread of TS was mainly due to the transfer of live 

broodstocks across regional and international borders (Walker and Mohan, 2009; Lightner, 

2011).
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With a cumulative death rate of 40-90%, L. vannamei is one of the most vulnerable species 

to TSV. TS has been reported in this species at post-larvae (PL), juvenile, and adult stages 

of its life cycle (Ochoa et al., 2020). This virus is also known to infect other varieties 

of shrimps such as Penaeus stylirostris and Penaeus setiferus. In addition, experiments on 

PL and juveniles of Penaeus japonicus, P. monodon, Penaeus duorarum, Fenneropenaeus 
chinensis, Penaeus aztecus and Penaeus schmitti were also reported to be prone to TSV. The 

viral replication of TSV is in the cytoplasm of the host cell (Ganjoor, 2015). TS occurs in 

shrimps in three phases. In the peracute/acute phase, the shrimps are more likely to die, and 

is characterized by the showing of tail fan, pale reddish color in pleopods, softening of coats 

and hollow intestines. Individuals that survive this phase will go through the regeneration 

process, which begins with multifocal melanoid lesions. In the chronic infectious phase, 

the shrimp remains persistently infected with subclinical infections. The TSV is spread to 

susceptible shrimps by contaminated water and horizontal transmission via cannibalism of 

diseased, moribund or dead shrimps. It is also hypothesized that TSV can be vertically 

transmitted, although this is yet to be experimentally validated. Furthermore, the aquatic 

insect, water boatman Trichocorixa reticulata (Guerin-Meneville, 1857), has been identified 

as a TSV vector (Dhar et al., 2004). Since the mid-1990s, various research and commercial 

breeding programs have employed TSV specific pathogen resistance (SPR1) selective 

breeding to combat TSV disease, significantly decreasing its incidence (Sookruksawong 

et al., 2013). Notably, between 1999 and 2004, there were no TSV outbreaks reported 

in Colombian shrimp farms, demonstrating the effectiveness of a TSV-resistant breeding 

program where 100% of the raised shrimp were TSV-SPR1.

2.1.1.2 White spot disease (WSD): WSD is a serious disorder caused by WSSV that 

causes rapid death, most notably in juvenile shrimp. WSSV is an enveloped virus of the 

genus Whispovirus with double-stranded DNA (dsDNA) and a genome size of 290 to 305 

Kbp on average. The size of the genome of isolates from various geographical regions 

varies, indicating genetic instability that might lead to alterations in virulence (Ganjoor, 

2015).

WSSV is widely regarded as one of the most serious threats to the shrimp aquaculture 

sector (Flegel and Alday-Sanz, 1998). Between 1990 and 1994, the first WSD outbreak 

was observed in Taiwan and Japan, in P. japonicus (Zhu et al., 2019). In 1999, WSSV was 

discovered in the United States and Latin America, inflicting massive losses in L. vannamei 
and P. stylirostris aquaculture. Subsequently, infections were discovered in P. indicus, P. 
setiferus, F. chinensis, P. merguiensis, and P. monodon, as well. The geographical spread 

of WSSV became a severe threat to shrimp farming in Asia and America. This restricted 

the import requirements for shrimp broodstocks in different countries with a ban on animal 

imports from regions with viral infection (Sangamaheswaran and Jeyaseelan, 2001; Citarasu 

et al., 2006; Zhang et al., 2006).

Significant signs of acute WSD include a sudden drop in food intake, lethargy, and loosened 

cuticles with white spots 0.5 to 2.0 mm wide, visible beneath the carapace. In some cases, 

infected shrimp may exhibit a pink to reddish-brown color due to increased chromatophores. 

Additionally, white spots are occasionally observed in infected P. vannamei from America. 

WSSV can infect mesodermal and ectodermal cells, such as the subcuticular epithelium, in 
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various crustacean species, leading to inconsistent mortality rates. The virus spreads through 

vertical and horizontal transmission, including cannibalism of infected dead shrimp and 

water-borne pathways. Furthermore, WSSV can reach uncontaminated areas via organisms 

exposed to contaminated effluents from shrimp farms. Vectors or reservoirs of WSSV 

include aquatic insect larvae, invertebrates, and copepods (Ganjoor, 2015).

2.1.1.3 Yellow head disease (YHD): Yellow head virus (YHV) genotype 1 is the causative 

agent of YHD. YHV is a rod-shaped, enveloped virus with +ssRNA, belonging to the 

family Roniviridae (Ganjoor, 2015). When tissues infected with YHV were observed under 

transmission electron microscopy (TEM), vesicles encapsulating virions were observed 

in the cytoplasm, and in the intracellular spaces. These virions were reported to have a 

diameter of approximately 40-50 nm and 150-200 nm in length (Walker and Mohan, 2009; 

Lightner, 2011). First cases of YHV were reported in Thailand in 1990 in a P. monodon 
culture, and eventually was spread widely in cultured shrimps all over the country (Cowley 

et al., 2000). Subsequently, YHD has been reported in cultured shrimps in Malaysia, Sri 

Lanka, India, Taiwan, Indonesia, Vietnam, and Mexico (Mohan et al., 1998; Wang and 

Chang, 2000; Walker and Mohan, 2009). Apart from P. monodon, other susceptible species 

to YHD include L. vannamei, L. stylirostris, P. styliferus, Macrobrachium sintangense and 

Macrobrachium lanchesteri (Ganjoor, 2015).

There are now eight recognized genotypes of YHV (Arulmoorthy et al., 2020). Gill 

associated virus (GAV) is the genotype 2, recognized as the Australian strain of YHV, 

belonging to the genus Okavirus in Roniviridae (Spann et al., 1997). GAV is a rod-shaped, 

enveloped, positive-strand RNA nidovirus (Cowley et al., 1999; Cowley and Walker, 2002). 

Infections caused by genotypes 3 to 6 were reported in P. monodon in Asia, Australia, 

and East Africa with no associated disease symptoms (Lee D et al, 2022). Furthermore, 

genotypes 7 and 8 were reported recently in diseased P. monodon (Mohr et al., 2015) and F. 
chinensis (Liu et al., 2014).

YHD in Asian intensive cultivation systems are considered as a dangerous P. monodon 
disease. However, YHV has also been reported to infect other species such as P. aztecus, P. 
duorarum, P. japonicus, L. vannamei, P. setiferus, and P. stylirostris (Stentiford et al., 2009). 

Although there is a higher chance for YHD-associated mass mortality in early to juvenile 

stages of shrimps, there is a chance that individuals in late post larval stages may also die 

due to infection (Limsuwan, 1991).

As the name “Yellowhead” implies, one of the major characteristics of this disease is 

yellowish or bleached appearance of the cephalothorax. Other gross signs include high 

feeding rates followed by a cessation in feed intake, and the presence of moribund shrimp 

along the pond’s edge (Stentiford et al., 2009; Walker and Mohan, 2009). Moreover, a 

reddish discoloration is observed in infected shrimps. Although GAV infection is identified 

as less severe due to low mortality, YHV can infect and cause necrosis in ectodermal and 

mesodermal tissue, especially in lymphoid organ and gills (Walker and Mohan, 2009). YHV 

is spread via horizontal transmission by cannibalism of moribund and weak shrimp, and 

vertical transmission by survivors of the disease, which suffer from persistent subclinical 

infections (Stentiford et al., 2009; Lightner et al., 2012).
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2.1.1.4 Infectious hypodermal and hematopoietic necrosis (IHHN): IHHN is caused by 

IHHNV, which belongs to the family Parvoviridae. This virus is 22 nm in diameter, making 

it the smallest known virus to infect penaeid shrimps. IHHNV is a nonenveloped icosahedral 

virus with single-stranded DNA of 3.9 kb (Mari et al., 1993; Lightner et al., 2012; Ganjoor, 

2015). IHHNV was first discovered in L. vannamei and P. stylirostris in America in the early 

1980s, which then rapidly spread to Central America, Brazil, Mexico, Peru, Philippines, 

Thailand, Indonesia, Singapore, Malaysia (Lightner, 1996a) Australia (Krabsetsve et al., 

2004), China (Arulmoorthy et al., 2020) and India (Rai et al., 2009).

Molecular testing identified significant variation within the IHHNV isolates from Asia 

(Tang et al., 2003; Krabsetsve et al., 2004; Tang and Lightner, 2006). However, American 

isolates showed lower sequence variation (99.6 to 100% identity) (Tang and Lightner, 2002) 

and 99.8% sequence identity to IHHNV isolates from the Philippines (Tang et al., 2003). 

Based on molecular and epidemiology studies of this virus, three different genotypes were 

identified: (I) Southeast Asia; (II) America/Philippines; and (III) East Africa, Madagascar, 

Mauritius, and Australia (Lightner, 1996a; Tang and Lightner, 2002; Tang et al., 2003; 

Lightner, 2011). The host species P. monodon and L. vannamei were only susceptible to 

IHHNV-I and IHHNV-II. Studies show that genetically diverse cultures of P. monodon 
belonging to the Indo-Pacific region carried an IHHNV-III DNA fragment in their genome, 

which prevented infection by the genotype III (Duda and Palumbi, 1999; Tang and Lightner, 

2006).

In P. stylirostris, IHHNV can cause high mortality and low virulence in juvenile shrimps 

and adults, respectively (Motte et al., 2003). Gross signs of this viral infection in P. 
stylirostris include reduced food intake, changes in behavior, stunted growth, and appearance 

of white or buff-colored spots (these spots appear different from the white spots observed 

in WSSV-infected shrimps). These spots are often observed in the cuticular epidermis of the 

shrimp, making it appear mottled. In moribund shrimps of P. stylirostris and P. monodon 
suffering from the terminal stage of the infection, the mottled appearance changes to a bluish 

color with opaqueness in the abdomen (Brock and Lightner, 1990; Lightner, 1996a). In 

L. vannamei, “Runt-deformity syndrome” (RDS) is observed, which can be characterized 

by reduced growth and deformed cuticles (Duda and Palumbi, 1999). RDS in juvenile 

shrimps can also be distinguished by a bent or malformed rostrum, wrinkly antennal flagella, 

roughness and the appearance of ‘bubble-heads’ on the cuticles (Kalagayan et al., 1991; 

Browdy et al., 1993; Carr et al., 1996; Lightner, 1996a; Motte et al., 2003).

IHHNV infects the ectodermal and mesodermal tissues such as gills, hypodermis, connective 

tissues, nerve cord, lymphoid organs, and antennal gland (Lightner, 2011). This virus is 

spread via horizontal transmission through cannibalism and contaminated water (Lightner, 

1996a), and vertical transmission through infected eggs (Motte et al., 2003).

2.1.1.5 Infectious myonecrosis (IMN): IMN is a novel viral infection caused by the 

Infectious myonecrosis virus (IMNV), which belongs to the Totiviridae family. IMNV is a 

non-enveloped icosahedral virus of 40 nm in size. The genome of this virus consists of a 

single double-stranded RNA (dsRNA) of 7,560 bp (Ganjoor, 2015). Two ORFs are present 

in the IMNV genome. ORF1 codes for capsid proteins and RNA-binding proteins, while 
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putative RNA-dependent RNA polymerase is encoded by the second ORF (Poulos et al., 

2006).

IMNV was initially discovered in L. vannamei of northeast Brazil in the year 2002, and 

later spread to countries in southeast Asia, including India and Indonesia (Senapin et al., 

2007; Sahul Hameed et al., 2017). Genome sequencing analysis showed a 99.6% nucleotide 

sequence identity between the IMNV genomes from Brazil and Indonesia. This suggests 

that IMNV may have been transferred to Indonesia from Brazil in 2006 (Arulmoorthy et al., 

2020).

IMNV can lead to cumulative mortality ranging from 40% to 70%. Experiments have 

demonstrated that P. stylirostris, Fenneropenaeus subtilis, and P. monodon can also be 

infected with IMNV, with shrimps at both juvenile and subadult stages being more 

susceptible (Arulmoorthy et al., 2020). Apart from increased mortality, lethargy, loss of 

coordination, and reduced food intake are gross signs of IMN. Furthermore, infected 

shrimps may appear at the water surface throughout the day and may exhibit necrotic 

regions in striated muscles that appears red (Nur’aini, 2009). In the acute phase of IMN, 

coagulative muscle necrosis can be observed with oedema of infected muscles, leading 

to fluid retention between muscle fibers and infiltration of hemocytes. The infection may 

further lead to hypertrophy due to lymphoid organ spheroids (LOSs) that generally appear 

in heart, gills, ventral nerve cord, and areas proximal to antennal gland tubules. LOS lesions 

are extremely consistent with IMNV lesions that are associated with acute, or chronic stages 

of the infection (Arulmoorthy et al., 2020). Primary target areas of IMNV include, striated 

muscles, hemocytes, lymph organ parenchyma cells, and connective tissues (Tang et al., 

2005). IMNV is spread via horizontal transmission through cannibalism of the infected 

shrimps and contaminated water (Poulos et al., 2006; Lightner, 2011).

2.1.1.6 Monodon baculovirus disease (MBD): MBD is caused by a rod-shaped, 

enveloped virus which is known as Monodon baculovirus (MBV). This virus belongs to 

the Baculoviridae family and has circular dsDNA, with a genome size between 80 and 160 

Kbp (Mari et al., 1993; Ganjoor, 2015). The first cases of MBD were discovered in 1977 

in P. monodon shrimp farms in Taiwan. Subsequently it spread to other countries such as 

Australia, Philippines, China, Malaysia, Indonesia, Sri Lanka, South Africa, and USA. MBV 

is also known as P. monodon singly enveloped nuclear polyhedrosis virus (PmSNPV). Apart 

from MBV, two SNPV strains have been reported. They are the plebejus baculovirus and 

benettae baculovirus (Arulmoorthy et al., 2020).

Although the primary host species of MBV is P. monodon, multiple cases have been 

reported from other species including Macrobrachium rosenbergii, Penaus penicillatus, 

Penaeus semisulcatus, Metapenaeus ensus, P. merguiensis, Penaeus esculentus, L. vannamei, 
and Penaeus kerathurus (Lightner et al., 1987; Doubrovsky et al., 1988; Lightner, 1988; 

Chen et al., 1989; Colorni, 1989; Vijayan et al., 1995; Lightner, 1996a, 1996; Rajendran 

et al., 2012). The most susceptible individuals for MBV are larval and juvenile shrimps. 

However, the disease has been observed in all developmental stages of P. monodon (Brock 

and Lightner, 1990). This viral infection causes anorexia, subsequent retarded growth 

(Ganjoor, 2015), lethargy, and fouling of the surface with darkened appearance. Moreover, 
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when compared to healthy individuals, the infected shrimps are smaller. MBV targets 

the anterior midgut and the hepatopancreas (Lightner, 1993). The virus spreads through 

horizontal transmission via the fecal oral route (Chen et al., 1992).

2.1.2 Bacterial diseases

2.1.2.1 Necrotizing hepatopancreatitis (NHP): NHP is a bacterial disease caused by 

Hepatobacter penai, a bacterium like Rickettsia. This is a Gram-negative, dimorphic 

bacterium found in the cytoplasm of infected hepatopancreatic cells. The rod-shaped 

rickettsia-like body (0.35-0.9 μm) is the most common form. The spiral (helical) form 

(0.25 x 2-3.5 μm) possesses eight flagella at the basal apex (Lightner et al., 1992). The first 

cases of NHP were discovered in L. vannamei cultures in Texas, in the year 1985. Later 

in 1993, a similar disease surfaced in Peru, which was later confirmed as NHP through 

molecular diagnostic methods such as polymerase chain reaction (PCR) and restriction 

fragment length polymorphism (RFLP) (Loy et al., 1996). The isolates were further 

analyzed to have morphologies that are extremely similar, to be considered as identical. 

With a cumulative prevalence of 39.3%, Latin American countries have reported the highest 

number of NHP cases (Cuéllar-Anjel et al., 2018). NHP caused mass mortality in countries 

such as Peru, Costa Rica, Venezuela, Mexico, Panama, and Brazil. In the year 2006, Mexico 

also encountered an NHP outbreak (del Río-Rodríguez et al., 2006). NHP disease is more 

likely to occur in regions with high water temperature (29-35°C) and salinity (30-40 ppt) 

(Lightner, 1996a).

Primary host species susceptible to NHP are F. aztecus, L. vannamei, F. californiensis, P. 
setiferus, and P. stylirostris. The gross signs of NHP consists of reduced food consumption, 

slow growth, anorexia, softened shells, flaccid bodies, and expanded chromatophores, 

along with fouling of the body surface (Lightner, 1996a). NHP generally occurs in 

hepatopancreatic cell types (Lightner et al., 2012) and can be spread via horizontal 

transmission through cannibalism of infected tissue (Vincent et al., 2004).

2.1.2.2 Vibriosis: Vibriosis is one of the major diseases that affect shrimp aquaculture 

farms and has been associated with mortality of shrimp cultures around the globe. Vibriosis 

is caused by Gram-negative bacteria, and multiple species may be associated with the 

disease. In this regard, species that have caused vibriosis include Vibrio harveyi, Vibrio 
alginolyticus, Vibrio splendidus, and Vibrio parahaemolyticus. These bacteria belonging to 

the Vibrionaceae family, have caused mortality in P. monodon larvae in shrimp farms. It has 

been demonstrated that only some isolates of V. harveyi have shown to possess virulence, 

indicating molecular and genetic variation. The over-intensification of shrimp aquaculture 

may have been associated with the emergence of vibriosis, as the disease has been known to 

occur in shrimps in stressful conditions (Ishimaru et al., 1995; Lavilla-Pitogo and de la Pena, 

1998).

V. harveyi is a luminous bacterium, hence it is visible in infected shrimps at nighttime. 

Gross signs of this disease include reduced growth rate, lethargy, opaque muscles, and 

presence of patches (Karunasagar et al., 1994). Furthermore, necrosis of the appendages, 
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gut emptiness, and expansion of chromatophores can also be observed in vibriosis-infected 

larvae (Chandrakala and Priya, 2017).

2.1.2.3 Acute hepatopancreatic necrosis disease (AHPND): AHPND is a bacterial 

disease which is recognized as a major threat to shrimp aquaculture (Tran et al., 2013). 

In 2009, China reported an outbreak in shrimp cultures which was diagnosed as AHPND 

(Nunan et al., 2014). Subsequently, Malaysia, Philippines, Mexico, Vietnam, Thailand 

(Shinn et al., 2018), Bangladesh (Eshik et al., 2017), and the United States (Dhar et 

al., 2019) also encountered AHPND outbreaks which caused huge losses to their shrimp 

aquaculture productivity.

AHPND is caused by strains of V. parahaemolyticus, which are highly omnipresent, 

opportunistic, marine bacteria (Tran et al., 2013). The Gram-negative bacteria belonging 

to the family Vibrionaceae, contains the plasmid pVa1, which causes virulence. This plasmid 

carries transposons, binary toxin genes and conjugate transfer genes. This indicates that it 

is possible for plasmid transfer to other strains of this bacteria or other species (Lee et al., 

2015).

This bacterium infects the shrimp by colonizing the gut (Tran et al., 2013; Lai et al., 

2015). The pVa1 plasmid then expresses the binary toxins that invade the hepatopancreas 

(Prachumwat et al., 2019) and trigger shedding of the epithelial cell lining of the tubule 

(Tran et al., 2013). This makes the hepatopancreas appear pale. The severity of the disease 

can be influenced by the gut microbiota of the shrimp. When infected, the bacterial 

communities residing in the gut and hepatopancreas are exposed to an imbalance in their 

local distribution, known as dysbiosis (Chen et al., 2017). On the other hand, the host can 

gain protection against the pathogen by the enrichment of certain bacterial species (Yu et al., 

2018).

Penaeid shrimp species that have been identified as highly susceptible hosts to AHPND-

causing bacteria include L. vannamei and P. monodon (Tran et al., 2013; Zorriehzahra 

and Banaederakhshan, 2015). Gross signs of infected shrimps include exhibition of 

shrunken and pale hepatopancreas, gut emptying, low feed intake, swimming spirally, 

and sluggishness (Zorriehzahra and Banaederakhshan, 2015). This disease is spread via 

horizontal transmission through co-habituation or ingestion of the pathogen. In this regard, 

cannibalism of infected and dead shrimp, fecal-oral transmission, and feed pellets colonized 

by the bacteria can also spread AHPND (Tang et al., 2020).

2.1.3 Fungal diseases—Like viruses and bacteria, fungal pathogens such as 

Lagenidium callinectes and Sirolpidium spp., have been known to cause diseases in penaeid 

shrimps as well. Generally, fungal infections are found in larval stages of the shrimps 

with gross signs including lethargy, presence of mycelia and fungal spores, especially in 

appendages and gills. Larval mycosis and Fusariosis are common fungal diseases of penaeid 

shrimp (Karunasagar et al., 2004). A recent study on a new biofloc system also reported that 

a Fusarium verticilliodes infection resulted in cumulative mortalities in white leg shrimps 

(Hussein et al., 2024).
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2.1.3.1 Larval mycosis: Larval mycosis is a fungal disease caused by Haliphthoros 
philippinensis, Lagenidium callinectes, Sirolpidium sp., and Lagenidium sp. This disease 

can affect P. monodon eggs, larvae, and post-larvae. In shrimps infected by Lagenidium, 

vesicles with zoospores of high motility are formed at the end of the discharge tube, 

invading the host. On the other hand, when affected by Haliphthoros, vesicles are not 

formed, but long discharge tubes are observed. In contrast, Sirolpidium infection results in 

short discharge tubes, and vesicles do not form either (Baticados et al., 1990).

Significant signs of infection include whitish appearance, weakness and high risk of death. 

Moreover, the mortality rate may reach 100% within 2 days. The inner tissue of the 

individual is replaced by the zoospores, with discharge tubes protruding out from the body. 

If the egg is infected, they are prevented from hatching and respiratory difficulties are 

observed in infected larvae (Baticados et al., 1990).

2.1.3.2 Fusariosis: Fusariosis is caused by Fusarium spp., such as Fusarium solani, which 

are opportunistic soil fungi that have been reported to infect penaeid shrimps. Cases of 

fusariosis has been found in P. californiensis, L. vannamei and P. stylirostris from Mexico 

(Lightner et al., 1979). Moreover, cultivated P. japonicus shrimps from Japan and France 

have also been affected by this disease (Bian and Egusa, 1981; Criado-Fornelio et al., 1988). 

Gross signs of this infection include large melanized lesions on cephalothorax and abdomen, 

with degradation and ulceration of cuticles (Colorni, 1989). Moreover, fungal hyphae can 

also be observed in infected tissue, under a light microscope (Karunasagar et al., 2004).

2.1.4 Protozoan diseases

2.1.4.1 Microsporidiosis: Microsporidiosis is caused by an endoparasite, Microsporidia. 

This protozoan has been shown to infect shrimps belonging to the species P. indicus, P. 
monodon, and P. merguiensis. Generally causing infection in juveniles and adult shrimps, 

the infected regions can be characterized by an opaque white appearance. The pathogen is 

known to form spores in infected tissue and may lead to white ovaries, which can cause 

sterility in spawners. Though the infection rate was estimated to be as low as < 10%, 

Microsporidia have been known to be extremely pathogenic (Baticados et al., 1990).

2.1.4.2 Gregarine disease: Gregarine disease is caused by gregarine, which are usually 

present in the gut of penaeid shrimps. They can infect P. monodon shrimps at larval, post 

larval, juvenile, and adult stages. When gregarines are prevalent, they can interfere with 

functions of the hepatopancreatic duct, such as particle infiltration. Gregarine infection rates 

up to 94% have been reported in shrimp cultures (Baticados et al., 1990).

2.2 Microbiome of penaeid shrimps

‘Microbiota’ refers to the bacterial community that resides and maintains a symbolic or 

commensal relationship with a host organism. The genetic material or metagenome linked 

with a certain microbiota is known as the ‘Microbiome’ (Kumar et al., 2020). They function 

as an endocrine organ by serving as a barrier against pathogenic invasion and stimulating 

the acquisition of host nutrients through several metabolic pathways (Xiong et al., 2017). 

In penaeid shrimps, the composition of gut microbiota can be influenced by both intrinsic 
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and extrinsic factors. This includes, the diet of the shrimp, consumption of probiotics, 

physiochemical properties of the water and the growth stage (Xiong et al., 2015b; Yan et al., 

2016; Vargas-Albores et al., 2017; Garibay-Valdez et al., 2019).

In shrimp aquaculture systems, shrimp share the ecosystem with invading pathogens. Some 

studies indicate that the intricate interaction between the shrimp, environmental factors, 

and the microbiota of the surroundings may cause certain pathogenic diseases to emerge 

(Boutin et al., 2013; Xiong et al., 2015a). Moreover, the severity of the disease in shrimps is 

correlated with the composition of gut microbiota (Xiong et al., 2015b). On the other hand, 

recovery of the gut bacterial composition has shown to increase survival rate in shrimps 

(Rungrassamee et al., 2016). Hence, it can be concluded that the bacterial community in the 

intestine is a good indicator of the status of shrimp health (Round and Mazmanian, 2009; 

Clemente et al., 2012).

The microbiome of penaeid shrimps is dominated by Gram-negative bacteria belonging to 

the phylum Proteobacteria (Holt et al., 2021). In P. monodon and L. vannamei, the gut 

microbiota mostly comprises of Vibrio and Photobacterium spp., which belong to the class 

Gamma-proteobacteria (Chaiyapechara et al., 2012; Rungrassamee et al., 2013; Tzuc et 

al., 2014; Rungrassamee et al., 2016; Zheng et al., 2016). Apart from this, other phylum 

including Actinobacteria, Bacteroidetes, Firmicutes and Fusobacteria are also a part of 

shrimp microbiota (Rungrassamee et al., 2013). With recent technological advancements, 

using the gut microbiome as a tool to address gut microbiota in various shrimp populations 

from farm to table will ensure that food safety and hygiene are achieved. This is in line with 

sustainable development goal strategies, which ensure the fast detection of gut microbiome 

diversity. Later, strategies using control measures to reverse the pathogens will enable quick 

control. The intestinal microbiota is crucial for the diverse host physiological processes, 

such as immunity growth, metabolism upkeep (Lin and Zhang, 2017; Thursby and Juge, 

2017), pathogen defense, health maintenance, and nutrient absorption (Blancheton et al., 

2013). Following the widespread application of high throughput next-generation sequencing 

(NGS) technology, there has been an increase in NGS application in 16S rRNA-based 

microbial community analysis due to cost and effectiveness concerns (Caporaso et al., 

2011). These studies are vital for the identification of microbial diversity (Ritchie et 

al., 2008), trend of microbial gene content (Konstantinidis and Tiedje, 2005), and their 

correlation to host or environmental parameters (Hamady and Knight, 2009). A study 

conducted by Soo and Bhassu, 2022 showed that both biochemical tests and 16S rRNA 

analysis can be proposed as a combined strategy for shrimp health diagnosis, ensuring 

shrimp health maintenance, disease control, and food safety. This was illustrated in a 

graphical abstract (Figure 1) that shows the simplified method on how gut microbiome 

can serve as biomarkers for healthy shrimps.

16S rRNA V3/V4 hypervariable region is commonly selected in 16S amplicon sequencing 

analysis as shown previously (Kommedal et al., 2008; Edwards et al., 2012; Derakhshani et 

al., 2016; Wu et al., 2016). 16S amplicon sequencing analysis is also advantageous due to its 

lesser reliance on the quality of extracted DNA samples (Rintala et al., 2017). In spite of the 

widespread application of 16S amplicon sequencing technology in recent years, there have 

only been relatively few publications reported for the shrimp aquaculture industry, especially 
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those involving diseased conditions (Rungrassamee et al., 2016; Zheng et al., 2016; Pilotto 

et al., 2018).

The composition of penaeid shrimp microbiota is different at various developmental stages. 

For instance, Photobacterium spp. is found abundantly (80%) in P. monodon shrimps at 

post-larval stages, while Vibrio dominates the guts of juvenile shrimp. Other bacteria such 

as Fusobacteria are observed in PL15, while Spirochaetes are only present in J2 shrimps. 

Furthermore, while Actinobacteria, are observed in both post-larval and juvenile stages, 

Listonella is only found in juvenile stages (Rungrassamee et al., 2013). In L. vannamei, 
similar trends were observed, where Photobacterium spp. and Vibrio spp. dominated in the 

early stages of life, while Actinobacteria were more abundant in the adult stages (Cicala et 

al., 2020). The differences in bacterial diversity at various life stages may also be associated 

with differences in diet composition at different life stages. At the post-larval stage, the 

shrimps are given live feed, while at the juvenile stage, they are fed commercial pellets 

(Rungrassamee et al., 2013).

The changes in the microbiome may influence the onset and development of pathogenic 

diseases (Holt et al., 2021). To fight against bacterial diseases, antibiotics and probiotics 

have been used in shrimps to modulate the microbiota and develop resistance against 

specific pathogens. However, the use of antibiotics in shrimps, is restricted to avoid the 

development of antibiotic-resistance in prevailing bacterial pathogens. Hence, developmental 

strategies are required to reduce the occurrence of disease outbreaks, decrease the 

usage of antibiotics, and reinvigorate the health of the shrimp. Consequently, it is 

crucial to understand the association between the microbiota and shrimp immune system. 

Additionally, enhancing on the microbial dynamics of the shrimp microbiome and the 

ecosystem during disease outbreaks is also important (Kumar et al., 2020). For instance, if 

the gut microbiota is maintained, the risk of diseases caused by opportunistic pathogens in 

shrimps could be reduced (Rungrassamee et al., 2013).

2.3 Management and diagnostic approaches of penaeid shrimp diseases

Penaeid shrimps do not have an adaptive immune system that can facilitate natural 

protection against various pathogens and allow for immunization against viruses via 

standard vaccination (Arala-Chaves and Sequeira, 2000; Johnson et al., 2008). The main 

objectives of the shrimp health administration in aquaculture or disease management 

techniques are thus to exclude pathogens, and to avoid stressful environmental conditionals 

that might favor the emergence and spread of diseases (Walker and Mohan, 2009). This 

includes implementation of a structured biosecurity at shrimp farms, breeding programs for 

SPR1 or Specific pathogen free (SPF) stocks, the use of probiotics, and the development of 

pathogen detection and diagnostic methods. Hence, bacterial species, such as Lactobacillus 
or Nitrobacter help to improve survival rate, water quality, immunity, and disease 

resistance through space competition with disease-causing bacteria, such as Vibrio spp., 

as demonstrated in a recent study conducted by Amiin et al. (2023). The use of prebiotics, 

probiotics and synbiotics are key ingredients to maintain shrimp gut health at optimum 

levels throughout the production cycle, ensuring high survival and growth (Noman et al., 

2024).
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2.3.1 Biosecurity in shrimp aquaculture—Biosecurity practices involves strategies 

aimed at excluding certain pathogens from shrimp farms to prevent the occurrence of 

diseases (Walker and Mohan, 2009). It is imperative to establish effective biosecurity 

measures during all stages of shrimp cultivation, from breeding to harvest, to prevent 

pathogen entry or release into the environment. There are multiple measures that are 

implemented on-farm to ensure maximum biosecurity. Firstly, the aquaculture habitat or 

ponds are initially prepared by drying and exposing them to the sun to eradicate residual 

pathogens. Secondly, the water is filtered and disinfected before the shrimps are stocked 

or exchanged during grow-out stage (Walker and Mohan, 2009). The water quality is also 

frequently monitored and controlled by carrying out tests such as Water Quality Index 

(WQI), which can allow for the qualitative estimation of shrimp diseases in case of an 

outbreak (Xiong et al., 2016). Moreover, fences and nets are built to prevent potential 

carrier organisms and birds from feeding on or spreading infected or moribund shrimps. 

Furthermore, the effluent from the farm is treated before discharge to avoid the releasing of 

contaminated water into the ecosystem (Fegan and Clifford, 2001; Vanpatten et al., 2004; 

Subasinghe, 2005). In addition, shrimps are monitored during all stages of life cycle for 

early signs of infections by carrying out frequent histological examinations (Walker and 

Mohan, 2009).

In medium to large semi-intensive shrimp farms, the management of diseases are carried 

out at a higher level compared to small-holder farms. In more equipped and semi-intensive 

farms, aspects such as the aquaculture pond and land, treatment of wastes, water usage and 

maintenance records are managed more effectively. Moreover, they restrict the import of 

broodstocks from the wild and reduce usage of chemicals and antibiotics in the shrimp farms 

(Walker and Mohan, 2009). On the other hand, low-income farms have limited awareness, 

education, and resources to comprehensively practice disease management strategies 

(Padiyar, 2009). Hence, Better Management Practices (BMP) were developed. BMP are 

more affordable and effective measures that can be implemented by small-holder farmers to 

reduce shrimp diseases. The main objectives of BMP are to reduce the risks associated with 

health problems in shrimps, thereby maximizing the efficiency and production. Moreover, 

it also aims to minimize the adverse effects of shrimp aquaculture on the environment and 

enhance safety and quality of cultivated shrimps. Furthermore, BMP are also implemented 

by small producers to improve social benefits, acceptance, and sustainability of shrimp 

cultivation (Walker and Mohan, 2009).

The use of artifical intelligence (AI) and machine learning (ML) aided by molecular 

images are the latest technologies to understand the disease outbreaks in recent decades, 

necessitating an AI and ML approach. A study conducted by Ping and Liem (2000), 

attempted to predict shrimp disease occurrence using artificial neural networks versus 

logistic regression. However the study was inconclusive due to differences in farm and 

pond management practices. The integration of advanced technologies such as image-based 

machine learning, augmented reality (AR), surface-enhanced Raman scattering (SERS), 

and sensor technology, coupled with Internet of Things (IoT), big data, AI, 5G networks, 

cloud computing, and robotics is expected to have a high impact on disease management in 
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aquaculture (Malik et al., 2017a; Islam et al., 2024; Malik et al. 2017b; Jothiswaran et al., 

2020; Li and Li, 2020).

2.3.2 Specific pathogen free stocks—To reduce the impact of diseases on shrimp 

aquaculture productivity and to guarantee sustainability, it is crucial to acquire high-quality 

seed or post larvae to stock shrimp farms (Walker and Mohan, 2009). The deployment 

of SPF stocks has been an emerging trend in the shrimp aquaculture sector and has been 

recognized as an effective strategy to control shrimp stocks to enhance biosecurity in shrimp 

farms (Alday Sanz et al., 2020; Walker and Mohan, 2009; Turkmen and Toksen, 2010). 

SPF stocks are cultured under strict quarantine and screening at breeding centers to acquire 

shrimp populations devoid of specific or more pathogens. These pathogens should meet a 

certain criterion. In this regard, the pathogen should be effectively diagnosed and physically 

removable from the farm. In addition, the pathogen should be classified as a significant 

threat to the shrimp aquaculture industry (Lotz, 1997; Lightner, 2003).

Currently, SPF stocks that are free of WSSV, YHV, IHHNV, TSV and IMNV are available. 

However, on a large scale, SPF populations of only L. vannamei are currently obtainable 

(Walker and Mohan, 2009). It is significant to note that SPF stocks are not resistant to 

diseases or free of diseases. This is because there is a high chance that they might be 

infected with a known pathogen that is not listed by the breeding center. On the other hand, 

the stocks may also be infected by an unknown pathogen. Additionally SPF lists does not 

include the genus Vibrio, even though they can potentially cause shrimp diseases. Vibrio 
resides in the gut microbiome of shrimps, and hence cannot be physically eliminated from 

shrimp farms. SPF shrimps lack innate resistance to pathogens; therefore, disease resistant 

shrimps can only be bred into a line via selective breeding (Walker and Mohan, 2009).

2.3.3 Specific pathogen resistant stocks—SPR1 stocks are refractory to pathogenic 

infections and when exposed to such pathogens, they do not exhibit any gross symptoms 

of the disease. The difference between SPF and SPR1 stocks is that SPF relates to an 

individual’s health, whereas SPR1 pertains to its genetic status (Alday-Sanz et al., 2020). 

Followed by the development of SPF stocks, in 1990, shrimp breeding programs were 

established to selectively breed shrimp stocks with commercially desirable traits such as 

resistance to certain diseases. These breeding programs were based on the understanding of 

the quantitative genetics of penaeid shrimps (Walker and Mohan, 2009).

The development of SPR1 stocks were more focused on certain viral shrimp diseases that 

inflicted major economic losses to the sector. They include TS, IHHN, and WSD (Argue 

et al., 2002; Kong et al., 2003; Jiang et al., 2004; Gitterle et al., 2005; Cuéllar-Anjel et 

al., 2011). In the past two decades, many researchers have managed to enhance penaeid 

shrimp resistance to TSV via selective breeding (White et al., 2002; Kong et al., 2003). In 

this regard, L. vannamei stocks that have been selectively bred over 15 generations, were 

reported to exhibit 100% survival followed by TSV infection (Moss et al., 2011). On the 

other hand, for WSSV, minor improvements have been made in developing SPR1 stocks. In 

2005, a mean selection of 2.8% (Gitterle et al., 2005) was reported in L. vannamei, while a 

22.7% survival rate was reported in 2010 (Huang et al., 2011). In addition, in 2011, survival 
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rates between 23% to 57% against WSSV were reported in L. vannamei (Cuéllar-Anjel et 

al., 2011).

2.3.4 Probiotics management for shrimp growth—The use of antibiotics against 

bacterial pathogens in shrimp farms have led to the development of antibiotic-resistant 

bacteria, decreasing the efficiency of antibiotics (Vaseeharan and Ramasamy, 2003). 

Moreover, other traditional approaches such as the use of disinfectants to eliminate all 

microbiota in the aquaculture pond (Summerfelt et al., 2009) have led to imbalance in 

microbial community which decreases the competition within the niche and provides the 

opportunity for opportunistic pathogens to multiply. Examples of such bacteria include 

Vibrio species (Attramadal et al., 2012). Hence, it has been advised to avoid the use of 

antibiotics and disinfectants in shrimp aquaculture systems. Consequently, the application 

of probiotics was suggested, and some farmers have been adding probiotics to shrimp 

cultivation ponds as a control strategy against bacterial pathogens (Flegel et al., 2008).

Probiotics are live microorganisms that are orally administered as feed supplements, to 

enhance the balance of gut microbiota (Newaj-Fyzul et al., 2014). Some studies have 

suggested that the composition of gut microbiome is different in diseased shrimps, compared 

to their healthier counterparts (Xiong et al., 2015a; Zheng et al., 2016). These studies 

indicated that most common species found in healthy shrimp gut are known and have been 

used as probiotics, whereas the species of microbes isolated from diseased shrimps are 

labeled as potential pathogens (Zheng et al., 2016). The use of probiotics in shrimp health 

management has been reported to enhance the immune response and decrease the prevalence 

of Vibrio species (Li et al., 2007).

Multiple studies have validated the successful application of probiotics in shrimp disease 

management (Li et al., 2007; Cao et al., 2015; Solanki et al., 2015). Generally, the 

application of probiotics is standardized throughout the shrimp life cycle, although studies 

have shown that susceptibility to potential pathogens may vary based on the developmental 

stages (Zheng et al., 2016). This may limit the extent of probiotic effectiveness (Wang et al., 

2008; Ninawe and Selvin, 2009). A study counter-indicated that probiotics do not improve 

the survival rate and productivity of shrimp aquaculture. Moreover, it is recommended to 

tailor the probiotic administration to the composition of intestinal microbiota at different 

developmental stages of the shrimp life cycle (Xiong et al., 2015a).

2.3.5 Currently available diagnostic methods—For effective management of 

penaeid shrimp diseases, the availability of rapid, sensitive, convenient, and reliable 

diagnostic methods is significant for early diagnosis and prevention of the spread of disease. 

The most commonly available diagnostic methods include histological methods such as 

hematoxylin and eosin (H&E) staining, light microscopy, transmission electron microscopy 

(TEM), and fluorescent microscopy. Modern diagnostic and research laboratories for 

penaeid shrimp rely on traditional methods adapted from fish, veterinary, and human 

diagnostics. These include case history analysis, gross signs and behavioral observation, 

morphological pathology using bright-field or phase-contrast light microscopy, electron 

microscopy, and classical microbiology techniques (bacteriology and mycology). However, 

techniques involving tissue and cell culture, hematology, and clinical chemistry, which 
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are staples in vertebrate diagnostics, have either been unsuccessful or provided unreliable 

diagnostic data for shrimp (Lightner and Redman, 1998). In contrast, serological methods 

using polyclonal and monoclonal antibodies, and molecular methods like gene probes and 

Polymerase Chain Reaction (PCR), have proven to be accurate and standardizable for 

disease diagnosis and pathogen detection in penaeid shrimp, particularly for certain viruses. 

It is crucial to understand the workflow from classical methods to the latest diagnostic 

techniques, including new AI methods in molecular imaging, understanding cellular events 

within the shrimp innate immune system, and applying the latest technologies such as 

single-cell sequencing.

In addition, molecular methods such as PCR, nested PCR, multiplex PCR, multiplex reverse 

transcription-PCR (mRT-PCR), real-time RT-PCR, multiplex RT-nested PCR, and in-situ 
DNA hybridization methods are also very common. Furthermore, monoclonal antibody 

based tests such as ELISA, dot-blot assay, and lateral flow chromatographic assay are also 

shown to be efficient diagnostic methods of shrimp pathogens (Ganjoor, 2015). In this 

regard, lateral flow chromatographic assay strips have been developed for the detection of 

certain pathogens such as WSSV and are being applied in Japan and Thailand (Flegel, 

2006). These strips were also used by unskilled farmers to diagnose shrimp pathogens 

immediately at the pond site, without the need for technical expertise (Flegel et al., 2008). 

Additionally, a similar rapid lateral flow immunoassay test kit for WSSV detection has 

also been developed commercially in Taiwan (Hsu et al., 2022). On the other hand, 

methods such as PCR and RT-PCR require sophisticated equipment and skilled personnel 

to operate them (Flegel et al., 2008; Ganjoor, 2015). Moreover, loop-mediated isothermal 

amplification (LAMP) in combination with amplicon detection via chromatographic lateral 

flow dipsticks (LFD) has also been recognized as an easier detection method (Nimitphak et 

al., 2008). Recently, nanotechnology has been applied in shrimp pathogen diagnosis through 

nanopores, protein arrays, nanoarrays, nanoparticles, nano-vaccines, and nano-based sensors 

(Govindaraju et al., 2020).

2.3.6 Contribution of next-generation sequencing in genomic studies—NGS 

technologies were developed in the early 2000s, transforming the field of biological 

sciences. These DNA and RNA sequencing technologies have revolutionized the studies 

of OMICS, allowing novel directions in relevant fields of research that have never been 

considered in the past (Moorthie et al., 2011). NGS is a high-resolution technology that is 

cost-effective and efficient. Millions of fragments of DNA can be sequenced concurrently 

in a short period of time. Examples of NGS platforms include Illumina or Solexa, Roche, 

Helicos, ABI SOLiD, and Oxford Nanopore (Slatko et al., 2018). These technologies have 

provided exceptional opportunities for high-throughput applications in the field of functional 

genomics research (Moorthie et al., 2011).

Conventional approaches for the detection of pathogens are time-consuming and laborious. 

Through NGS platforms, various information regarding pathogenic diseases can be 

interpreted. For example, genome sequencing allows for the identification of species, strain 

of pathogens, its virulence, and the mechanism of pathogenesis. Furthermore, studies on 

molecular epidemiology and antibiotic-resistance of a pathogen can also be carried out 

using this technology (Fournier et al., 2014). For instance, Oxford nanopore (Oxford, UK) 
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developed a DNA/RNA sequencing device that can be plugged to a computer and connected 

to central databases for the assembly and analysis of sequences using the internet. This 

allows for the detection and analysis of pathogens in real-time at shrimp farms. Moreover, 

these approaches will also be able to detect unanticipated nucleotide sequences belonging to 

new or currently unidentified strains of pathogens (Flegel, 2019).

Metagenomic approaches can be used to profile microbial communities present in the 

aquaculture system (Martínez-Porchas and Vargas-Albores, 2017). The data obtained from 

these studies can be used to understand the interactions between existing microbes and 

invading pathogens, that are both synergic and antagonistic. These studies can be applied 

in developing more cost-effective control strategies for disease management in shrimps. 

Simultaneously, NGS technologies has also made studies on environmental DNA (eDNA) of 

shrimp aquaculture systems possible (Shaw et al., 2016). The interaction between organisms 

in the ecosystem, lead to shedding of eDNA. eDNA is a significant tool that can be applied 

in ecological studies to monitor the biodiversity and to detect invading species (Barnes 

et al., 2014; Goldberg et al., 2016). These studies can be used to identify the optimum 

microbial community in the aquaculture systems for enhanced productivity and long-term 

sustainability (Flegel, 2019).

The advancement of NGS platforms has also been applied in the establishment of new 

breeding programs. Marker-assisted selection (MAS) allows for the selection of individuals 

with economically desirable traits, based on genetic markers, and has shown to increase 

the efficiency of breeding programs (Shekhar et al., 2021). Selective breeding for enhanced 

growth has increased the productivity of L. vannamei in the shrimp aquaculture industry. 

Other determinants of cultivated shrimp productivity include traits that have low heritability 

and are difficult to measure, such as resistance to diseases (Yáñez et al., 2015). NGS offers 

platforms for low-cost whole genome (DNA) and transcriptome (RNA) sequencing that can 

be used to identify genetic markers for traits of interest (Bayliss et al., 2017).

To enhance the sustainability of penaeid shrimp culture, it is important to understand 

the genomic architecture of the complete genome of penaeid shrimps. However, due to 

the presence of large number of repeat sequences, it has been challenging to generate 

a reference genome for all shrimp species (Rodriguez-Anaya et al., 2018). Nevertheless, 

owing to NGS technologies, a remarkable progress has been made to the advancement 

of other molecular genetic resources, such as generation of genetic maps, transcriptomes, 

and identification of qualitative trait loci (QTL) (Shekhar et al., 2021). For instance, the 

genome sequence and draft assembly of M. japonicus and P. monodon genomes have been 

generated with sequencing data up to 132.86 Gb and 132 Gb, respectively (Yuan et al., 

2018). Recently constructed linkage maps of shrimps allowed for the identification of QTL 

that are economically important. They include shrimp weight and length of the body in L. 
vannamei (Andriantahina et al., 2013; Yu et al., 2015), resistance to WSSV in P. monodon 
(Robinson et al., 2014) and sex linkage in P. monodon (Staelens et al., 2008; Guo et al., 

2019). Moreover, QTL related to high pH tolerance has also been mapped, very recently 

(Huang et al., 2020).
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RNA sequencing (RNA-Seq) via NGS platforms has allowed for the development and 

implementation of transcriptomic analysis of L. vannamei. The potential functional genes 

and subsequent proteins that are engaged in the route of V. parahaemolyticus infection have 

been identified from the transcriptome analysis of pathogen-free larvae of L. vannamei. 
These results indicated that the immune response of the shrimp has evolved against Vibrio 
infection (Li et al., 2012). Moreover, the identification of gene expression involved in 

immune response against other pathogens such as TSV (Sookruksawong et al., 2013), and 

WSSV (Chen et al., 2013; Peruzza et al., 2019, 2020) has also been made possible by using 

transcript profiling data.

Concurrently, RNA-Seq has been used to generate the transcriptome of gonads in L. 
vannamei reproductive systems. These data were used to identify genes that are expressed 

in metabolic routes of the reproductive system of shrimp including sexual differentiation, 

ovarian follicle growth, development and maturation of gonads and oocytes (Peng et al., 

2015). These results can further be applied in MAS for the selection of high-quality stocks 

with inheritable traits that can improve growth, nutrition, maturation, tolerance to various 

environmental stress and tolerance against pathogens (Rodriguez-Anaya et al., 2018).

To sum up, NGS platforms have enhanced the application of OMIC technologies in the field 

of shrimp disease management research. Further advancement of these technologies may be 

a key to increase the sustainability of shrimp aquaculture industry.

3 Microbial control strategies

3.1 Improvement of pathogen detection methods

The development of rapid, reliable, and convenient diagnostic or detection methods is 

a significant aspect of penaeid shrimp disease control programs. The most reliable and 

commonly used diagnostic methods such as PCR-based methods are not readily available 

for diagnosis in shrimp aquaculture farms. Moreover, these methods require advanced 

equipment and skilled personnel to operate such machines and interpret data (Flegel et al., 

2008). Hence, there is a high demand for point-of-care (POC) methods that farmers can use 

at pond side, such as the recently developed lateral flow chromatographic immunodiagnostic 

strips (Flegel, 2006).

There have been several advancements in the development of early disease detection 

technologies. In the past few years, researchers have developed a method called Sensitive 

High Efficiency Reporter unLOCKing (SHERLOCK). This method is highly sensitive, rapid 

and was able to develop lyophilized paper strips for the diagnostic testing of human Zika 

and Dengue virus. This POC method allowed the device to be used in places with no power 

or infrastructure (Gootenberg et al., 2017, 2018; Myhrvold et al., 2018). With the increase 

in knowledge and innovation in Clustered Regularly Interspaced Short Palindromic Repeats 

(CRISPR) technology, this tool has been applied in many fields of scientific research. In 

2019, a CRISPR-based SHERLOCK diagnostic method was developed which allowed for 

accurate single copy detection of WSSV in penaeid shrimps. This assay is rapid and highly 

sensitive with potential applications in early detection of penaeid shrimp viruses at pond 

side (Sullivan et al., 2019). The recent study by Major et al. (2023) successfully adapted 
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a SHERLOCK assay, initially designed for human diagnostics, to detect RNA and DNA 

pathogens in shrimp. This innovative RT-LAMP CRISPR/Cas diagnostic assay targets TSV 

and WSSV in L. vannamei, offering significant potential for field-deployable applications. 

This breakthrough is set to enhance biomonitoring in shrimp aquaculture and lays the 

groundwork for developing rapid and efficient diagnostics in the broader agricultural sector.

Concurrently, advanced multiplex PCR methods have also been developed to simultaneously 

detect DNA and RNA viruses in shrimps. In this regard, a study conducted in 2021 

developed a dual priming oligonucleotide (DPO)- based multiplex PCR system which is 

cost effective. This multiplex PCR kit is time-saving, as results can be obtained within a day 

(See et al., 2021).

Another technology that has been implemented widely in this field is biosensing. Biosensors 

detect pathogens or diagnose diseases based on the conversion of biological responses 

generated during protein or nucleic acid interactions into electrical signals (Santos et 

al., 2020). This method can be used to diagnose and detect pathogens in aquaculture 

systems as well. Graphene oxide immobilized with methylene blue was used to develop 

an electrochemical immunosensor to successfully detect the presence of WSSV in penaeid 

shrimp (Natarajan et al., 2017). This method allows for the electrochemical immunosensing 

of the virus in the tissues of shrimps. In 2018, DNA Schottky diodes were used to derive 

electronic properties of DNA to develop a biosensor which can detect both bacterial and 

viral pathogens in penaeid shrimp samples (Rizan et al., 2018). DNA-based biosensors can 

become a significant tool in the diagnosis of microbial pathogens in shrimp farms in the 

field.

Nanotechnology is another advanced technology that has been applied in multiple areas of 

scientific research. However, the application of nanotechnology in the aquaculture industry 

is still novel. In Thailand, a rapid and efficient immunochromatographic test strip was 

developed using a monoclonal antibody W29 coupled with colloidal gold nanoparticles, to 

detect WSSV in M. rosenbergii (Sithigorngul et al., 2006). In addition, gold nanoparticles 

were also used to develop a Surface Plasmon Resonance (SPR2) device for the detection of 

WSSV (Lei et al., 2008).

ELISA is the currently used viral pathogen detection method in shrimp aquaculture 

(Ganjoor, 2015), which can be further improved to detect microbial diseases. For 

instance, white tail disease in M. rosenbergii was detected via a sandwich enzyme-linked 

immunosorbent assay (S-ELISA). This method was based on unlabeled antibody and 

biotinylated antibody coatings to trap antigens. S-ELISA is a rapid, sensitive, and cost-

effective method that can be used in epidemiological studies of shrimp diseases (Romestand 

and Bonami, 2003).

Alternative perspectives can also be taken in the development of effective diagnostic 

methods for shrimp pathogens. An example would be the possible development and 

utilization of a new type of pathogen detection approach involving Raman spectra analysis 

using deep learning methods (Yu et al., 2021).
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3.2 Vaccination/immunostimulants and immune memory of shrimps

Conventional vaccines consist of inactive pathogen-derived molecules such as antigens, 

that can trigger a host memory-based immune response to fight certain pathogens. This 

mechanism is known as adaptive immunity and is absent in invertebrates such as penaeid 

shrimps (Flegel, 2019). Hence, it has been a challenge to develop vaccines against viral and 

bacterial diseases of shrimps. It is significant to comprehensively understand the immune 

system of penaeid shrimps to develop effective control strategies. Immunological studies of 

shrimps have discovered a phenomenon that is similar to acquired immunity observed in 

vertebrates. In shrimps, the innate immune system can form immunological memory, and 

this is known as ‘trained innate immunity’ or ‘immune memory’ (Netea et al., 2011; Quintin 

et al., 2014; Boraschi and Italiani, 2018).

Multiple studies have reported the activation of innate immune responses in shrimps 

following an infection or the administration of immunization, which decreased the risk 

of getting infected by the same virus or reduced the spread of infection. Penaeid shrimps 

have exhibited resistance to experimentally induced WSSV for 4 months (Venegas et al., 

2000; Wu et al., 2002). Moreover, when formalin inactivated WSSV or envelope proteins of 

recombinant WSSV were administered to shrimps, it also induced resistance (Namikoshi et 

al., 2004; Vaseeharan et al., 2006; Witteveldt et al., 2006; Ha et al., 2008). Protective levels 

of 50-90% have been observed with the administration WSSV envelope proteins, however, 

the duration of immunity depends on the formulation (Wu and Zhang, 2007; Wu et al., 

2008). A recent study has suggested an epitope that could be used in the development of a 

vaccine against WSSV as well (Momtaz et al., 2019). The precise mechanism of action of 

DNA vaccines in shrimps is not completely understood, hence further research is required 

in this area. The use of immunostimulants is preferred as natural derivatives that range from 

bacteria, fungi, plants, animals, phytochemicals, and hormones, serving as primers for a 

chain of events in the PAMPs defense mechanism to clear the pathogen (Lee et al., 2020; 

Kumar et al., 2023). It is proposed that immunostimulants are a better chemotherapeutic 

than vaccines, as immune priming can be administered at the larval stage. Hence, disease 

intervention at the larval stage is a crucial step in ensuring higher survival rate in shrimp 

aquaculture. This strategy will pave way for reducing antibiotic use in shrimp aquaculture 

(Kumar et al., 2023). It is proposed that immunostimulants may be more effective than 

vaccines as a chemotherapeutic strategy in shrimp aquaculture. Applications of vaccines 

range from traditional killed/inactivated and live attenuated vaccines to new generation 

ones, including recombinant, synthetic peptides, mucosal and DNA, subunit, nanoparticle-

based and plant-based edible vaccines, reverse vaccinology, and monovalent and polyvalent 

vaccines (Mondal and Thomas, 2022). In shrimp vaccines, the most promising vaccine that 

has been tested is against vibriosis, as discussed in a recent review by Amatul-Samahah 

et al., 2020. The aim of a good vaccine is based on a few criteria: 1) safe for shrimp 

and humans, 2) long lasting protection of the pathogens throughout the entire production 

cycle, 3) cost-effective and sustainable 4) trans-generational potential that can be passed to 

progeny, and 5) applicability across different shrimp species (Sivasankar et al., 2017; Kumar 

et al., 2018).
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3.3 Phage therapy

Antibiotics are frequently used in shrimp aquaculture to treat bacterial outbreaks; however, 

there have been concerns regarding development of antibiotic-resistance in bacterial cultures 

and environmental pollution. One of the most common bacterial diseases reported in penaeid 

shrimp farm is vibriosis. Phage therapy is used to control and prevent bacterial infections in 

aquaculture systems through the use of lytic phages, which are viruses that infect bacteria, 

called bacteriophages (Flegel et al., 2008; Kalatzis et al., 2018). This technology has been 

promising (Defoirdt et al., 2011; Oliveira et al., 2012; Richards, 2014) ever since it was first 

applied in Japan to control Lactococcus garvieae communities (Nakai et al., 1999).

Over the last decade, phage therapy has been applied to treat diseases caused by various 

species of bacteria. In L. vannamei, Lomelí-Ortega and Martínez-Díaz (2014) administered 

A3S and Vp1 bacteriophages after 6 hours after a vibriosis infection caused by V. 
parahaemolyticus and reported a reduced mortality rate (Lomelí-Ortega and Martínez-Díaz, 

2014). A similar study on the same species induced experimental phage therapy against 

V. parahaemolyticus causing AHPND and reported an increase in survival rates (Jun et 

al., 2018). This technology has also been applied against V. alginolyticus in Apostichopus 
japonicus (Zhang et al., 2015) and V. harveyi in P. monodon (Stalin and Srinivasan, 2017). 

However, there is a limitation of field studies involving this technology. Abiotic factors 

such as the quality of water and the composition of organic matter in the culture or 

pond, may influence the efficiency of phage therapy. Hence, further studies are required 

to establish models that determine the various external factors impacting the efficiency of 

phage therapy. Moreover, it is significant to conduct more studies to determine the optimal 

dosage and administration schedule of this treatment (Santos et al., 2020). Phage therapy has 

the potential to be a biologically safe, commercial, and environmentally friendly alternative 

to antibiotic treatment of bacterial diseases in penaeid shrimp aquaculture.

3.4 Quorum sensing (QS) to control virulence of bacteria

The development of antibiotic-resistance in bacterial species such as Vibrio is a major 

concern. There have been reports of antimicrobial-resistant (AMR) genes being transferred 

to human pathogens by Vibrio sp. Hence, it is imperative to develop methods to control 

AMR bacterial species in aquaculture systems (Bramhachari et al., 2019). QS is a bacterial 

mechanism that allows cell-to-cell communication and regulation of gene expression in 

response to cell density (Pawar and Lahiri, 2018). The production of virulence factors in 

bacteria is controlled by this mechanism. Consequently, QS has been extensively studied in 

disciplines such as medicine, environmental science, and technology. Recently, QS has been 

applied in the regulation of bacterial virulence and infections caused by Vibrio species in 

aquaculture (De Decker et al., 2013; Benitez and Silva, 2016). In this regard, QS was used 

to reduce the mortality associated with V. campbelli infection in brine shrimp larvae and M. 
rosenbergii (Pande et al., 2013). These studies suggest that QS system may be a potential 

target to develop treatments against shrimp infections caused by Vibrio spp.

3.5 RNA interference

RNA interference (RNAi) is a post-transcriptional process wherein dsRNA is introduced into 

cells to trigger the silencing of specific genes. When dsRNA is delivered into cells, it, along 
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with proteins including Argonaute, forms the RNA-induced silencing complex (RISC). The 

RISC then targets, identifies, and degrades specific messenger RNA (mRNA) sequences, 

inhibiting translation of subsequent proteins (Agrawal et al., 2003). RNAi has potential 

applications in the disease management of penaeid shrimps (Walker and Mohan, 2009). This 

mechanism was first applied in shrimps against WSSV in the US (Robalino et al., 2004, 

2005). Concurrently, RNAi was reported effective in protecting shrimps against YHV and 

TSV. Moreover, WSSV replication was inhibited in M. japonicus via the introduction of 

inactive bacteria expressing vp28-siRNA construct (Yodmuang et al., 2006; Xu et al., 2007; 

Zhu and Zhang, 2011). Furthermore, via the introduction of non-specific dsRNA constructs, 

the mortality rates of M. japonicus decreased when infected with WSSV (Maralit et al., 

2015).

RNAi can also be used to study the function of proteins that are involved in the immune 

system of shrimps. Furthermore, the addition of dsRNA as feed additives in shrimp farms 

and breeding programs, may have the potential to protect against pathogens and generate 

pathogen-free progeny (Itsathitphaisarn et al., 2017). Limitations of RNAi in shrimp disease 

management include inadequate assessments of the long-term durability of the immunity 

induced by this strategy (Walker and Mohan, 2009). Moreover, the application of RNAi is 

still novel in this industry, as majority of the studies are conducted in laboratories (Loy et 

al., 2013). Hence, it is imperative to develop economic and practical techniques for RNAi 

application in shrimp disease management on a commercial level.

3.6 The future of NGS analysis in shrimp aquaculture

NGS platforms offer rapid, high throughput and large amounts of sequencing data. Third-

generation sequencers such as PacBio and Oxford Nanopore, allow longer read lengths of 

~20kb without the requirement for assembly processing (Amarasinghe et al., 2020). One 

such example is the complete transcriptome of L. vannamei by long-read sequencing (Zeng 

et al., 2018). Currently, the only reported complete shrimp genome is of L. vannamei (Zhang 

et al., 2019), while there are reports on the full-length transcriptomes of P. indicus and P. 
monodon (Huerlimann et al., 2018; Katneni et al., 2020). The development of bioinformatics 

offers novel advanced software for the assembly of genomes and genome annotation. Hence, 

with the advancement of NGS technologies and algorithms, future research can focus on 

generating reference genomes and transcriptomes for other commercially significant shrimp 

species. These sequencing data create valuable genomic resources that can be utilized in 

areas such as MAS in breeding programs, enhancing the sustainability of shrimp aquaculture 

(Shekhar et al., 2021).

Future research on whole genome sequencing of shrimp can focus on identifying genome-

wide variations in wild and pondreared shrimps from different regions of the world. 

Moreover, the development of experimental and statistical methods is required to identify 

variations in genes and alleles that lead to desirable traits. In addition, it is crucial to enhance 

the integration of molecular and genomics tools in both academic and industrial settings. 

Furthermore, epigenomics studies help in understanding the influence of abiotic factors 

on shrimp phenotypes, thereby increasing the sustainability and productivity (Metzger and 

Schulte, 2016; Wan et al., 2016; Yue and Wang, 2017).
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4 Epilogue

Since the outbreaks of shrimp diseases emerged in the 1980s, control measures have been 

implemented to prevent and reduce the spread of the diseases, primarily bacterial and viral 

infections. These measures mostly involved onsite biosecurity, the use of probiotics, and 

the development of SPF and SPR1 stocks. Multiple molecular diagnostic tools, including 

PCR-based methods, monoclonal antibody assays, and lateral flow chromatographic assay 

test strips, were developed to detect and diagnose various pathogens. Crucially, some 

of these methods enabled farmers to detect and diagnose pathogenic microorganisms 

directly at shrimp farms, significantly enhancing disease management and prevention efforts. 

However, a significant concern persists regarding the lack of effective strategies to prevent 

the emergence of new or previously controlled infections and to treat them. Due to the 

absence of an adaptive immune system, conventional disease prevention measures like 

vaccination are ineffective in shrimp. Consequently, numerous studies have concentrated on 

elucidating the underlying mechanisms of shrimp immune responses, potentially advancing 

our understanding of immunomodulation. Over the past few years, improved pathogen 

detection methods, including the application of NGS platforms, nanotechnology, CRISPR-

Cas9, and DNA biosensors, have gained traction. Additionally, novel technologies with 

the potential to treat shrimp diseases, such as the development of vaccines, phage therapy, 

quorum sensing to control bacterial virulence, and gene silencing using RNA interference, 

show great promise. However, additional field studies are necessary to evaluate the 

effectiveness of these strategies in treating or preventing the emergence of diseases in 

shrimp aquaculture systems. This research is crucial to ensure that these systems become 

profitable and sustainable for farmers, while also being safe for consumers. The next frontier 

research should be directed towards the development of culture-free diagnostics. This 

approach would ideally require transdisciplinary methodologies such as those harnessing 

physiochemical biosensors.
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FIGURE 1. 
Diagnostic methods for Penaeus monodon health during AHPND infection. Note: Adapted 
from “Biochemical indexes and gut microbiota testing as diagnostic methods for Penaeus 
monodon health and physiological changes during AHPND infection with food safety 
concerns” (Soo and Bhassu, 2022).
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