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Abstract
Background and aim. Tacrolimus (TAC) has significantly improved kidney 
graft survival following transplantation, though it is associated with adverse side 
effects. The most prevalent complication resulting from excessive TAC exposure 
is the onset of de novo diabetes mellitus (DM), a condition that can negatively 
impact both renal graft function and patient outcomes. De novo DM is linked 
to an increased risk of chronic transplant dysfunction, as well as cardiovascular 
morbidity and mortality. Although the underlying mechanisms remain unclear, 
emerging research in the field of omics shows promise. The aim of this study 
was to investigate the metabolomic profile of kidney transplant patients who 
developed de novo DM, in comparison to those who did not, following TAC 
exposure, using untargeted metabolomic analysis through ultra-high-performance 
liquid chromatography–mass spectrometry (UHPLC-MS) and machine learning 
algorithms.
Methods. A cohort of 34 kidney transplant patients on a Tacrolimus regimen for at 
least 6 months was enrolled in the study, with serum samples collected from each 
patient. Comprehensive profiling of serum metabolites was performed, enabling 
the classification of patients into de novo diabetes mellitus and non diabetes 
groups. The metabolomic analysis of serum was conducted using UHPLC-MS.
Results. Of the 34 patients, 16 were diagnosed with TAC-induced diabetes. 
A total of 334 metabolites were identified in the serum samples, of which 10 
demonstrated a significant correlation with the de novo diabetes mellitus group. 
Most of these metabolites were linked to alterations in lipid metabolism.
Conclusion. The application of metabolomics in kidney transplant patients 
undergoing a Tacrolimus regimen is both feasible and effective in identifying 
metabolites associated with de novo diabetes mellitus. This approach may provide 
valuable insights into the metabolic alterations underlying TAC-induced diabetes.
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Background and aims
Tacrolimus, a potent immunosuppressive 

medication commonly used after kidney transplantation, 
has revolutionized the field by significantly improving 
graft survival rates. It belongs to the class of drugs known 
as calcineurin inhibitors and alongside mycophenolate 
mofetil (MMF) and prednisone plays a crucial role in 
suppressing the immune system, thereby ensuring the 
long-term success of the renal graft [1,2]. While tacrolimus 
has substantially improved transplant outcomes, it is 
characterized by substantial intra- and inter-individual 
pharmacokinetic variability and a narrow therapeutic 
window, causing numerous potential complications 
associated with its use [3-5]. 

One of the most common complications caused 
by TAC excessive exposure is represented by de novo 
diabetes mellitus (DNDM), a condition that can have 
detrimental effects on both renal graft and patient 
outcomes associating an increased risk of chronic 
transplant dysfunction and cardiovascular morbidity and 
mortality [6,7]. De novo diabetes mellitus refers to the 
onset of diabetes in individuals who did not have the 
condition prior to undergoing kidney transplantation [8]. 

The underlying mechanism by which tacrolimus 
contributes to the development of diabetes mellitus (DM) 
is not fully understood, but several factors have been 
proposed. Tacrolimus has been found to impair insulin 
secretion from pancreatic beta cells and increase insulin 
resistance or may produce a direct toxic effect on the beta 
cell, leading to a disruption in glucose metabolism [9-12]. 
Additionally, other factors such as genetic predisposition, 
obesity, and the use of other immunosuppressive 
medications may also contribute to the development of 
diabetes after kidney transplantation [13,14]. 

In order to mitigate the incidence of post-transplant 
diabetes mellitus after the administration of tacrolimus, 
the most effective approach entails the minimization of 
tacrolimus serum concentrations, albeit at the cost of 
potentially elevating the patient’s susceptibility to graft 
rejection [15-17]. The treatment of DM is complex 
and consists of a combination of lifestyle changes and 
medication [18,19]. Furthermore, managing diabetes in 
the post-transplant setting requires a multidisciplinary 
approach, involving close monitoring of blood glucose 
levels, adjustments in immunosuppressive regimens, and 
lifestyle modifications.

Metabolomics, a rapidly evolving field in medical 
research, offers a comprehensive approach of studying 
the metabolic profile of biological systems. It provides 
valuable insights into the complex interactions between 
genetic, environmental, and lifestyle factors that 
contribute to disease development and progression. In the 
context of tacrolimus therapy and the development of de 
novo diabetes mellitus after treatment in kidney transplant 

patients, metabolomics has emerged as a promising 
tool for understanding the underlying mechanisms and 
identifying potential biomarkers that may help in the early 
detection, prediction, and a personalized management of 
this complication [20-22]. 

In this article, we will explore the emerging role 
of metabolomics in understanding the metabolic changes 
induced by tacrolimus therapy and their association in 
de novo diabetes mellitus in kidney transplant patients. 
Thus, we aim to describe the serum metabolomic profile 
of kidney transplant patients that developed de novo 
diabetes mellitus compared to the ones that didn’t, using 
untargeted metabolomic investigation by UHPLC–MS 
and machine learning algorithms. 

Methods
In this cross-sectional study, from a total of 135 

consecutive patients who underwent kidney transplantation 
(KTx) at our hospital we recruited 34 patients, 16 that 
developed diabetes mellitus after the kidney transplant 
and a group of 18 patients age-gender matched that did not 
developed diabetes mellitus as the control group. These 
patients had stable creatinine levels, which we defined as 
a variation below 25% of the mean creatinine value. The 
study took place between May 2020 and July 2020 at the 
Clinical Institute of Urology and Renal Transplantation 
Cluj-Napoca. All enrolled patients were receiving a 
Tacrolimus (TAC)-based immunosuppressive therapy 
protocol (Advagraf 0.075-0.3 mg/kg/day) for at least 
six months after the surgery. We excluded patients who 
developed autoimmune diseases or lymphoproliferative 
disorders following the KTx procedure.

During the standard follow-up, we conducted 
clinical examinations, standard hematological and 
biochemical tests, as well as tacrolimus concentration 
analysis (tacrolinemia) for all patients. In accordance with 
the occurrence of de novo diabetes mellitus, the patient 
cohort was stratified into two distinct groups: individuals 
who manifested DNDM and those who remained 
unaffected. Subsequently, comprehensive profiling of 
serum metabolites was conducted for each respective 
group, facilitating the classification of patients into the 
DM group and the non-DM group.

Patients’ blood samples were obtained 24 hours 
after administering Advagraf, just before the next dose. 
Prior to collection, patients were required to fast for a 
minimum of 8 hours.

To collect the serum samples, vein puncture was 
performed using vacutainer tubes without anticoagulants. 
The collected blood was then subjected to centrifugation 
at 2000× g for 10 minutes to separate the blood serum. 
Aliquots of 1 mL were taken from the separated serum 
and stored at −80 °C until further analysis.
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To precipitate the protein content in the serum, a 
mixture of methanol and acetonitrile (in a ratio of 1:1) 
was added to 0.2 mL of serum, resulting in a total volume 
of 0.8 mL. The mixture was vortexed for 1 minute, kept 
at 4 °C for 6 hours, and vortexed again for 1 minute. After 
thorough mixing, the vials containing the mixture were 
centrifuged at 12,500× g for 5 minutes. The supernatant 
was then collected, and it underwent filtration through 0.2 
µm nylon filters. 

Tacrolinemia levels were measured using a semi-
automated electrochemiluminescence immunoassay 
method on the ArchitectPlus CI4100 automatic analyzer 
[23,24]. Prior to the automated sequence on the Architect, 
a manual pretreatment step was conducted. This involved 
extracting the whole blood sample with a precipitation 
reagent and subjecting it to centrifugation. The resulting 
supernatant was carefully transferred to a Transplant 
Pretreatment Tube and then loaded onto the Architect 
iSystem for further analysis. 

Moreover, the ArchitectPlus CI4100 automatic 
analyzer was employed for the standard laboratory 
assessment, encompassing a range of parameters. 
These included serum cholesterol, triglycerides, 
glycemia, aspartate aminotransferase (ASAT), alanine 
aminotransferase (ALAT), gamma-glutamyl transferase 
(GGT), amylases, total proteins (TP), potassium (K+), 
sodium (Na2+), chloride (Cl−), ionized calcium (Ca2+), 
magnesium (Mg2+), and uric acid (UA). The evaluation 
of renal function was accomplished by estimating the 
glomerular filtration rate (eGFR) through the application 
of the CKD-EPI equation, which is based on creatinine 
levels [25,26]. 

The metabolomic serum profile was analyzed 
using high-precision liquid chromatography (UHPLC)–
mass spectrometry (MS) analysis.

For the UHPLC-MS analysis, a Bruker Daltonics 
MaXis Impact device (Bruker GmbH, Bremen, Germany) 
was utilized. The system consisted of a Thermo Scientific 
UHPLC UltiMate 3000 system with a Dionex Ultimate 
quaternary pump delivery and ESI+-QTOF-MS detection 
device. The analysis was performed on a C18 reverse-
phase column (Acuity, UPLC C18 BEH, Dionex) with 
dimensions of 5 µm and 2.1 × 75 mm, maintained at a 
temperature of 25 °C. The flow rate was set at 0.3 mL/
min, and the injection volume was 5.0 µL. The mobile 
phase used in the analysis was composed of eluent 
A (water containing 0.1% formic acid) and eluent B 
(methanol:acetonitrile 1:1, containing 0.1% formic acid). 
A gradient system was employed, starting with 99% A 
at minute 0, followed by 70% A at minute 1, 40% A at 
minute 2, 20% A at minute 6, and 100% B from minutes 
9 to 10, followed by 5 minutes with 99% A. The total 
running time for the analysis was 15 minutes. The mass 

spectrometry parameters were set to analyze a mass range 
between 50 and 1000 Da. The nebulizing gas pressure 
was set at 2.8 bar, the drying gas flow was maintained 
at 12 L/min, and the drying gas temperature was set to 
300 °C. Prior to each chromatographic run, a calibration 
with sodium formate was performed. Instrument control 
and data processing were carried out using the TofControl 
3.2, Hystar 3.2, and Data Analysis 4.2 software packages 
provided by Bruker Daltonics.

The metabolites identified by UHPLC–MS were 
ranked based on their information gain, specifically in their 
capacity to distinguish between patients who developed 
de novo diabetes mellitus and those who did not. Utilizing 
the Kullback–Leibler divergence method, the top 10 
metabolites were selected. A Student’s t-test was then 
performed for each of these metabolites, and the p-value 
was calculated. These 10 metabolites were subsequently 
chosen for further analysis. The classification accuracy for 
distinguishing between the two patient groups, based on 
each significant metabolite, was assessed using a receiver 
operating characteristic (ROC) curve, and the area under 
the curve (AUC) was calculated.

To quantitatively assess the multivariate 
classification efficacy of the 10 selected metabolites, 
two independent machine learning algorithms—naive 
Bayes and k-nearest neighbors (kNN)—were trained to 
discriminate between patients who developed de novo 
diabetes mellitus and those in the non-diabetic group. kNN 
was used as standard implementation in Quasar-Orange 
Software, using 5 as the number of neighbors, Euclidean 
as the metric parameter and uniform as the weight value. 
The cross-validation was done using the leave-one-out 
method. All models were rigorously cross-validated using 
the leave-one-out (LOO) method. 

The inputs for the machine learning algorithms 
consisted of either the individual selected metabolites 
or all ten metabolites combined. Prior to classification, 
the data were normalized to unity. The classification 
performance was evaluated using several metrics: the area 
under the curve (AUC) derived from receiver operating 
characteristic (ROC) analysis, classification accuracy, F1 
score, precision, and recall. These quality performance 
metrics were reported as the average values obtained from 
each iteration of the cross-validation process.

Subsequently, a principal component analysis 
(PCA) was conducted to explore the dataset, using the 
10 selected metabolites as input variables. To enhance 
the representation of the model’s capacity to differentiate 
between the two groups, PCA was employed to reduce 
the dimensionality of the data. The relationship between 
the number of principal components and the explained 
variance in the original dataset is illustrated in figure 1. 
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Figure 1. The relationship between the number of principal 
components and the explained variance.

 
For the correlation analysis, we used the Pearson 

correlation coefficient.
All statistical analyses were performed using the 

Quasar-Orange software (Bioinformatics Laboratory of the 
University of Ljubljana) [27,28].

The study was approved by the Ethics Committee of 
the Clinical Institute of Urology and Kidney Transplantation, 
Cluj-Napoca, No. 2/2020, and by the Ethics Committee of 
the Iuliu Hatieganu University of Medicine and Pharmacy 
in Cluj-Napoca, No. 285/2020. Written informed consent 
was obtained from all patients following the rules and 
principles of the Helsinki Declaration.

Results
A total of 34 kidney transplant recipients were 

included in the study, comprising 16 patients who 

developed de novo diabetes mellitus following tacrolimus 
administration (DM group) and 18 patients who did not 
develop diabetes (non-DM group). 

Table I presents the biochemistry panel, displaying 
the mean values and standard deviations for each parameter 
across both groups.

Table I. Student’s t-test and info gain for the significantly different 
metabolites used to discriminate between patients that developed 
diabetes.

Blood tests DM group
mean±SD

non-DM group
mean±SD 

Cholesterol (mg/dl) 176.7±30.5 212.3±52.4
Triglycerides (mg/dl) 166.7±92.4 149.1±65.6
Potassium (mmol/L) 4.6±0.5 4.4±0.7
Amylases (U/L) 91.3±39 102±50
ASAT (U/L) 18.5±5.3 19.6±7.7
ALAT (U/L) 23.7±14.5 27.2±26
GGT (U/L) 36±32 31.2±23
TB (mg/dl) 0.71±0.28 0.62±0.3
Glycemia (mg/dl) 125±21.7 94±10.2
Total proteins(mg/dl) 6.9±0.4 6.8±0.6
Ca2+  (mmol/L) 4.5±0.3 4.7±0.5
Cl-  (mmol/L) 107.1±3.8 107.3±3.9
Na+ (mmol/L) 141.5±2.4 142.7±1.4
Mg2+ (mg/dL) 1.68±0.2 1.71±0.2
UA (mg/dl) 7±1.3 6.8±1

Our dataset comprised 336 metabolites identified 
using ultra-high-performance liquid chromatography–mass 
spectrometry (UHPLC–MS). The metabolites were ranked 
based on their information gain, specifically their ability 
to discriminate between the DM and non-DM groups. 
The Kullback–Leibler divergence method was employed 
to select the top 10 metabolites. A Student’s t-test was 
performed for each of these metabolites, and p-values were 
calculated. These 10 metabolites, which showed significant 
differences between the two groups, were selected for 
further analysis (Table II). 

Table II. Student’s t-test and info gain for the significantly different metabolites. The mean levels of the metabolites represent peak UHPLC–
MS intensities.

Metabolite (counts) DM Group
Mean ± SD

Non-DM Group
Mean ± SD t- test Value Info. gain p-Value

Sphingomyelin (d18:1/18:1(9Z)) 108369 ± 43377 198228 ± 143923 2.353 0.565 0.031
Cer (t18:0/20:0(2OH)) 148919 ± 91935 103460 ± 66817 2.727 0.553 0.015
DG (18:1/22:4/0:0) 67483 ± 41031 44790 ± 32875 2.960 0.519 0.011
Eicosadienoyl-ethanolamine C22H41NO2 24001 ± 4531 31581 ± 29067 0.965 0.507 0.353
PA (20:1/18:1) 285202 ± 119440  100775 ± 52295 3.796 0.507 0.003
N-oleoyl ethanolamine 23802 ± 19994 25333 ± 22834 1.538 0.493 0.179
PC (20:3/22:2) 38371 ± 14542 22233 ± 14685 4.601 0.435 0.001
PG (18:0/14:0) 78710 ± 87800 70407 ± 76967 1.706 0.419 0.113
LPI (18:0) 49846 ± 33918 23393 ± 18312 2.595 0.403 0.067
Tetrahydrocortisone 32866 ± 18700 32158 ± 10496 0.173 0.386 0.865

Abbreviations: Cer – Ceramide; PA – phosphatidic acid; DG – diglyceride; PA - Phosphatidic acid; PC – phosphatidylcholine; PG – 
phosphatidylglycerol; LPI  – lysophosphatidylinositols.



Original Research

MEDICINE AND PHARMACY REPORTS Vol. 97 / No. 4 / 2024: 467 - 476   471

The violin plots derived from UHPLC-MS analysis 
for each of the 10 metabolites are presented in the figure 
below (Figure 2). These plots reveal a broader distribution 
with a higher density of data points in the DM group, 
compared to a narrower distribution and lower density of 

data points in the non-DM group for all ten metabolites. The 
wider plots indicate greater variability in the data for the 
metabolites. We can also observe a shift in the distribution 
of the violin plots between the two groups indicating a good 
discrimination between the patients that developed diabetes 
mellitus after TAC administration and the ones that did not. 

Figure 2. Violin plots of Sphingomyelin (d18:1/18:1(9Z)) (a), Cer(t18:0/20:0(2OH)) (b), DG(18:1/22:4/0:0) (c), Eicosadienoyl-
ethanolamine C22H41NO2 (d), PA(20:1/18:1) (e), N-oleoyl ethanolamine (f), PC(20:3/22:2) (g), PG(18:0/14:0) (h), LPI(18:0) (i) 
Tetrahydrocortisone (j), for the DM group and non-DM group. Abbreviations: Cer – Ceramide; PA – phosphatidic acid; DG – diglyceride; 
PA - Phosphatidic acid; PC – phosphatidylcholine; PG – phosphatidylglycerol; LPI  – lysophosphatidylinositols.
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The ROC curves for the classification models 
demonstrated high discriminative power for both the naive 
Bayes and kNN algorithms. The AUC values were 0.902 and 
0.816 for the naive Bayes and kNN models, respectively, 
indicating excellent classification performance (Table III).

We conducted a head-to-head comparison of 
the receiver operating characteristic (ROC) curves to 
evaluate the classification accuracy of the 10 metabolites 
individually, as well as in combination, using Naïve Bayes 
analysis for supervised classification (Figure 3). 

Figure 3. Head-to-head comparison of the receiver operating 
characteristic curves (ROC) for the classification accuracy yielded 
by the ten metabolites using naïve Bayes analysis for supervised 
classification.  

To more effectively represent the ability to 
distinguish between patients who developed DM following 
TAC administration and those who did not, we employed 
Principal Component Analysis (PCA) for dimensionality 
reduction. Figure 1 illustrates the relationship between the 
number of principal components (PCs) and the explained 
variability in the original dataset. The distribution of score 
values from the PCA of metabolic profiles for both DM and 
non-DM groups, specifically for PC2 and PC19, is depicted 
in figure 4. The distribution of score values following PCA 
of the two groups’ metabolic profiles (PC2 and PC19) show 

the clustering tendency of the patients that developed DM 
after TAC administration and the ones that did not. 

Figure 4. The distribution of principal component (PC) score 
values (PC2 and PC19) of patients with metabolic profiles 
associated with the DM group and the non-DM group.

Figure 5 displays the heatmap of the ten serum 
metabolites identified through our UHPLC–MS analysis, 
demonstrating the clustering of metabolites based on the 
presence of diabetes mellitus. 

The left section of the heatmap represents patients 
who did not develop diabetes mellitus. This group exhibits 
a more variable expression pattern, with many gray areas 
indicating low or absent expression of certain metabolites. 
The right section corresponds to patients who developed 
diabetes mellitus. This group shows higher and more 
consistent levels of expression for most metabolites, as 
indicated by the predominance of red coloring. There 
appears to be a clear distinction in expression levels 
between the two groups. The DM group tends to have 
generally higher metabolite levels, suggesting that these 
metabolites may be associated with the development of 
diabetes mellitus following TAC administration. 

Table III. Head-to-head comparison of the area under the curves for the classification accuracy yielded by the ten metabolites using three 
supervised classification algorithms.

Statistic model AUC CA F1 Precision Recall
Naive Bayes 0.902 0.647 0.607 0.798 0.647
kNN 0.816 0.676 0.657 0.705 0.676
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Discussion
The primary objective of this study was to examine 

the relationship between kidney transplantation, tacrolimus 
treatment, and the development of de novo diabetes 
mellitus. Furthermore, the study aimed to investigate 
the potential of utilizing metabolomics biomarkers and 
machine learning mechanisms to predict and prevent the 
risk of DNDM in kidney transplant recipients undergoing 
tacrolimus treatment. The findings of this study suggest 
promising opportunities for incorporating personalized 
medicine strategies to optimize the selection and dosage 
of immunosuppressive therapies in order to prevent the 
occurrence of de novo diabetes mellitus.

Tacrolimus, a potent calcineurin inhibitor, is 
widely used in transplantation to prevent graft rejection. 
However, due to its narrow therapeutic window and high 
pharmacokinetic variability, patients are subjected to the 
diabetogenic effect of tacrolimus, which raises concerns 
among clinicians and researchers. The real challenge lies 
in finding the delicate balance of providing patients with 
the minimum required immunosuppression that yields 
maximum effectiveness. This balance is crucial to avoid 
complications arising from excessive exposure while 
also preventing graft rejection due to inadequate levels of 
immunosuppression [9,12,16,29]. 

Tacrolimus can contribute to the development 
of DNDM through various mechanisms, encompassing 
diminished insulin secretion, increased insulin resistance, 
or direct beta cell toxicity [9-12]. 

A recent study aimed to investigate the potential 
impact of diabetes mellitus and cytochrome P450 3A gene 
polymorphism on the concentrations of tacrolimus and its 
metabolites in kidney transplant recipients. The primary 
objective was to gain insights into the pharmacokinetics 
of tacrolimus in this patient population and explore the 
potential for personalized dosing strategies. The study 
findings present compelling evidence demonstrating 
that both diabetes mellitus and genetic polymorphism 

significantly influence the disposition of tacrolimus, as well 
as its metabolites, 13-DMT and 15-DMT. These results 
carry potential clinical implications in terms of interpreting 
therapeutic monitoring outcomes related to tacrolimus 
administration [30]. 

Other studies aimed to assess the potential of model-
based follow-up dosing, incorporating patient characteristics 
and pharmacological data, to enhance the individualization 
of treatment in kidney transplant recipients. Specifically, 
those studies sought to determine whether model-based 
follow-up dosing could yield more precise tacrolimus 
exposure levels compared to the conventional approach of 
standard therapeutic drug monitoring following an initial 
algorithmic dosing regimen and revealed high rates of both 
graft survival and patient survival at 5 years post-transplant, 
with a high potential to minimize under- and overexposure 
to tacrolimus in the early posttransplant phase [31,32]. 

In our study, we identified 10 metabolites that tend 
to express in the group of patients diagnosed with diabetes 
post Tacrolimus exposure. The metabolism that is affected 
with a high predominance is the lipidic metabolism. As the 
majority of studies show, the long term administration of 
tacrolimus has effects on lipid metabolism with a high chance 
of developing diabetes, when compared with cyclosporine 
A, due to its effects on pancreatic beta cells. Sphingomyelin 
(d18:1/18:1(9Z)) is a cell membrane component, with an 
essential role in intracellular signal transduction, but also in 
cell maturation, apoptosis or proliferation.  Elevated serum 
levels of sphingomyelin are associated with cardiovascular 
disease and metabolic syndrome [33].

Cer(t18:0/20:0(2OH)) is a very long chain ceramide 
that has been linked with comorbidities of obesity, steatosis, 
non-alcoholic steatohepatitis, and major adverse cardiac 
events. The latest studies make a strong difference between 
the 2 types of ceramiced, with long chain (C16 up to C20) 
and very long chain which are produced by acyl chain-
specific ceramide synthases, CerS1–6. The ceramides that 
most tightly correlate with insulin resistance and hepatic 

Figure 5. Heatmap of the levels of serum metabolites. Abbreviations: Cer – Ceramide; PA – phosphatidic acid; DG – diglyceride; PA - 
Phosphatidic acid; PC – phosphatidylcholine; PG – phosphatidylglycerol; LPI  – lysophosphatidylinositols.
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steatosis are long-chain species, C16:0 or C18:0, ceramides 
produced predominantly by CerS6 in adipose and liver 
tissue [34]. 

From glycerolipids class is DG(18:1/22:4/0:0), 
a metabolite that showed important impact on insuline 
resistance. In a study conducted in a finish population, 
it showed that dysregulated levels of glycerolipids and 
sphingolipids are present in the serum plasma years before 
diabetes type 2 onset [35]. 

Eicosadienoyl-ethanolamine is  a fatty amide 
(andanamides) obtained by the formal condensation 
of  (11Z,14Z)-eicosadienoic acid  with  ethanolamine, 
the few studies that were addressed to this metabolite is 
showing that andanamides, are acting as an endogenous 
ligand of cannabinoids receptors in mammalian brain [36]. 

PA(20:1/18:1) is a glycerolphospholipid found 
to have important parts in inflammation reactioA 
study conducted on mice population, both sexes, in 
thyroid, showed that the exposure to paclobutrazol and 
uniconazole significantly increased the biomarker levels 
of PG (12:0/15:0), PS (14:0/16:0), PA (20:1/15:0) and PG 
(13:0/17:0) in both sexes of rats [37]. 

N-oleoyl ethanolamine is one of the most studied 
metabolites in cardiovascular diseases, longevity and 
neurologic pathology, being linked also to the metabolic 
syndrome. There are studies showing this endogenous 
bioactive mediator of lipid homeostasis, who exerts vascular 
protection against intimal calcification, atherosclerosis; 
but his beneficial effect on vascular smooth muscle cell 
associated medial calcification has not been investigated 
in extension in humans, the majority of studies being 
conducted in mice models [38]. 

In a recent study, N-oleoyl ethanolamine was 
identified as a promising biomarker for bacterial infection 
diagnosis, where they studied the blood and the ascitis 
liquid from decompensated cirrhosis patients and for those 
with overlapping bacterial infections [39]. 

In what concernes PG(18:0/14:0), one of the most 
promising studies, presented the plasma lipidomics in 
patients with lung cancer and who underwent radiotherapy 
regimens. The authors aimed to identify biomarkers of 
diagnosis and prognosis, and also radiotherapy response 
in non-small-cell lung cancer (NSCLC) patients by plasma 
lipidomics analysis.

They compared lipid elements between weak and 
strong responses of NSCLC patients with radiotherapy, the 
obviously declined phosphatidylglycerol (PG 18 : 0/14 : 0, 
18 : 1/18 : 3, and 18 : 0/20 : 1)  elevated PI (20 : 0/22 : 5 and 
18 : 2/22 : 4) and phosphatidic acid (PA 14 : 0/20 : 4, 14 : 
0/20 : 3, and 18 : 2/22 : 4) could indicate poor therapeutic 
response for NSCLC patients. The results of ROC curve 
analysis suggested that PG (18: 0/20: 1 and 18 : 0/14 : 0) 
could clearly predict the radiotherapeutic response for 
NSCLC patients, and PS (18 : 0/20 : 0) and cholesterol were 
the first two lipid components with the most potential for the 

diagnosis of advanced NSCLC [40]. 
A study that observed the effects of dioxin on a cohort 

of male workers, showed the lipid metabolism dysregulation, 
especially the results revealed that dioxin exposure caused 
accumulations of triglyceride (TG), ceramide (Cer) and 
sphingoid (So), remodeling of glycerophospholipid, 
here being included phosphatidylcholine PC(20:3/22:2). 
Therefore, it is a promising area of research in what 
concernes inflammation, cardiovascular disease and hepatic 
diseas and their correlation with PC (20:3/22:2) [41]. 

Lysophosphatidylinositols (LPI) are bioactive lipids 
that are known to be involved in several pathophysiological 
processes such as cell proliferation, migration and 
tumorigenesis and were shown to play a role in  metabolic 
disorders [42]. 

Studies suggest that LPI (18:0) plays a key role 
in several metabolic functions and possibly in metabolic 
disorders, while GPR55, the main LPI receptor, has been 
proposed as a metabolic regulator. Therefore, the LPI/
GPR55 axis has been shown to be positively associated 
with obesity in humans and also altered levels of LPI have 
been linked with obesity and diabetes and they are also 
involved in inflammation and cancer. Further mechanistic 
studies are required to elucidate the potential role of LPI in 
the pathogenesis of metabolic disorders [43]. 

Tetrahydrocortisone is a corticosteroid hormone 
that is involved in the response to stress; it increases blood 
pressure and blood sugar levels and suppresses the immune 
system.

In a recent study, urinary steroid hormone profiles 
of patients with diabetic kidney disease were analyzed by 
gas chromatography–mass spectrometry and compared to 
an age and gender matched healthy control group taken out 
of a population study. They observed that the cohort with 
diabetic kidney disease excreted more tetrahydrosterone 
than the control group having a high significance in men, 
while the mineralo-corticoid receptor excretion was only 
increased for 18-hydroxytetrahydrocorticosterone in 
diabetic women. The excretion of most glucocorticoids was 
higher in the diabetic cohort compared with their healthy 
counterpart [44]. 

Our study evidenced that the most affected 
metabolism in diabetic patient group post-tacrolimus 
regimen was the lipidic metabolism, with a predilection on 
the phospholipids. Many other studies showed that after 
tacrolimus regimens, the lipidic metabolism is dysregulated, 
making many studies on lipidomics future keys of research 
in this area of transplantation.

One of the strengths of this study is the novelty 
in metabolomic approaches and the potential method for 
distinguishing between tacrolimus induced diabetes and 
non-diabetes patients after kidney transplant.

A future approach will involve the use of both 
urine and tissue metabolomics to validate our findings in a 
larger cohort of patients. Targeted metabolomics should be 
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employed to confirm these results, alongside longitudinal 
monitoring of patients using metabolomic profiling, 
beginning prior to transplantation and continuing through 
the potential development of diabetes mellitus.

Personalised medicine is the key in transplant 
medicine and with the help of metabolomics, the tacrolimus 
regimens will find a way in helping patients without the 
cost of high comorbidity side effect.

Conclusions 
Using serum metabolomics and machine learning 

algorithms we can find clear differences in the metabolic 
profile between patients that developed diabetes after TAC 
treatment and non-diabetic population, making it possible 
to identify future biomarkers. Future studies are required 
to confirm those metabolites through targeted metabolites.
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