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ABSTRACT

Background: Assessments of COVID-19 vaccine effectiveness are needed to monitor the protection provided by updated vac-
cines against severe COVID-19. We evaluated the effectiveness of original monovalent and bivalent (ancestral strain and Omicron
BA.4/5) COVID-19 vaccination against COVID-19-associated hospitalization and severe in-hospital outcomes.

Methods: During September 8, 2022 to August 31, 2023, adults aged >18years hospitalized with COVID-19-like illness were
enrolled at 26 hospitals in 20 US states. Using a test-negative case—control design, we estimated vaccine effectiveness (VE) with
multivariable logistic regression adjusted for age, sex, race/ethnicity, admission date, and geographic region.

Results: Among 7028 patients, 2924 (41.6%) were COVID-19 case patients, and 4104 (58.4%) were control patients. Compared
to unvaccinated patients, absolute VE against COVID-19-associated hospitalization was 6% (—7%-17%) for original monovalent
doses only (median time since last dose [IQR] =421 days [304-571]), 52% (39%-61%) for a bivalent dose received 7-89 days earlier,
and 13% (-10%-31%) for a bivalent dose received 90-179days earlier. Absolute VE against COVID-19-associated invasive me-
chanical ventilation or death was 51% (34%-63%) for original monovalent doses only, 61% (35%-77%) for a bivalent dose received
7-89 days earlier, and 50% (11%-71%) for a bivalent dose received 90-179 days earlier.

A full list of collaborators in the IVY Network is shown in Appendix S1.
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Conclusion: Bivalent vaccination provided protection against COVID-19-associated hospitalization and severe in-hospital out-

comes within 3months of receipt, followed by a decline in protection to a level similar to that remaining from previous origi-

nal monovalent vaccination by 3-6 months. These results underscore the benefit of remaining up to date with recommended

COVID-19 vaccines.

1 | Introduction

In December 2020, monovalent COVID-19 vaccines designed
against the ancestral strain of SARS-CoV-2 (original monova-
lent vaccines) were introduced in the United States to prevent
COVID-19-associated morbidity and mortality. Although these
vaccines successfully prevented COVID-19-associated hospital-
ization and death [1, 2], their effectiveness declined over time
due to several factors, including waning vaccine-induced immu-
nity and the emergence of the immune evasive Omicron vari-
ant [3, 4]. To address these factors, on September 1, 2022, the
Advisory Committee on Immunization Practices (ACIP) at the
US Centers for Disease Control and Prevention (CDC) recom-
mended a bivalent mRNA COVID-19 dose, designed to protect
against both the ancestral strain and Omicron BA.4/5 lineages,
for persons who had completed at least an original monovalent
COVID-19 primary series [5]. With implementation of this rec-
ommendation, the original monovalent mRNA COVID-19 vac-
cines were no longer recommended for use as booster doses in
the United States [6]. The following year, in September 2023, the
ACTP recommended vaccination with a 2023-2024 COVID-19
vaccine, designed against the Omicron XBB.1.5 lineage, and it is
anticipated that periodic updates to COVID-19 vaccine compo-
sition will continue to occur [7].

Assessments of COVID-19 vaccines against a variety of clin-
ical outcomes are needed to monitor the effectiveness of
COVID-19 vaccination programs and to communicate the
value of receiving COVID-19 vaccines. We evaluated the ef-
fectiveness of the original monovalent and bivalent (ancestral
strain and Omicron BA.4/5) vaccination against COVID-19-
associated hospitalization and severe in-hospital outcomes.
The results on bivalent mRNA COVID-19 vaccine effective-
ness were stratified by time since bivalent dose receipt to ex-
amine durability of protection.

2 | Methods
2.1 | Setting and Design

This test-negative case-control analysis was conducted by
the Investigating Respiratory Viruses in the Acutely Ill (IVY)
Network, which consisted of 26 hospitals in 20 US states in
collaboration with the CDC. The current analysis included
adults admitted to IVY Network hospitals from September 8,
2022, to August 31, 2023. Vaccine effectiveness for the pre-
vention of COVID-19-associated hospitalization and severe
in-hospital outcomes was estimated for the original mon-
ovalent and bivalent COVID-19 vaccines authorized for use
in the United States during the analysis period. These activ-
ities were determined to be public health surveillance with
waiver of informed consent by institutional review boards

at CDC and each enrolling site and were conducted in accor-
dance with applicable federal law and CDC policy (45 C.F.R.
part 46.102(1)(2), 21 C.F.R. part 56; 42 U.S.C. §241(d); 5 U.S.C.
§552a; 44 U.S.C. §3501 et seq).

2.2 | Participants

Site personnel prospectively enrolled patients aged >18years
admitted to IVY Network hospitals who met a COVID-19-like
illness case definition and received SARS-CoV-2 clinical testing.
COVID-19-like illness was defined as >1 of the following five
signs and symptoms: fever, cough, shortness of breath, new or
worsening findings on chest imaging consistent with pneumo-
nia, or hypoxemia (defined as an oxygen saturation [SpO,] < 92%
or supplemental oxygen use for patients without chronic oxygen
needs or escalation of oxygen therapy for patients on chronic
supplemental oxygen). Case patients tested positive for SARS-
CoV-2 by nucleic acid amplification test or antigen test within
10days of illness onset and within 3 days of hospital admission.
Control patients tested negative for SARS-CoV-2 by real-time re-
verse transcription polymerase chain reaction (RT-PCR) within
10days of illness onset and within 3 days of hospital admission.
Case or control status was determined by results of both clinical
SARS-CoV-2 testing at the admitting hospital and standardized
central laboratory testing for SARS-CoV-2 by RT-PCR. Patients
who tested positive for SARS-CoV-2 by either clinical testing or
central laboratory testing were classified as cases, whereas pa-
tients who tested negative by both clinical and central laboratory
testing were classified as controls. Case patients who tested posi-
tive for influenza or RSV were excluded from analyses, whereas
control patients who tested positive for influenza were also
excluded due to potential correlation between COVID-19 and
influenza vaccination behaviors [8]. Case and control patients
were enrolled by admission date within 2weeks of one another
at each site in approximately a 1:1 ratio and were not matched on
patient-level characteristics.

2.3 | Data Collection

Trained personnel at enrolling sites collected data on patient de-
mographics through patient or proxy interview and on chronic
medical conditions and severe in-hospital outcomes through
medical chart abstraction. Chronic medical conditions were
grouped into nine categories: cardiovascular, pulmonary, renal,
endocrine, gastrointestinal, hematologic, neurologic, autoim-
mune, and immunocompromising (see Appendix S2). COVID-19
vaccination status was ascertained using hospital electronic
medical records, state vaccination registries, vaccination cards
(when available), and patient or proxy interview. Patients were
followed from admission until discharge, death, or hospital day
28 (whichever occurred first).
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2.4 | Classification of Vaccination Status

To assess original monovalent and bivalent vaccine effective-
ness, patients were classified into four vaccination status groups:
(1) unvaccinated (no COVID-19 vaccine doses received), (2)
vaccinated with original monovalent doses only (receipt of any
combination of one to four doses of original monovalent vac-
cine: mRNA-1273 [Moderna], BNT162b2 [Pfizer-BioNTech],
Ad26.COV2.S [Janssen]|, NVX-CoV2373 [Novavax]|), (3) vac-
cinated with one bivalent mRNA dose 7-89days before illness
onset, and (4) vaccinated with one bivalent mRNA dose 90—
179 days before illness onset. Patients were classified as bivalent
vaccinated if they received one dose of either mRNA-1273.222
(Moderna) or BNT1262b2 bivalent (Pfizer-BioNTech), regardless
of the number of previous original monovalent doses received.
Patients were excluded if they received > 1 bivalent dose; if they
received any COVID-19 vaccine dose <7days before illness
onset; if they received only one dose of original monovalent
Moderna, Pfizer, or Novavax vaccine; or if they had an immu-
nocompromising condition (defined in Appendix S2). Estimates
of bivalent vaccine effectiveness >180days after dose receipt
lacked sufficient precision for reporting; therefore, patients who
received a bivalent dose > 180days before illness onset were also
excluded.

2.5 | Clinical Outcomes

COVID-19-associated hospitalization was defined as hospital ad-
mission with COVID-19-like illness and laboratory-confirmed
SARS-CoV-2 infection as described above. Additional outcomes
were also included to assess original monovalent and bivalent
vaccine effectiveness against severe COVID-19-associated dis-
ease through hospital day 28. These outcomes were (1) supple-
mental oxygen therapy, defined as any receipt of supplemental
oxygen for patients with no chronic oxygen use or escalation of
oxygen use for patients on chronic supplemental oxygen; (2) ad-
vanced respiratory support, defined as new receipt of high-flow
nasal cannula (HFNC), noninvasive ventilation (NIV), or inva-
sive mechanical ventilation (IMV); (3) acute organ failure, de-
fined as either respiratory failure (new receipt of HFNC, NIV, or
IMV), cardiovascular failure (receipt of vasopressors), or renal
failure (new receipt of renal replacement therapy); (4) intensive
care unit (ICU) admission; and (5) IMV or death. Patients on
home IMV were not eligible for the supplemental oxygen ther-
apy or advanced respiratory support outcomes (outcomes are
fully described in Appendix S2).

2.6 | Molecular Diagnosis and Sequencing

Nasal swabs were obtained from enrolled patients and tested
for SARS-CoV-2, influenza, and RSV by RT-PCR at a central
laboratory at Vanderbilt University Medical Center (Nashville,
Tennessee). All specimens that tested positive for SARS-CoV-2
by central RT-PCR testing were submitted to the University
of Michigan (Ann Arbor, Michigan) for viral whole genome
sequencing. Detailed laboratory methods are described in
Appendix S2. SARS-CoV-2 lineages were considered predom-
inant if they were detected in >50% of sequenced specimens
during a given admission week.

2.7 | Statistical Analysis

Original monovalent and bivalent vaccine effectiveness against
COVID-19-associated hospitalization was calculated using mul-
tivariable logistic regression, in which the odds of COVID-19
vaccination were compared between COVID-19 case patients
and control patients. Estimates of vaccine effectiveness were
generated using two different comparator groups. First, abso-
lute vaccine effectiveness was calculated for both bivalent and
original monovalent vaccines using unvaccinated patients as
the reference group. Second, relative vaccine effectiveness was
calculated for bivalent vaccines using patients who received
original monovalent vaccination only as the reference group.
Logistic regression models were adjusted for age (18-49, 50-64,
and > 65), sex (male and female), self-reported race and Hispanic
ethnicity (non-Hispanic white, non-Hispanic Black, Hispanic or
Latino, non-Hispanic other race, and other), admission date in
biweekly intervals, and US Department of Health and Human
Services region of the admitting hospital. Post hoc, we evaluated
other variables as potential covariates, including the number
of chronic medical condition categories and known previous
Omicron infection, defined as either self-reported or documented
SARS-CoV-2 infection on or after December 21, 2021. None of
these other variables resulted in an absolute change in the ad-
justed odds ratio of > 5% when added to the prespecified model
and were not included in the final models (Table S1) [9]. Vaccine
effectiveness was calculated as (1 —adjusted odds ratio) X 100%.

Overall estimates of original monovalent and bivalent vaccine
effectiveness against COVID-19-associated hospitalization were
stratified by age (18-64 and > 65years), number of chronic med-
ical condition categories (<3, > 3), and bivalent vaccine product
type (Moderna, Pfizer). Analyses assessing original monovalent
and bivalent vaccine effectiveness against COVID-19-associated
in-hospital outcomes were conducted using the methods de-
scribed for COVID-19-associated hospitalization, with cases lim-
ited to those who met each severe in-hospital outcome definition.
Analyses were conducted using SAS (Version 9.4; SAS Institute).

3 | Results

3.1 | Description of Participants in Vaccine
Effectiveness Analyses

Between September 8, 2022, and August 31, 2023, 8783 immu-
nocompetent patients admitted with COVID-19-like illness
were enrolled in the IVY Network from 26 hospitals in 20 US
states (Figure S1). A total of 1755 (20.0%) patients met exclu-
sion criteria and were removed from the analysis. Among the
remaining 7028 patients, 2924 (41.6%) were COVID-19 case
patients, and 4104 (58.4%) were control patients (Table 1). The
median age was 67years (interquartile range [IQR] 56-78),
3573 (50.8%) patients were female, 1606 (22.9%) were non-
Hispanic Black, and 802 (11.4%) were Hispanic. A total of
1545 (22.0%) patients were unvaccinated, 4191 (59.6%) were
vaccinated with original monovalent doses only, 647 (9.2%)
were vaccinated with one bivalent dose 7-89days before ill-
ness onset, and 645 (9.2%) were vaccinated with one bivalent
dose 90-179 days before illness onset. Compared with patients
who received either original monovalent or bivalent vaccine
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doses, unvaccinated patients were younger (p <0.0001) and
more likely to be non-Hispanic Black (p =0.0338) or Hispanic
(p=0.0002).

Viral whole genome sequencing was completed for 1779 of the
2924 case patients (60.8%), and a SARS-CoV-2 lineage was
successfully identified for 1646 (56.3%), all of whom were in-
fected with an Omicron lineage. BA.4/5 was the predominant
lineage from September 8, 2022, until November 26, 2022;
BQ.1 was predominant from December 4, 2022, to December
31, 2022; and XBB.1.5 was predominant from January 22,
2023, to May 27, 2023 (Figure S2). No single SARS-CoV-2 lin-
eage was predominant from May 28, 2023, to August 31, 2023.

3.2 | Vaccine Effectiveness Against COVID-19-
Associated Hospitalization

The absolute effectiveness of original monovalent vaccina-
tion only against COVID-19-associated hospitalization was
6% (95% Cl —7%-17%), with a median time since last dose
of 421days (IQR 304-571). Bivalent vaccination received
7-89days before illness onset provided significantly higher
protection against hospitalization than original monovalent
vaccination only, with an absolute vaccine effectiveness of
52% (39%-61%) and a relative vaccine effectiveness of 48%
(36%-57%). After 90-179 days, absolute effectiveness waned

to 13% (—=10%-31%), and relative effectiveness waned to 17%
(—1%-31%) (Figures 1 and S3).

Bivalent vaccination provided increased protection against
COVID-19-associated hospitalization 7-89days after dose re-
ceipt compared to original monovalent vaccination only, fol-
lowed by a decline in point estimates of vaccine effectiveness
by 90-179days across most subgroups, including patients aged
> 65years, patients with comorbidities in <3 and >3 chronic
condition categories, Moderna bivalent recipients, and Pfizer bi-
valent recipients (Figures 1 and S3).

3.3 | Vaccine Effectiveness Against COVID-19-
Associated Severe In-Hospital Outcomes

Among 2924 case patients, 632 (21.6%) experienced acute
organ failure, 514 (17.8%) were admitted to an ICU, and 281
(9.6%) received IMV or died (Table 2). Among 2918 case pa-
tients not on home IMV, 1775 (60.8%) received supplemental
oxygen therapy, and 568 (19.5%) received advanced respi-
ratory support. Compared with case patients who received
either original monovalent or bivalent vaccination, unvacci-
nated case patients were more likely to have advanced respi-
ratory support (p=0.0005), acute organ failure (p =0.0065),
ICU admission (p <0.0001), and IMV or death (p <0.0001).

No. of i d

No. of inated

COVID-19 case-
patients/total no.
of COVID-19 case-

patients (%)

total no. of

Group Vaccination status (%)

control-patients/

control-patients

Without immunocompromising conditions
Original monovalent only
Bivalent 7-89 days earlier

1811/2471 (73)
184/844 (22)
269/929 (29)

Overall 463/1348 (34)

Bivalent 90-179 days earlier 376/1261 (30)

By age group

2380/3265 (73)

18-64 years

265 years

<3

By vaccine product

Moderna

Pfizer-BioNTech

Original monovalent only
Bivalent 7-89 days earlier
Bivalent 90-179 days earlier
Original monovalent only
Bivalent 7-89 days earlier
Bivalent 90-179 days earlier

By number of chronic condition categories

Original monovalent only
Bivalent 7-89 days earlier
Bivalent 90-179 days earlier
Original monovalent only
Bivalent 7-89 days earlier
Bivalent 90-179 days earlier

Original monovalent only
Bivalent 7-89 days earlier
Bivalent 90-179 days earlier
Original monovalent only
Bivalent 7-89 days earlier
Bivalent 90-179 days earlier

623/989 (63)
51/417 (12)
62/428 (14)
1188/1482 (80)
133/427 (31)
207/501 (41)

1032/1513 (68)
109/590 (18)
155/636 (24)
779/958 (81)
75/254 (30)
114/293 (39)

1811/2471 (73)
51/711(7)
81/741 (11)
1811/2471 (73)
133/793 (17)
188/848 (22)

1112/1678 (66)
131/697 (19)
105/671 (16)

1268/1587 (80)
332/651 (51)
271/590 (46)

1394/2037 (68)
259/902 (29)
235/878 (27)
986/1228 (80)
204/446 (46)
141/383 (37)

2380/3265 (73)
139/1024 (14)
125/1010 (12)
2380/3265 (73)
324/1209 (27)
251/1136 (22)

4% Original monovalent only
Absolute vaccine - Bivalent 7-89 days earlier
Median days since effecti , % - Bivalent 90-179 days earlier

last dose (IQR) (95% CI)
421 (304-571) 6(-7to17) .

53 (30-69) 52 (39to 61) —
133 (110-153) 13 (-10 to 31) -
441 (315-580) 14 (-2 to 28) |

54 (34-71) 43 (16 to 61) § e —
134(110-152) 19 (21tod6)
410 (298-564) 0(-20t0 17) —

52 (29-68) 54 (38 to 66) : ———
132 (110-153)  11(21t034f .+
419 (303-570) 9 (-6 t022) R

54 (31-70) 50 (33 to 63) ! —
132 (111-152) 20 (-7 to 40) e —
424 (305-573) -6 (-33t0 15) —

49 (30-67) 53 (31 to 68) "
133 (110-154)  -13 (-70 to 26)° I
421 (304-571) 6 (-7t017) ——

53 (28-70) 57 (38 to 70) —
130 (109-152) 24 (-6 to 46)° o S —
421 (304-571) 6(-7t017) +

53 (31-68) 50 (36 to 61) ] ——
134 (111-153) 7 (-20 to 28) e —

-20 -10 0 10 20 30 40 50 60 70 80 90 100
% (95% Cl)

FIGURE 1

| Absolute COVID-19 vaccine effectiveness against COVID-19-associated hospitalization among adults in the United States during

September 8, 2022-August 31, 2023, including effectiveness of original monovalent vaccines only, bivalent mRNA vaccines received 7-89 days before

illness onset, and bivalent mRNA vaccines received 90-179 days before illness onset compared to unvaccinated patients. CI=confidence interval,

IQR =interquartile range. *Some estimates are imprecise, which might be due to a relatively small number of persons in each level of vaccination

or case status. This imprecision indicates that the actual vaccine effectiveness could be substantially different from the point estimate shown, and

estimates should therefore be interpreted with caution.
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The absolute effectiveness of original monovalent vaccination
only against COVID-19-associated supplemental oxygen ther-
apy (12%, —2%-24%) was similar to that against COVID-19-
associated hospitalization (6%, —7%-17%) (Figures 1 and 2).
Point estimates of the absolute effectiveness of original monova-
lent vaccination only generally increased with outcome severity,
up to 51% (34%-63%) against IMV or death (median time since
last dose =416days, IQR=297-564). Compared to the absolute
effectiveness of original monovalent doses only, the absolute ef-
fectiveness of a bivalent dose received 7-89days before illness
onset was higher against COVID-19-associated supplemental
oxygen therapy (original monovalent: 12%, —2%-24% vs. biva-
lent: 56%, 42%-66%), advanced respiratory support (original
monovalent: 31%, 15%-45% vs. bivalent: 66%, 47%-78%), and
acute organ failure (original monovalent: 26%, 8%-40% vs.
bivalent: 61%, 41%-74%) (Figure 2). Estimates of absolute ef-
fectiveness for original monovalent vaccination and bivalent
vaccination received 7-89 days before illness onset were similar
against ICU admission (original monovalent: 36%, 20%-49% vs.
bivalent: 56%, 33%-71%) and IMV or death (original monovalent:
51%, 34%-63% vs. bivalent: 61%, 35%-77%). By 90-179 days after
vaccination, point estimates of bivalent vaccine effectiveness
against each severe outcome had declined to a level similar to
that for original monovalent vaccination only. Trends were sim-
ilar when assessing relative bivalent effectiveness (Figure S4).

4 | Discussion

In this analysis of adults admitted to 26 US hospitals between
September 8, 2022, and August 31, 2023, no protection against
COVID-19-associated hospitalization remained from original
monovalent vaccination only, for which the median time since
last dose was > 1year. In contrast, bivalent mRNA COVID-19
vaccination provided protection against COVID-19-associated

hospitalization within 3 months of dose receipt, when compared
to both unvaccinated patients and patients who received original
monovalent doses only. However, protection from bivalent vac-
cination waned by 3-6 months after dose receipt. These findings
were consistent across key subgroups, including patients aged
>65years and patients with multiple comorbidities. Of note,
original monovalent vaccination continued to provide durable
protection against the most severe in-hospital outcomes, includ-
ing IMV or death. Bivalent vaccination increased protection
against certain severe in-hospital outcomes within 3 months of
dose receipt before declining to a level of protection similar to
that remaining from previous original monovalent vaccination.
These results support staying up to date with recommended
COVID-19 vaccines to optimize protection against both COVID-
19-associated hospitalization and severe in-hospital outcomes.

Our findings are consistent with studies from the United
States, the United Kingdom, and Finland showing that bivalent
COVID-19 vaccination provided protection against COVID-
19-associated hospitalization, followed by waning within
6months of dose receipt [10-13]. A CDC report on US adults
aged >18years found that the absolute effectiveness of a biva-
lent vaccine dose against COVID-19-associated hospitalization
was 62% (57%-67%) at 7-59 days after vaccination and declined
to 24% (12%-33%) after 120-179 days, similar to our results [10].
Declining estimates of bivalent vaccine effectiveness against
COVID-19-associated hospitalization may be explained by a
number of factors, including the emergence of immune evasive
lineages and waning vaccine-induced immunity.

Our results also provide important information regarding the ef-
fectiveness and durability of COVID-19 vaccination against the
most severe in-hospital outcomes. When compared to unvacci-
nated patients, bivalent vaccination provided protection against
all in-hospital outcomes assessed in this analysis, including

No. of inated No. of

COVID-19 case-
patients/total no.
of COVID-19 case-

total no. of

control-patients/

Group

Vaccination status

patients (%)

(%)

Severe in-hospital outcomes

Original monovalent only

1086/1492 (73)

2369/3251 (73)

- Original monovalent only
Absolute vaccine - Bivalent 7-89 days earlier
control-patients Median days since effectiveness, % & Bivalent 90-179 days earlier
last dose (IQR) (95% CI)
419 (304-567) 12 (-2 to 24) I
Supplemental oxygen therapy  Bivalent 7-89 days earlier 120/526 (23) 461/1343 (34) 52 (30-69) 56 (42 to 66) —
Bivalent 90-179 days earlier 163/569 (29) 376/1258 (30) 133 (111-153) 24 (0 to 42) S
Original monovalent only 323/482 (67) 2369/3251(73) 417 (297-562) 31 (15 to 45) e
Advanced respiratory support  Bivalent 7-89 days earlier 34/193 (18) 461/1343 (34) 52 (30-68) 66 (47 to 78) —
Bivalent 90-179 days earlier 52/211 (25) 376/1258 (30) 132 (111-152) 33 (-1to 56)° e
Original monovalent only 371/539 (69) 2380/3265 (73) 417 (297-563) 26 (8 to 40) e —
Acute organ failure  Bivalent 7-89 days earlier 39/207 (19) 463/1348 (34) 52 (30-68) 61 (41to 74) —
Bivalent 90-179 days earlier 54/222 (24) 376/1261 (30) 132 (111-152) 33 (0 to 55)° —————
Original monovalent only 281/434 (66) 2380/3265 (73) 417 (297-565) 36 (20 to 49) e
ICU admission  Bivalent 7-89 days earlier 38/191 (20) 463/1348 (34) 52 (30-68) 56 (33 to 71) - —
Bivalent 90-179 days earlier 42/195 (22) 376/1261(30) 132 (110-153) 38 (4 to 60)° —_—
Original monovalent only 141/233 (61) 2380/3265 (73) 416 (297-564) 51 (34 to 63) -
IMV or death  Bivalent 7-89 days earlier 25/117 (21) 463/1348 (34) 52 (30-68) 61 (35 to 77) —_—
Bivalent 90-179 days earlier 23/115 (20) 376/1261 (30) 130 (111-153) 50 (11 to 71)* —
=20 -10 0 10 20 30 40 50 60 70 80 90 100
% (95% Cl)

FIGURE2

| Absolute COVID-19 vaccine effectiveness against COVID-19-associated severe in-hospital outcomes among adults in the United States

during September 8, 2022-August 31, 2023, including effectiveness of original monovalent vaccines only, nRNA bivalent vaccines received 7-89 days

before illness onset, and mRNA bivalent vaccines received 90-179 days before illness onset compared to unvaccinated patients. CI=confidence

interval, ICU =intensive care unit, IMV =invasive mechanical ventilation, IQR =interquartile range. *Some estimates are imprecise, which might

be due to a relatively small number of persons in each level of vaccination or case status. This imprecision indicates that the actual VE could be

substantially different from the point estimate shown, and estimates should therefore be interpreted with caution.
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acute organ failure, ICU admission, and IMV or death, and
provided additional protection beyond that remaining from
previous original monovalent vaccination for some outcomes.
However, protection from bivalent vaccination declined by
3-6months to a level similar to that remaining from previous
original monovalent vaccination. Although original monova-
lent vaccination provided residual protection against severe
in-hospital outcomes > 1year after receipt of the last dose, pos-
sibly mediated by long-lasting memory B- and T-cell responses
[14-16], the longer term durability of protection from original
monovalent vaccination amidst continued viral evolution is un-
clear. Taken collectively, our findings demonstrated an added
benefit of updated COVID-19 vaccination to optimize protec-
tion against severe in-hospital outcomes irrespective of prior
COVID-19 vaccination status, consistent with other studies of
bivalent vaccine effectiveness [11, 17-19].

Aswith all observational research, this analysis had limitations.
Because original monovalent and bivalent COVID-19 vaccines
were not simultaneously available as booster doses in the United
States, a direct comparison of original monovalent and bivalent
vaccine effectiveness against COVID-19-associated hospital-
ization and severe outcomes was not possible during the study
period. Although case patients tested positive for SARS-CoV-2
and met criteria for COVID-19-like illness, some may have been
hospitalized for reasons other than COVID-19, which could
have biased vaccine effectiveness estimates toward the null.
The measures of prior SARS-CoV-2 infection available for inclu-
sion in this analysis likely underestimated the proportion of pa-
tients with prior infection in our sample and were not included
in vaccine effectiveness models, as described above. Previous
studies have demonstrated that prior infection is highly protec-
tive against severe outcomes and may be more prevalent among
patients who are unvaccinated or have a remote history of vac-
cination compared to recent vaccinees [20, 21], resulting in
lower measured vaccine effectiveness. Therefore, estimates of
COVID-19 vaccine effectiveness should be interpreted as the in-
cremental benefit of vaccination beyond protection provided by
population immunity. Although vaccine effectiveness estimates
were adjusted for patient-level demographic characteristics, cal-
endar time, and geographic region, residual confounding from
other factors, including the receipt of COVID-19 antiviral treat-
ments, is also possible. Finally, sample size limitations resulted
in wide confidence intervals for some effectiveness estimates
and prevented calculation of original monovalent and bivalent
vaccine effectiveness against death alone.

In light of waning COVID-19 vaccine effectiveness doc-
umented in this and other studies, it is anticipated that
COVID-19 vaccines will be periodically updated to optimize
antigenic match with lineages predicted to circulate. Receipt
of a recommended updated COVID-19 vaccine may boost
waned vaccine-induced immunity against severe COVID-19
outcomes and improve protection against emerging lineages.
In June 2024, the World Health Organization Technical
Advisory Group on COVID-19 Vaccine Composition recom-
mended an update to COVID-19 vaccines for the fall of 2024 to
a monovalent JN.1 lineage antigen [22]. Future monitoring of
SARS-CoV-2 epidemiology, the burden of disease in high-risk
groups, and the effectiveness of updated COVID-19 vaccines
will be critical to informing policy on the need for regular

revaccination against COVID-19. Findings from this analysis
highlight the importance of staying up to date with recom-
mended COVID-19 vaccines to optimize protection against
both hospitalization and severe in-hospital outcomes due to
COVID-19.
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